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Abstract

 Alpha is a non-proprietary experimental operating system kernel which extends the real-
time domain to encompass distributed applications, such as for telecommunications, facto-
ry automation, and defense. Distributed real-time systems are inherently asynchronous, dy-
namic, and non-deterministic, and yet are nonetheless mission-critical.The increasing com-
plexity and pace of these systems precludes the historical reliance solely on human opera-
tors for assuring system dependability under uncertainty. Traditional real-time OS
technology is based on attempting to assert or impose determinism of not just the ends but
also the means, for centralized low-level sampled-data monitoring and control, with an in-
sufficiency of hardware resources. Conventional distributed OS technology is primarily
based on two-party client/server hierarchies for explicit resource sharing in networks of au-
tonomous users. These two technological paradigms are special cases which cannot be
combined and scaled up cost-effectively to accommodate distributed real-time systems. Al-
pha’s new paradigm for real-time distributed computing is founded on best-effort manage-
ment of all resources directly with computation completion time constraints which are ex-
pressed as benefit functions; and multiparty, peer-structured, trans-node computations for
cooperative mission management. 

1. Introduction

The Alpha OS kernel is part of an multi-institutional applied research and advanced technol-
ogy development project intended to expand the domain of real-time operating systems from con-
ventional centralized, low-level sampled-data, static subsystems, to encompass distributed, dy-
namic, mission-level systems. 

This paper begins with a summary of the distinctive characteristics of Alpha’s applicat
context: integrating constituent lower-level, centralized, real-time subsystems into one system
cused on performance of a single real-time mission; and managing that system to meet (in 
cases, changing) mission objectives given the current (in many cases, changing) internal an
ternal circumstances. Real-time distributed system integration and mission management is 
dominately asynchronous endeavor in which conflicts and overloads are inevitable, but mos
tivities have hard and soft real-time constraints. These combined factors constitute the req
ment for an apparent oxymoron: distributed resource management which is dynamic and 
deterministic yet nonetheless real-time.

To help resolve this conflict between needing functional and temporal dependability, an
commodating inherent uncertainty, we devised a new paradigm for real-time computing; it is f
ed on two concepts. The first is that real-time computations have individual and collective “be
(both positive and negative) to the system which are functions of their completion times; thus
imizing accrued benefit can be the basis for highly cost-effective real-time acceptability criteria.
The second is that in many (especially mission-level, distributed) real-time computing syste
may be much preferable for the OS to do the best (as defined by the user) that it can under the cu
resource and application conditions, than for the OS to fail because these conditions violate the r
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strictive premises underlying its structure and resource management algorithms.
The paper then describes Alpha’s kernel programming model, which is based on distributed

threads that span physical nodes, carrying their real-time and other attributes to facilitate sy
wide resource management. Transactional techniques are employed to maintain trans-nod
cation-specific execution correctness and data consistency. We also synopsize the intended
configurations—where Alpha is either the only OS in the system, or supports distributed applic
tions while interoperating with extant centralized OS’s and applications (e.g., UNIX or low-level
sampled-data subsystems).

Some of our architectural experiences to date with Alpha are then synopsized in the con
comparisons with related kernel work, such as Mach 3.0.

The paper concludes with a brief overview of the project history and status.

2. Distributed Computing And Its Implications On Real-Time Resource Man-
agement

Physically distributed computing arises whenever a computing system comprised of a multi
of processing nodes has a ratio of nodal computing performance to internodal communicatio
formance (primarily latency but also bandwidth) which is significantly high as far as the applic
is concerned. 

The nodal/internodal performance ratio and its significance—i.e., the degree of physical dis-
tribution—will usually be different for computations at different levels in the system. For exa
ple, a given system could have ratios which are: relatively insignificant to an application; hig
significant to the “middleware” application framework, such as DCE; insignificant to the nodal
operating systems; and highly significant to the internodal communication subsystem. The si
icance of a given ratio may also differ for levels of abstraction within the computations at a par-
ticular system level—e.g., within some system level, there may be: object method invocation
which the ratio is relatively insignificant; built on layered remote procedure calls, to which the
ratio is rather significant; which in turn are built on (uniform, location-transparent) message p
ing, to which the ratio is quite insignificant. The significance of the nodal/internodal performa
ratio to a computation—i.e., its degree of physical distribution—depends on intrinsic characteris-
tics of the computation, essentially related to how autonomous the per-node components ar
on the programming model used to express the computation.

The application pull for physically distributed computing in real-time contexts is both invo
tary and voluntary.

The most common involuntary motivation is that application assets (e.g., the telecomm
tions switching offices, the different processing stages of a manufacturing plant, the ships and air-
craft of a battle group) are inherently spacially dispersed, and a real-time performance requi
does not permit the latency of the requisite number of communications which would be need
tween those assets and a centralized computing facility. 

A prominent voluntary reason for physical dispersal is survivability, in the sense of gra
degradation for continued availability of situation-specific functionality. For example, it ma
more cost-effective to distribute—i.e., replicate and partition—a telecommunications ope
system, or an air/space defense command system, than it is to attempt to implement a ph
centralized one which is infallible or indestructible.

There is also a powerful contemporary technology push for physically distributed comp
due to the rapid increases in microprocessor performance and decreases in cost. This too is b
untary and involuntary—the latter is due to current primary memory subsystems being dispropo
tionately slower than processors, making clustered multicomputers attractive; regular topolo
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Because of their physical dispersal, most distributed real-time computing systems are “lo
coupled” via i/o communication (employing links, buses, rings, switching networks, etc.), wit
directly shared primary memory. This generally results in variable communication latencie
gardless of how high the bandwidth) which are long with respect to local primary memory a
times. The nature, locations, and availability of the applications’ physical assets often limit th
tem’s viability if it becomes partitioned (unlike, for example, a network of workstations), so t
internode communication paths are frequently redundant and physically separated to red
probability of that happening. 

A typical non-real-time distributed computing system—fitting the workstation model, suc
[1])—is a network of nodes, each having an autonomous user executing unrelated local appli
with statically hierarchical two-party (e.g., client/server) inter-relationships, supported by user-ex-
plicit resource management which is primarily centralized per node. In contrast, a real-time d
uted computer system is mission-oriented—i.e., the entire system is dedicated to accompli
specific purpose through the cooperative execution of one or more applications distributed 
its nodes. Thus, there is more incentive and likelihood for the nodes to have dynamically peer
tured multiparty inter-relationships at the application and OS layers.1 

Real-time distributed computing applications are usually at a supervisory level, which m
that their two primary functions are generally distributed system-wide resource management, a
mission management. The former function is the application-specific portion (at least) of th
tributed real-time execution environment, which augments the real-time (centralized or distrib
OS to compose the constituent subsystems into a coherent whole that is cost-effective to program
and deploy for the intended mission(s). The latter function then utilizes this virtualized comp
system to conduct some particular mission. It is far more probable than in a non-real-time d
ed-function system (e.g., for accounting) that the mission’s approaches and even objectiv
highly dependent on the current external (application environment) and internal (system res
situation. Many real-time distributed computing applications are subject to great uncertainties at
both the mission and system levels (“the fog of war” [3] is the extreme but most obvious exa

These application characteristics, combined with the laws of physics involved in distribu
results in the predominant portion of the supervisory level computing system’s run-time beh
being unavoidably asynchronous, dynamic, and non-deterministic.2 Therefore, even though mos
of the application results have (hard and soft) real-time constraints, it is not always possible
of them to be optimally satisfied, nor to exactly know in advance which ones will be [4].

Nonetheless, real-time distributed computing applications and systems are usually mission-crit-
ical, meaning that the degree of mission success is strongly correlated with the extent to wh
overall system can achieve the maximal dependability—regarding real-time effectiveness, s
ability, and safety—possible given the resources that are available (in the general sense—e
erational, suitable, uncommitted, or affordable). The dependability of lower-level subsystem
be either necessary for mission-critical functions (e.g., digital avionics flight control keepin
aircraft aloft), or part of the uncertainty to be tolerated at the system and mission levels (e.g
munications, weapons); but it is not sufficient (e.g., a flying aircraft which cannot perform its mis-
sion is wasting resources and creating risks).

1.  Logically distributed computing can be defined in terms of the kinds and degrees of multilateral
resource management [2].
2.  Non-determinism includes stochastic activity as a subset (e.g., Petri nets are the former but not
the latter); some non-determinism in distributed real-time computing systems may have, or be use-
fully considered to have, a probability measure—this can permit more tractable resource manag
ment algorithms.



 partial,
possible
nder the
r op-
iations
ces, or

i-
 situa-
ces of

h seem
ly
sk and

and
human

f their
s
nsibil-
de-
d soft-

in
ty
ystem’s
t load
ry and

ovide
ven the

d,
ated in
simple
ed real-

-

ee

ics,
0];
rse-
This implies the need for best-effort real-time resource management—accommodating dynamic
and non-deterministic resource dependencies, concurrency, overloads, and complex (e.g.,
bursty) faults/errors/failures, in a robust, adaptable way so as to undertake that as many as 
of the most important results are as correct in both the time and value domains as possible u
current mission and resource conditions [5][6][7]. It also entails offering the application use
portunities to at least participate in, if not control, the requisite resource management negot
and compromises by adjusting his mission objectives and expectations to fit the circumstan
changing the circumstances (constraints, resources), if either alternative is possible. 

The option of best-effort resource management makes possible a choice between very firm á pr
ori assurances of exact behavior in a limited number of highly specific resource and mission
tions (as offered by static, highly predictable real-time technology), versus weaker assuran
probable behavior over a much wider range of circumstances. Examples of applications whic
to call naturally for either highly predictable or best-effort resource management come immediate
to mind, as do others where the decision is more obviously a value judgement regarding ri
cost management under the exigencies of the situation.3.

Virtually all such real-time reconciliation of uncertainty and dependability at the system 
mission levels has historically depended solely on the talent and expertise of the system’s 
operators—e.g., in the control rooms of factories and plants, in aircraft cockpits. Increasingly, the
complexity and pace of the systems’ missions, and the number, complexity, and distribution o
resources, cause cognitive overload which requires that these operators receive more support in thi
respect from the computing system itself. Application software cannot solely bear this respo
ity because the effectiveness of any resource management policy—especially real-time ones—
pends on how consistently it is applied to all resources down to the lowest layer hardware an
ware. Moreover, best-effort policies place special demands on almost all the OS facilities.

The role of traditional real-time computers and OS’s has been limited to being automatons 
low-level sampled-data subsystems, where this contention between accommodating uncertain
and ensuring dependability does not arise. There, the premise is that the application and s
behavior is (or can be made) highly predictable, allowing extensive á priori knowledge abou
and communication timing, exceptions, dependencies, and conflicts. Standard real-time theo
practice is to attempt to exploit such information with static techniques which aspire to pr
guarantees about application and system behavior (not just the ends to be achieved, but e
exact means by which they are achieved)—but only under a small number of rigidly constraine
and often unrealistic, mission and resource conditions which are anticipated and accommod
advance [9]. The classic real-time static, deterministic mindset and methodology constitute a 
special case, usually adequate for its intended domain, which does not scale up to distribut
time systems.4

Therefore, one essential aspect of the research underlying the Alpha kernel was an improved un
derstanding of “real-time” resource management.

3.  It is instructive and enlightening to consider this issue in light of the many conclusive demonstra-
tions by cognitive scientists of the ubiquitous human trait to miscalculate risks: for example, because
we tend to be probability-blind near the extremes, we judge the annihilation of a risk very differently
from the “mere” reduction of that risk, even when the latter diminishes the risk by a far greater degr
[8].
4.  There are analogous paradigm shifts in nature for larger, more complex systems—e.g.: in phys
where Newton’s view of gravity as a force was generalized by Einstein as space/time curvature [1
and in biology, where higher animals are more complex because they are larger, rather than conve
ly [11].



d lim-
odel
nsion

l-
lso in-
 topic
]); its
 Mach

e
eria.
an-
eeting
tem,

 being

s re-

idered

 usu-
ctiv-
 con-
 dead-

mes;

roc-
, local
rual

-
(such as
3. Real-Time in Alpha

The classical “hard/soft real-time” dichotomy has proven to be unnecessarily confusing an
iting, even for the centralized context in which it arose. We created the Benefit Accrual M
[12][13] to overcome the limitations of the classical one, and especially to facilitate the expa
of real-time computing into distributed systems.This model generalizes Jensen’s notion of time-va
ue function resource scheduling [14] (high performance architectural support for them was a
itially explored [15]). Time-value function and best-effort scheduling has long been a research
of the Archons project [16][17][18], and subsequently is being studied by others (e.g., [19][20
first OS implementation was in Alpha [17], and it has also appeared elsewhere, such as in
[21].

We regard a computation to be a real-time one if and only if it has a prescribed completion tim
constraint representing its urgency—i.e., time criticality—which is one of its acceptability crit
Therefore, an OS is real-time to the degree that it explicitly (whether statically or dynamically) m
ages resources with the objective of application (and consequently its own) computations m
their time constraint acceptability criteria. Thus, according to our definition of a real-time sys
physical time, whether absolute or relative, is part of the system’s logic—analogous to faults
states in a fault-tolerant system. 

A computing system may meet its time constraint criteria without explicitly managing it
sources to do so—by being endowed with excess resources (e.g., MS-DOS on a Cray Y-MP is “real
fast” rather than real-time), or by good fortune—in which cases the system may fairly be cons
to operate in real-time (and is not of interest to us).

In the classical “soft” real-time perspective, computation completion time constraints are
ally not explicitly employed for scheduling; and in the corresponding “hard” real-time view, a
ity completion time constraints are defined as deadlines. In our Benefit Accrual Model, time
straints are both explicit and richer to delineate and encompass the continuum from “soft” to
lines. They are represented with two primary components: the expression of the benefit to the
system that the results yield, individually and collectively, as a function of their completion ti
and application-specific predicates for acceptability optimization criteria based on accruing benefit
from the results—see Figure 1. 

Alpha’s principal real-time strategy is to schedule all resources—both physical (such as p
essor cycles, secondary storage, communication paths) and logical (such as virtual memory
synchronizers, and transactions)—according to real-time constraints using the Benefit Acc
Model described in the preceeding subsection. 

A uniform approach to resource scheduling allows each α-thread itself to control all the resourc
es it utilizes anywhere in the system—e.g., across nodes, and from user through to devices 

+
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Figure 1: Benefit Function
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performing disk, network, and sensor/actuator accesses). The resulting continuity of the α-thread’s
time and importance (among other) attributes, together with appropriate scheduling algorithm
sures coherent maintenance of real-time behavior.

Alpha separates resource scheduling into application-specific policies—e.g., defining op
ity criteria and overload management—and general mechanisms for carrying out these policies. The
mechanisms, together with a policy module interface, are part of the kernel. There are no restr
tions on the kind, or number of, scheduling policies; obviously the parameters, such as tim
straints and importance, must be interpreted consistently over a domain of execution, but the
be multiple such domains. The policies may use time directly, as with deadline algorithms, o
rectly, as with periodic-based fixed priority algorithms (e.g., rate-monotonic), or not at all, as
round robin. 

For Alpha’s context (notably characterized by aperiodicity and overloads in a distributed
tem), we conceived a new class of best-effort real-time scheduling policies [4]. Such policies a
non-stochastically non-deterministic according to our taxonomy of scheduling [22].

Best-effort scheduling policies utilize more application-supplied information than is usual
place specific requirements on the kind of scheduling mechanisms that must be provided. Ob
ly, resource scheduling which employs more application-supplied information, such as b
functions, exacts a higher price than when little such information (e.g., static priority) or no 
mation (e.g., round robin) is used. That price must be affordable with respect to the correctne
performance gained in comparison with simpler, less expensive, scheduling techniques. 

The effectiveness and cost of a representative best-effort benefit accrual algorithm have been
studied by simulation [6][7] and measurement [23][24]. The results demonstrate that this k
scheduling is capable of successfully accruing greater value than the widely used algorithms
round robin and shortest-processing-time-first (both non-real-time algorithms), static priority
most common real-time algorithm), and closest-deadline-first—for loads characteristic of Alpha’s
intended environment (at least). The scheduling cost per thread and per scheduling decision
on the specific algorithm and on the implementation of time-value function representation and
uation. The conclusion of these initial studies was that it is feasible to design and implemen
effort benefit accrual algorithms which provide a greater return to the application for resour
vestment than if some of those resources were available to the application itself because of
cost scheduling. Further experiments, together with research on analytical characterization of the
performance of best-effort and benefit function scheduling, are taking place.

If desired, a large part of the price can be paid with the cheap currency of hardware: in lti-
processor nodes, a processor can be statically or dynamically assigned to evaluating the tim
functions (as is done in Alpha Release 1 [25] and Release 2 [26], respectively); or a special-p
hardware accelerator, analogous to a floating point co-processor, could be employed.

4. Distribution in Alpha

Alpha is a distributed kernel which provides for coherent distributed programming of not onl
plication software but also of the OS itself. It exports a new programming model which appears
be well suited for writing real-time distributed programs. Consequently, it also provides m
nisms having the objective of supporting a full range of client layer trans-node resource ma
ment policies; these policies are clients of the kernel and so are not discussed here. 

Alpha provides a new kernel programming model because extant ones (cf. [27]) were d
inappropriate for Alpha’s objectives in various ways. For example, message passing and 
read/write) distributed shared (virtual) memory (e.g., [28]) were rejected as being too low leve
unstructured) for cost-effectively writing real-time distributed programs; distributed shared m
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ry also suffers from implementation difficulties (e.g., the cost of synchronizing dirty pages). The
conventional layered remote procedure call model is client/server oriented and thus imposes disad-
vantageous server-centric concurrency control; contemporary implementations also have insuffi-
cient transparency of physical distribution. Distributed data structures, such as Linda’s Tuple
[29], suffer from access sequencing design decisions—such as non-determinism and fair
which render them unsuitable for time-constraint ordered tasks. Language-dependent mode
Argus [30], potentially offer significant advantages but are not acceptable in Alpha’s overal
community. Virtually all of the few real-time distributed OS programming models are intended on
for strictly deterministic systems (e.g., [31][32]).

Alpha’s native programming model is provided at the kernel interface so the OS itself, as well
as the applications, can employ real-time distributed programming. The OS layer can augment the
kernel-supplied programming model in application-specific ways, or substitute an alternativ
(e.g., POSIX, although full UNIX compatibility has never been an Alpha goal and therefore ma
inefficient). 

Alpha’s kernel presents its clients with a coherent computer system which is composed i
liable, network-transparent fashion of an indeterminate number of physical nodes. Its princip
stractions are objects, operation invocations, and distributed threads; these are augmented b
particularly for exceptions and concurrency control [33][34].

4.1 Objects

In Alpha, objects are passive abstract data types (code plus data) in which there may be
number of concurrently executing activities (Alpha’s distributed threads); semaphore and lock
primitives are provided for the construction of whatever local synchronization is desired. Ea
stance of an Alpha client level object has a private address space to enforce encapsulation; the re-
sulting safety improvement is judged to generally be worth the higher operation invocation c
Alpha’s application environments (but if performance dictates, objects may be placed in the k
as discussed in the Invocation subsection below). 

An instance of an object exists entirely on a single node. Alpha’s kernel supports dynamic
migration among nodes. Kernel mechanisms allow objects to be transparently replicated on differ-
ent nodes, and accessed and updated according to application-specific policies. 

Alpha objects are intended to normally be of moderate number and size—e.g., 100 to 
lines of code—as dictated by the implemented cost of object operation invocation. The kern
fines a suite of standard operations that are inherited by all objects, and these can be overlo

Objects and their operations are identified by system-protected capabilities which provide
work location-independent space of unique names. Capabilities can be passed as invocation para
eters.

An object may be declared permanent, which causes a non-volatile representation of its state t
be placed in a local crash-resistent secondary storage subsystem, the mechanisms of which
mally (but not necessarily) resident in the kernel. These mechanisms also support applicatio
cific atomic transaction-controlled updates to an object’s permanent representation, which a
formed in real-time—i.e., scheduled according to the real-time constraints of the corresponding dis
tributed threads. This necessitates that Alpha take an integrated approach to managing reso
accordance with both the time-related, and the particular logical dependency, constraints wh
fine execution correctness and data consistency; most other OS’s (whether or not they are real-time
and whether or not they are distributed) deal with these two kinds of constraints separately, if at
Permanent objects obviate the need for a traditional file system in many applications, but a
sired file system organization and semantics can readily be provided by client (system or a
tion) layer policies.
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In the interests of generality, Alpha’s kernel views the universe of objects to be flat; any 
ture is added by higher software layers.

4.2 Operation Invocations

The invocation of an operation (method) on an object is the vehicle for all interactions 
system, including OS calls. Distributed threads (see the next subsection) are end-to-end com
tions (not processes or threads confined to an address space) which extend from object to o
invocations. Thus, operation invocation has synchronous request/reply semantics (similar toRPC);
operations are block structured.

It is straight-forward to augment (or subvert the intent of) Alpha’s synchronous program
model by constructing alternative asynchronous computational semantics on the native m
nisms—e.g., message sends which don’t wait, and calls which spawn a concurrent activity that
might not return. Asynchronous IPC (like assembly language programming) has a long history
use and staunch supporters in real-time computing. But the same effects can be accomplis
better behaved manner by proper use of Alpha’s model. Its kernel-level invocations are delib
synchronous (and its threads distributed) because employing asynchrony is generally not straight-
forward, particularly for handling all the kinds of concurrency and exception cases which ha
in a distributed real-time system. Even non-real-time, centralized multiprocessing OS’s whose na-
tive IPC mechanisms are asynchronous often seek to improve the intellectual manageability
ent programming by also providing layered synchronous facilities. Mach provides examples o
MIG [35] is used not just for RPC but also sometimes for local IPC, and is the only IPC facility pro-
vided in a fault tolerant system built on Mach [36]; an approach to transparent recovery which does
use Mach’s asynchronous messages is significantly complicated by them [37]. Similarly, the
chronous message passing communication hardware of large multicomputers is often abs
into a more productive synchronous programming model with software development tools
Asynchronous RPC was removed from Amoeba 2.0 as having been “a truly dreadful decision”
“impossible to program correctly” [39]. Asynchronous IPC is also highly problematic for attaining
the TCSEC B3 level of assurance for multilevel security in OS’s (e.g., in Trusted Mach [40]). 

Invocation parameters are passed into the invoked object’s domain on invocation, and wh
invocation is complete, return parameters are passed back to the invoking object’s domain.
vocation (request and reply) parameters, except capabilities, are passed by value on the
frame and stack for this invocation by the distributed thread; each distributed thread has i
stack and cannot access the stack of another. Handling bulk data (e.g., [41]) does not seem
typical requirement in system integration and mission management applications (a progra
transparent implementation enhancement facilitates movement by value of large parameters
a node); however, asynchronous bulk data movement can be performed as a kernel client lay
ice without changing the programming model. We consider procedural parameters contrary
spirit of object oriented systems. Alpha does not presently deal with the topic of parameter
sentation conversion which arises among heterogeneous nodes; that problem receives wid
tion elsewhere (unlike most of those we are currently focusing on), and since Alpha does not 
an especially unique solution, we will adapt one when necessary.

Invocation, not simply message passing, is a fundamental kernel facility of Alpha. Conseq
ly, objects may be placed within the kernel address space for performance improvemen
course, if they seek further speedup by directly accessing kernel data structures, that foreclo
(sometimes desirable) option of moving them back out of the kernel into client space.

We think of each inter-node invocation as creating a segment of that distributed thread. Invoca
tion masks the effects of thread segmentation with unusually strong semantics for independe
transparency of physical distribution [42]. 
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Alpha’s kernel performs implicit binding at the time of each invocation (utilizing a protoco
rather than a centralized name server such as the NCS Location Broker [43], for locating the targe
object). The kernel also includes provisions to optionally perform explicit binding; this is for opti-
mizing performance in relatively static cases (e.g., due to specially located resources), and for othe
purposes such as testing and failure recovery. 

Communication errors are handled by message protocols which may be realized as kerne
ent objects. The various motivations for reliable messages being entirely client level functio
(e.g., the microkernel arguments and the end-to-end argument [44]) must be balanced aga
acceptability constraints of the particular real-time system. Alpha’s communication subsyste
corporates an approach to a general framework and mechanisms for implementing communication
protocols, due to the requirement for problem-specificity imposed by real-time requirements
future versions may substitute corresponding concepts and techniques from the x-Kernel [46]. 

Alpha provides orphan detection (presently under the usual assumption of fail-stop node
elimination, at any time (even on a distributed thread which is already undergoing orphan el
tion), and in a decentralized manner [45]. The technique employed requires active tracking of the
progress of each distributed thread by the Alpha instance on the node where that thread is rooted.
However, any orphaned activity can be successfully detected and eliminated, without requirin
nificantly more complex mechanisms such as transactions or distributed clocks [47]. This technique
also allows dynamic trade-offs of communication bandwidth and processing against orphan
tion latency. The standard Alpha configuration is for orphan detection and elimination to be ke
functionality, although it can alternatively be implemented in client space if desired.

Invocations may fail for various reasons, such as protection violation, bad parameters, no
ure, machine exception, time constraint expiration, or transaction abort. The failure semantic
vocation instances in a real-time distributed system must be application-specific, so Alpha’s 
includes additional mechanisms for defining them; at-most-once is the default. See the sub
below on exceptions.

4.3 Distributed Threads

An Alpha distributed thread (α-thread) [17] is the locus of control point movement among o
jects via operation invocation, as shown in Figure 2. It is a distributed computation which tran
ently and reliably spans physical nodes, contrary to how conventional threads (conceived a
weight processes) are confined to a single address space in most other recent OS’s such as Mach
[48] and Chorus [49]; however, Clouds [50] employs a thread model similar to Alpha’s. 

An α-thread carries parameters and other attributes related to the nature, state, and ser
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Figure 2: Alpha’s Distributed Threads (α-Threads)
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quirements of the computation it represents. An α-thread’s attributes may be modified and accum
lated in a nested fashion as it executes operations within objects (illustrated in Figure 3). Unlike ho

RPC or message passing are employed in other OS’s, these attributes are utilized by Alpha’s kern
and its clients as a basis for performing real-time, system-wide, decentralized resource m
ment.

α-threads are the unit of schedulability, and are fully pre-emptable, even those executing within
the kernel. Thus, when the scheduling subsystem detects that there is a ready α-thread whose exe-
cution is more likely to increase the accrued benefit than the one currently running, the executing
α-thread can be pre-empted by the waiting one. The pre-emption costs and expected completio
time of the lower benefit-accrual α-thread are taken into account when making this decision. In a
dition, Alpha offers scheduling algorithms which explicitly deal with the various kinds of reso
dependencies and conflicts among α-threads, and if appropriate, they roll forward or roll back
lower benefit-accrual α-thread which is blocking a higher one [7]. The fully pre-emptable and mul-
tithreaded design of Alpha’s kernel facilitates real-time behavior and allows symmetric multi
essing within the kernel itself as well as within its clients.

4.4 Exceptions

Every α-thread is subject to exceptions—an event that interrupts the α-thread’s normal execu-
tion flow. With respect to an α-thread’s execution, an exception may be synchronous (e.g., a ma
chine check) or asynchronous (e.g., a real-time constraint expiration, transaction abort, α-thread
break). The kernel’s exception handling mechanisms treat synchronous and asynchronous excep
tions uniformly.

Alpha’s kernel provides exception handling mechanisms defined in terms of kernel-pro
abstractions; these language-independent mechanisms can be used by the OS and language run-time
systems to construct appropriate exception handling policies, which clients may, in turn, use
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Figure 3: α-thread Attribute Accumulation
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tablish application-specific exception handlers (which, for example, retry, perform compensatory
actions, or utilize the results attained prior to occurrence of the exception). The mechanisms permit
applications to define handlers for the core set of exception types defined by the kernel, and also to
define their own exception types and handlers for them.

The mechanism for specifying exception handlers is the exception block, a block-structured
construct that complements the block-oriented nature of invocations. The BEGIN operation for ex-
ception blocks opens a scope of execution during which its parameters define the exception han-
dlers to be used for the specified exception types while the α-thread is executing within that block.
The END operation closes the inner-most open exception block. Like other α-thread attributes, ex-
ception blocks may be nested and exception block scoping is dynamic. The exception handling at-
tributes are protected by the kernel, so that subsequent application errors cannot corrupt them.

When an exception of a particular type occurs, control of the α-thread is moved to the handler
specified by the inner-most exception block that defines a handler for exceptions of that type. Be-
cause Alpha’s kernel is fully pre-emptable, an exception may force an α-thread out of the kernel, a
an arbitrary point (even if it is blocked), to perform exception handling. So, in addition to any 
defined exception blocks, the kernel treats each operation defined on an object as an implicit
tion block. The kernel-defined handlers for these implicit blocks perform only the simple clean-up
operations necessary to ensure that the kernel will retain a minimum degree of internal cons
(i.e., it will neither leak resources, nor fail due to inconsistent internal data structures). The
ence of this implicit block also ensures that exception blocks opened in one object will not be 
in another (i.e., exception blocks must nest correctly within an object).

An α-thread always handles its own exceptions, preserving the correspondence betweenα-
thread and the computation it is performing. Following the occurrence of an exception, the 
adjusts the attributes of the α-thread so that each exception handler is executed with attribute
propriate for the α-thread exception block at that point—among other things, this ensures tha
proper scheduling parameters are associated with the exception handling.

The occurrence of a single exception may require multiple levels of exception handling
performed. An example is a real-time constraint expiration exception, which is not discharged un
the exception block level at which the real-time constraint was established is reached. Another ex-
ample is the elimination of an orphan α-thread segment, where the exception is not discharged until
the segment is eliminated. In such cases, exception handlers are executed in order from inn
to outer-most until the exception is discharged.

If exception processing spans multiple invocations, all invocation frames of the α-thread except
the head will be waiting for an invocation to complete. System-level interface libraries can ta
vantage of this fact to simplify application-level exception processing in these cases.

4.5 Transactions

Transactions are useful for a wide variety of integrity purposes, including the optional e
sion, when needed, of invocation semantics to zero/one (e.g., [51]). Of particular interest is th
pha promotes (but is not limited to) a transactional approach to trans-node concurrency con5 so
that collectively α-threads behave “correctly,” as defined by the application, and so that distrib
(both replicated and partitioned) data remains mutually “consistent,” as defined by the appli
[52]. The many advantages of this include permitting remote invocations to pass mutable pa
ters by value (which thus constitute shared state), while avoiding the limitations of conven

5.  In distributed systems, synchronization is generally achieved through maintaining an ordering of
events, rather than through mutual exclusion as in centralized systems. We do not consider that send-
ing messages to a centralized synchronization entity is consonant with the objectives of distribution.
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server-centric concurrency control in network-style distributed systems. Transactions from the da-
tabase context cannot be simply transplanted into an OS—this is particularly true for real-time sys
tems because they are integrated into the physical nature of the application. 

One general problem is that traditional transactions bundle the properties of atomicity, p
nence, and serializability together at one (high) performance price. Instead, Alpha’s kernel pr
transaction mechanisms for atomicity, permanence, and application-specific concurrency c
individually; these can be selected and combined at higher (OS and application) layers according t
a wide range of different transaction policies whose cost is proportional to their power.

In real-time systems, permanence is not universally desirable: some transactions upda
that is relevant only to the local node for this incarnation; and in many cases, the physical
maintains the true state (as related to the system by the sensor subsystems) that is only c
approximated by the data manipulated by transactions.

Conventional transactions define correctness as serializability, which limits concurrenc
thus performance [53]. Alpha’s mechanistic technique encourages the use of application-s
information in non-serializable transactions. This allows optimized correctness through customize
commit and abort handling: transactions can commit and allow other transactions to observ
results with no ill effect for an arbitrary period of time; their abort processing can also be deferred
for an arbitrary period of time (unless there are other mitigating circumstances). Traditional r
ery techniques such as rollback and redo, and those requiring the client applications to be de
istic or idempotent (e.g., stateless) [54][55], are not always germane in real-time contexts. F
more, performance can be improved through cooperation among non-serializable transaction

The second major limitation of conventional transactions is that they do not have and use
mation about application result real-time constraints. They are scheduled according to differe
teria (e.g., serializability) than are the tasks (α-threads in Alpha’s case); they employ locking mec
anisms (e.g., time stamps) unrelated to task (α-thread) scheduling; and the time required to acqu
and release resources, as well as the time required to commit and abort transactions, is po
unbounded. To overcome these limitations, Alpha’s transactions are real-time, most impo
meaning that they are scheduled according to same application real-time constraints and po
are all other resources.

4.6 Alpha System Architectures

A distributed OS could impose or accommodate a variety of possible OS configurations and thus
system architectures [4]; Alpha is primarily intended for three of these.

The purest form of a distributed OS is for it to be the only OS in the system—native on all
nodes—in which case, it must provide local OS functionality as well, and be cost-effective for both
local (centralized) and distributed applications. The nodes, and their interconnection, mus
sufficient resources to support both local and distributed computations. It is difficult for such aOS
to accommodate backward compatibility with extant local OS or application software, but it is the
cleanest and most coherent approach when there is the freedom to create an entire system from
scratch (as is often the case in real-time applications, especially distributed ones). 

The second system architecture of interest to us is for the distributed OS to be native on its own
interconnected hardware nodes, forming a global OS (GOS) subsystem This necessitates that it pr
vide full local OS functionality as well, although not necessarily in a manner which is most c
effective for low-level, sampled-data real-time applications. The GOS subsystem nodes physically
interface with the local nodes and OS’s—which constitute the low-level real-time subsystems—v
the GOS subsystem interconnect and/or a system level interconnection. This case offers: superior
performance due to local/global hardware (node and interconnect) concurrency; compatibility w
heterogeneous and pre-existing local subsystems (OS’s and applications); major logistical benefit
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from the relative independence of local and global OS and application changes.

The third alternative system architecture for Alpha is for there to be distributed and local OS’s
which are separate but co-resident on the local nodal hardware. On uniprocessor nodes, co-
cy would require something like a virtual machine monitor to create an illusion of two or more 
essors, which entails overhead (that may be affordable because of the performance of contem
microprocessors). On multiprocessor nodes, co-residency can be relatively easy and highly
tive—Alpha can (and often does) co-exist and interoperate with UNIX on any or all of the system’s
multiprocessor nodes (as shown in Figure 4), thus making available to Alpha applications 

non- (or less) real-time functionality of UNIX (such as GUI’s, ISO protocols, and software develop
ment facilities) [57]. With either configuration, the internode connection must be able to su
both distributed and local OS’s, or there must be separate interconnection structures for each t

5. Multilevel Security in Alpha

The construction of multilevel secure (B3 and higher) [58], distributed, real-time systems
great interest to a large part of Alpha’s prospective user community, and thus is an area of
research within the Alpha project [59]. There are many inherent conflicts between the require
of real-time and B3 security, including (but not limited to): covert timing channels arising from
real-time scheduling algorithms; covert storage channels due to resource sharing and con
the potential for malicious denial of service by untrusted applications improperly asserting gre
gency and importance; and predictability of security enforcement behavior. These conflicts ar
ly to require appropriately authorized, situation-specific, dynamic trade-offs between various
rity and real-time characteristics.

Figure 4: Alpha Co-Resident With UNIX On Multiprocessor Nodes
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6. Architectural Lessons Learned From Alpha

The following synopsizes some of the important lessons we believe that we have learned from our
experiences with Alpha’s architecture in comparison with that of others, such as Mach 3.0.

6.1 Kernel Support for Distributed Threads

It is common to find RPC services implemented as a layer on top of asynchronous message p
facilities. This layering usually involves multiple scheduling events, complex RPC stubs for argu-
ment marshalling, multiple context changes, and the consequent loss of the client’s identity
constraint, and other attributes. Mach, as well as some other OS’s, attempts to overcome some o
these deficiencies by providing subsets of the message passing service that are optimized RPC
[60]. In the case of Mach, only simple messages are optimized, but messages with capabilitie
rights) or out-of-line data do not benefit from the optimizations. These optimizations reduc
number of scheduling interactions and system calls necessary to implement RPC, but identity,
scheduling information (e.g., priority) and other attributes are not propagated. In contrast, wh
Alpha distributed thread moves from object to object, its time constraints and other propert
main in effect. Alpha’s kernel is fully pre-emptable, and every effort is made to run the most
portant ready thread whether it is executing in client space or kernel space.

Timely service interruption processing is essential to Alpha’s strategy for scheduling ove
situations. Alpha’s exception model explicitly takes into account orphans and distributed e
tions. The need for this functionality is not unique to real-time systems; UNIX and POSIX compat-
ible systems also must support interruptible system calls. Orphan detection and elimination
ically not provided by layered RPC facilities.

These limitations of layered RPC facilities make building a distributed real-time RPC facility
problematic and inefficient. Recently published work suggests that high performance RPC is best
obtained with RPC-specific kernel assistance [60][61][62][63].

Multi-server operating systems have many of the characteristics of distributed application
if all the servers reside on a single node. The client process communicates with the OS server(s) via
IPC. In a standard implementation of UNIX, when an application invokes a system service the cli
thread of control moves from the user application context into the operating system. When 
quest for service is completed the thread returns to user space. A variety of attributes follo
thread from user space to the kernel including identity, working directory, quotas, etc. The kerne
uses these attributes to track and manage resource consumption, provide interruptible syste
and insure security. The interaction of user applications with standard operating systems 
reminiscent of distributed threads. Mimicking the semantics of “legacy” operating systems, UNIX
in particular, with a collection of servers is complicated by microkernels that do not provide 
cient support for distributed programming.

Auditing and authentication forwarding are significant problems for secure distributed sys
Changing identity or subjects during a request for service makes it difficult to associate the 
actions or resources with the client responsible for the request for service. This association
portant for both authentication and auditing. Distributed threads facilitate this aspect of secu
preserving the identity of the distributed computation.

6.2 Dynamic, Adaptive Thread Management

Most kernels, such as Mach and Chorus, provide a threads abstraction that associates each thread
with a single task. By default, Mach thread management is static. If servers are over-subs
then requests block, regardless of whether there are computation resources available. If th
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is under-subscribed, then kernel resources such as process control blocks and other kernel data
structures are reserved but under-utilized.Dynamic or adaptive thread management is the responsi-
bility the application designer. Experience has shown that application level solutions to thread man-
agement for distributed systems tend to be complex, inefficient and prone to error. 

 Thread management based on global (inter-task) resource usage and requirements is difficult
and not possible without compromising security. Alpha threads do not prevent applications from
controlling the number of extant threads, however the default behavior is to create threads dynam-
ically, on an as-needed basis. The kernel, with its knowledge of available resources, has the primary
responsibility for balancing the computation demands against the available resources. 

 It has been argued that thread management and RPC layers can be constructed in user space that
provide most of the advantages of distributed threads; this may be true, but the examples that the
authors are familiar with are not convincing.

6.3 Protected Capabilities

Alpha capabilities are kernel protected and have context sensitive names, similar to Mach port
rights and port names. Other systems, such as Chorus and Amoeba, provide unprotected capabili-
ties. While the cost of invoking either type of capability seems roughly equal, our experience con-
firms the assertion that unprotected capabilities are somewhat less expensive to pass as parameters.
However, unprotected capabilities are insufficient to build high trust systems [64][65]. Though ear-
ly versions of Alpha associated capabilities with objects (similar to the way Mach associates ports
and port rights with tasks), we found this awkward and inconvenient. Subsequent versions of Alpha
permit capabilities to be associated with threads. Thread local capabilities simplify capability man-
agement. They enable the construction of secure subsystems and can be leveraged in other ways
when building secure real-time systems [59].

6.4 Object Invocation Via Broadcast

Alpha uses broadcast protocols aggressively to locate and invoke remote objects. Each node main-
tains a list of objects that are local to the node—the object dictionary. When an object invoca
broadcast, each node receives the message and examines its dictionary to determine if th
being invoked resides locally. This results in simple object location protocols with a relatively
stant time (a useful property for real-time applications). While the time required to locate the 
is small, the broadcast processing overhead imposed on nodes can be significant. If the dic
of objects is too large to fit in memory then it must be paged. Paging would add significantly 
total overhead and the variance of broadcasting object invocations.

Other OS’s, and Mach in particular, have demonstrated that if the kernel “owns” capabilitie
is possible to track and cache the current location of any capability or object. Though Alph
rently broadcasts each remote object invocation, we have done a preliminary investigatio
caching remote object location information as one means to reduce the number of object invo
generated broadcasts.

6.5 Separation of Policies from Mechanisms

The separation of policies from mechanisms is more than code words for “layered design.” T
sign of mechanisms and policies is an approach to encapsulation and layering that results 
tively simple mechanisms suitable for the implementation of a variety of policies.

Our experience suggests that the kernel interface is not the only interesting mechanism/policy
boundary. We have found that the creation of policy modules within the kernel—such as for s
uling, secondary storage, and communications—was of great value. The scheduling subsy
not simply layered; a common set of mechanisms has been used to implement a number of
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cantly different real-time and non-real-time scheduling policies. The encapsulation of these policies
facilitated not only their development and maintenance but also their wholesale replacement.

7. Project History and Status

Alpha arose as the first systems effort of Jensen’s Archons Project on new paradigms for real-time
decentralized computer systems, which began in 1979 at Carnegie-Mellon University’s Com
Science Department. Design of the Alpha OS itself was started in 1985 and the initial prototyp
(“Release 1”) was operational at CMU in the Fall of 1987. 

Alpha is a native kernel (i.e., on the bare hardware), which necessitates a great deal of effort on
low level resource management. But much of that work involves fundamental issues in Alpha
sign and implementation—the usual research approach of emulating an OS at the application level
(typically on UNIX) would have introduced excessive real-time distortions due to the vast disp
between the programming model and structure of Alpha’s kernel and those of UNIX. Alpha’s first
hardware base was multiprocessor nodes built from modified Sun Microsystems and other M
boards; the nodes were interconnected with Ethernet. 

The principle goal of the Archons Project in general and its Alpha component in particular was
both to create new concepts and techniques for real-time distributed OS’s, and to validate those re
sults through industrial as well as academic experimentation. The first step in that validation p
was to augment our own personal experience with industrial real-time distributed computin
tems by involving a user corporation early in the development of the initial Alpha prototype
cause Archons and Alpha were sponsored primarily by the DOD, and because the leading edge re
time computing problems and solutions always arise first in defense applications, we looked
DOD contractor community for our initial industrial user partnership. We selected General Dy
ics’ Ft. Worth Division, exchanging application and OS technology in the highest bandwidth way—
by exchanging people. Their C

3
I group successfully wrote and demonstrated a real-time distribu

air defense application on Alpha in 1987 [23], and their avionics organization intended to ba
mission management OS of a planned new aircraft on Alpha’s technology.

Once the proof of concept prototype was operational, we sought to begin transition of A
technology into practice by establishing a relationship with a computer manufacturer. To furth
cilitate that transition, the leadership and then the staff of the Alpha project moved to indus
1988. The intent is for Alpha to serve as a technology development vehicle—first for applic
specific real-time distributed operating systems (e.g., for telecommunications, simulators and
ers, C3I, combat systems) where extensive functionality (such as fault tolerance) and high real-time
performance are of the utmost importance, no off-the-shelf products exist, and no standards are
foreseeable for a number of years. Subsequently, the technology will be available for migratio
other OS contexts. A second generation Alpha prototype design and implementation was del
to several government and industry laboratories for experimental use; the first of these was in
in June 1990. The current version is initially available on MIPS R3000-based multiprocessor node
interconnected by Ethernet; ports to other hardware are planned. Alpha is non-proprietary.

 Alpha research is ongoing at CMU, and related research and technology development is also
being conducted cooperatively with several other academic and industrial institutions. The 
project is also engaged in partnerships with a number of U.S. and European corporations an
organizations to develop experimental Alpha applications in the areas of telecommunicatio
defense systems. 
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