
Causal Delivery Protocols in Real-time Systems: a Generic
Model

Paulo Verı́ssimo
paulov@inesc.pt
INESC - IST

Technical University of Lisboa

Abstract

The objective of this paper is to introduce a model for causal delivery protocols
in real-time systems. We start by showing that temporal order properties of real-
time protocols are independent of whether they are timer-driven or clock-driven,
being instead related to their degree of synchronism, that we call steadiness. Then, we
derive a set of correctness conditions for such protocols to secure causal delivery order.
To achieve this objective,we use an extension of Lamport’smodel of time-stamp based
order. We show that both timer- and clock-driven protocols have order correctness
limits dictated by the environment and the target applications, and define those limits,
through a set of working formulas. We show that in extremely adverse cases, timer-
driven protocols will perform as well as clock-driven ones, due to the restrictions
imposed on the operation of the latter, which is perhaps surprising. These results
open the door to exploring new forms of communication in time-critical systems, for
example, supporting clock- and time-driven communication, and event- and time-
triggered operation. We expect that the results of this paper will give insight to that
problem, and will be useful in real-life systems, such as distributed computer control.

1 Introduction
Communication protocols take different approaches to achieve order and reliability of
message delivery. Reliable multi-participant— or multicast— protocols, for example, lie
in two such classes, depending on the use they make of time:

Clock-driven protocols [4, 6] are diffusion-based, and rely on the existence of a clock,
in the sense of a global time-base— that is, an absolute global time reference;

Timer-driven, or (global-) clock-less, protocols [3, 1] are acknowledgement-based pro-
tocols, that rely on local timers— i.e. relative time references.

Instituto de Engenharia de Sistemas e Computadores, R. Alves Redol, 9 - - 1000 Lisboa - Portugal,
Tel.+351-1-3100281. Fax: +351-1-525843. This work has been supported in part by the CEC, through Esprit
Projects BROADCAST and DINAS, and JNICT, through Programs Cîencia and STRIDE.

1

In a former paper [19], we have informally pointed out that timer-driven and clock-
driven protocols are both able to serve distributed time-critical applications, not only from
a time boundedness viewpoint, but also to secure temporal order. This point is relevant
because the suitability of timer-driven protocols for real-time fault-tolerant applications
has been sometimes questioned, mainly for two presumed reasons: their asynchrony;
their inability to secure temporal (real-time) order .

In fact, most timer-driven protocols are asynchronous, in the sense of not having a
known time bound to deliver messages. In contrast, their clock-driven counterparts are
synchronous, since the afore-mentioned bound exists and is known. However, there is no
fundamental reason for a timer-driven protocol not to be synchronous, if provided with
the adequate structure and assumptions. The author was involved in the design of such
a protocol in the DELTA-4 Esprit project, the AMp, which was formally specified and
validated, and tested in real settings [22].

As for the second reason, it is well known that logical order protocols are blind to
interactions made outside their control [10], as happens many often with distributed real-
time systems. This created the notion of the necessity of clock-driven protocols and
physical time-stamps to address the problem of cause-effect order. However, it will be
shown that if a timer-driven protocol is synchronous, its ability to secure cause-effect
order can be defined.

To finalise these opening remarks, one might question this concern with timer-driven
protocols for real-time operation, given that clock-driven ones are around. First of all, it
is not the author’s intention to get rid of global clocks, a mandatory component in a time-
critical system [9]. The idea is just not to oblige all ordered communication to be done via
clock-driven protocols. The importance of this issue stems from the fact that synchronous
timer-driven protocols are a useful alternative to clock-driven protocols in a number
of situations, since they exhibit fast termination in absence of faults, and clock-driven
behaviour can always be superimposed on top of a basic timer-driven communication
infrastructure [13]. This allows to envisage time-critical systems with mixed behaviour,
an interesting subject of research.

In consequence, the objective of this paper is to formalise a set of synchronism and
ordering properties equally valid for timer-driven and clock-driven protocols. Thismodel
would confirm our point about suitability of timer-driven protocols from a theoretical
viewpoint. On the other hand, itwould contribute to adefinition of correctness conditions,
from the causal delivery viewpoint, valid for both classes of protocols (timer-driven and
clock-driven). Then, applying those conditions to both classes of protocols in real-life
time-critical settings should reveal the respective limits, which we do at the end of the
paper.

To put the subject in context, we start, in the next section, by introducing some notation
and briefly recapitulating a few notions about potential causality, temporal order and
synchronism. Next we show, through our metrics of synchronism, the relation between
synchronism of a protocol and its ability to secure temporal order. Having established
that result, we show that timer-driven protocols are able to correctly order events and
messages in time-critical systems, as their clock-driven counterparts. Then, in section 3,
we establish the conditions for correctness of a distributed application, vis-̀a-vis time
and order. In other words, given a certain system and execution environment, when

We will explain these problems clearly in section2.

2

does a given temporal order protocol support a given application correctly. In section 4,
we derive the requirements imposed on the communication architecture to meet the
correctness criteria, based on varying execution environment conditions. We show that in
an adverse environment, the restrictions imposed on clock-driven protocols degrade their
effectiveness to a point where timer-driven ones do just as well. On the other hand, for
certain favourable environments, timer-driven protocols are sufficient. However, when
high precision is necessary, only clock-driven protocols apply.

To the author’s knowledge, this characterisation of protocol ordering ability— that
is, the ability to preserve the order among events— with regard to the execution envi-
ronment has not been addressed in previous papers. We consider this result relevant for
two reasons: (i) it defines conditions for correct causal delivery with regard to applica-
tion needs; (ii) it does it independently from protocol implementation, establishing the
suitability of timer-driven protocols for temporal order. Besides any theoretical relevance
that this work may have, these results open the door to exploring new forms of reliable
communication in time-critical systems, using the best-fit protocol for a given problem.
For example, supportingmixed event- and time-triggered operation. Up until now, it was
not envisaged how to establish correctness conditions for these settings. We expect the
results of this paper to give insight into that problem.

2 Order and synchronism
Ordering paradigms assume several forms in a system: total, potential causal, FIFO.
Several protocols provide a total order, either real-time or not [4, 11, 3, 22]. The issue of
providing a real-time total order is to define a bound on the time needed to secure it [7].

A potential causal order is a much more complex issue, and will be the focus of this
paper (the FIFO order is a reduction of the potential causal order to a single sender). The
natural order of events in a system is the cause-effect relation. Protocols, in order to secure
it, tend to order messages that may be causally related. Before delving further into the
discussion, let us present our system model.

System Model
We consider a system defined by a set of participants noted , , , . A participant
can be a computing process, a sensor or actuator controller, but also some component of
an external physical system under control. The system is synchronous, in the sense that
there are known bounds on: processing speed; message transmission delay; local clock
rate drift.

We model the history of the participants as a sequence of events: is the event of
participant . Event can be a local event or an external event. We consider two
types of external events, action, , and observation, :

is an event bywhich the participant takes some external action , be it an
I/O actuation or a message send;

is an event by which the participant observes some external action ,
be it an observation of the environment or the delivery of a message sent by a

3

participant .

An event precedes another event if it could have caused the latter, that is, if it is causally
related to it. We introduce the precedence relation between events for our model,
which is a generalisation of the "happened before" relation first introduced by Lamport for
message-based systems [10], to arbitrary events, including those taking place in physical
processes (oven, steel mill, car ABS system, plane steering system, etc.):

Definition 1 Precedence. An event precedes () another event if one of the following
conditions hold:

for , ;

for , if is an external event and an external event ;

for , if there exists an event such that and .

For the sake of representing their place in a (newtonian) time-line, whenevernecessary,
we associate physical time-stamps to events: is the time-stamp of , as defined by
an omniscient external observer.

Causal Delivery

There are several ways of implementing causal delivery, i.e. guaranteeing that messages
are delivered in their precedence order in a distributed system. Given the systemmodel
of the previous section, we note the event corresponding to the transmission of
by , and the delivery of to . For simplicity of notation, we may omit

the subscript, when there is no risk of ambiguity. The and events are,
respectively, and events.

Definition 2 Causal delivery. Consider two messages , sent by , resp , to the
same destination participant . Causal delivery ensures that if then

, i.e. is delivered to before .

Well-known causal delivery protocols are the “causal broadcast/multicast” protocols
using: piggybacking [2], context graphs [12], or vector clocks [3, 14].

These protocols, adequate for asynchronous systems, deliver messages according to a
logical ordering [2]: a message is said to logically precede if is sent before
, by the same participant or is delivered to the sender of before it sends or there

exists a message , such that, and .
The fact that an implementation based on logical ordering can achieve causal delivery

is based on a simple observation: if participants only exchange information by sending
and receiving messages through a given protocol, any relation of potential causality must
be created through those messages.

Or potential causal order, sometimes only called causal, for simplicity.

4

Whenever there is information flowing between participants which is not controlled
by the ordering protocol, so to speak in a clandestine manner, there may be ordering
anomalies observable by the participants. That is, participants may have a perception of
the system evolution that, for example, seems to violate the cause-effect relation. This
was noted by Lamport [10], in the form of hidden communication channels.

However, as we have first pointed out in [21], this situation is very common in dis-
tributed real-time systems, under another more subtile albeit disturbing form: clandes-
tine information paths (or hidden channels) through the physical environment (feedback
loops, etc.), established by the input/output actions performed by the computer control
system. An example of anomalous behaviour in a control system is given in [16]. For-
mally, these hidden channels are represented in our model by the existence of and

events inside a causality chain which do not correspond to sends and deliveries of
the logical order protocol. For that protocol, that chain appears broken.

Temporal order
One solution for these situations consists in using protocols that deliver messages ac-
cording to their temporal order. A message is said to temporally precede
if the send event of physically occurs before that of , in a newtonian time-frame, i.e.

. Given that for an event to cause another, it must happen
before the latter, a clock-driven protocol time-stamping messages at send time and deliv-
ering them in temporal order will, under certain conditions, achieve causal delivery, as
first proposed by Lamport [10].

However, our remark to this approach is that, given the precision achievable by most
synchronised clocks, one will be ordering too much in most of the settings, vis-̀a-vis the
primary objective of causal delivery, which is to represent precedence (potential causality).
The reason is that in a distributed computer system or in a physical process, it takes a
finite amount of time for an input event (, eg. deliver) to cause an output event (,
eg. send): the time for an information to travel from one site to the other; the execution
time of a computer process; the feedback time of a control loop in a physical process.

Supposing there is a known such minimum time for a given system, then only mes-
sages separated by more than may be causally related in that system. In consequence,
it is of no utility to order messages with a smaller separation. We will formalise this
conjecture in what follows. Namely, we will characterise the relevant ordering protocols,
and the conditions to secure precedence.

Protocol synchronism
Apropos the remark just made, we recall a definition that will assist us later in developing
our reasoning [22]:

Definition 3 -precedence (): An event is said to -precede an event , ,
if .

Next, we need a metrics for protocol synchronism that is independent from protocol
implementation, and thus applicable to any protocol, timer-driven or clock-driven, as

5

(b)

y

x

!!

(a)

D
t (m)

p

q

r

m

q

p

q

r

TDmin
q

TDmax
q

Figure 1: Protocol Synchronism metrics — (a) delivery time (); (b) steadiness ()

proposed in the beginning. We recapitulate the metrics for synchronism appearing in
[20], with a slight modification that makes it simpler to handle. We note the
set of messages delivered to a participant during an execution. Moreover:

Delivery time, , of message , is defined as the interval between
the event, and the event at , i.e.

;

, the maximum delivery time for participant ;

, the minimum delivery time for participant ;

We define the steadiness of a communication protocol :

Definition 4 Steadiness of a protocol, , is the greatest difference, for all participants , between
and :

These definitions are exemplified in figure 1, where supposedly the runs x and y in
figure 1byield respectively themaximumandminimumdelivery times as per definition 4.

Steadiness should not be confused with temporal uncertainty, introduced in [7]. Tem-
poral uncertainty is the absolute greatest difference . In some
protocols (eg. -protocols), steadiness is not equal to temporal uncertainty, because they
never yield those extremes in the same protocol run or at the same participant. A proof
and discussion of the implications is made in appendix (cf. B.2).

It is usual in reliable communication, to differentiate between receive, the event of amessage arriving
at a site, and deliver, the event of it being delivered to the upper layer.

For readers aware of the work in [20], steadiness was defined in a different way, in terms of execution
times, and ordering properties were defined with the help of a second variable, tightness, . is formally
equivalent to what is meant by in this paper. This slight modification makes it simpler to treat our
problem.

6

3 Execution correctness conditions
A first result is that the temporal ordering properties of a protocol are related to its
synchronism, that is, a protocol with steadiness delivers messages separated by more
than according to their temporal order:

Theorem 1 A protocol with steadiness delivers messages and such that
, in temporal order.

PROOF
Consider two messages and sent to a common participant , and assume

, i.e. (property (1)).
By definition, , and the same holds for (property (2)).
If we trivially have .
Assume thus . Because of the steadiness of the protocol, we have

. Togetherwith property (1) this leads to ,
and by property (2), to .

Observe that theorem 1 guarantees the follow-
ing implication: . However, that
is not enough to guarantee causal delivery as per definition 2: there may be messages for
which holds, whereas does not. For exam-
ple, ACT/OBS pairs through the environment may establish the first implication, while
they are fast enough that the second does not hold . In consequence, the protocol may not
order these messages, violating causal delivery. So, we define below an execution model
where the property holds.

Before proceeding, note however that there is an important result from this section:
from this point on, whatever we derive will apply equally to clock-driven and timer-
driven protocols. What matters is that they must be synchronous and thus have known
steadiness.

A few examples about temporal order
Let us exemplify what it means for an application supported by a temporal order protocol
to execute correctly.
Consider the example of two participants and at different sites, competing for a
resource controlled by at a third site. They both try to grab it approximately at the
same time, by sendingmessages and through a temporal order protocol. Suppose

sends first, but would get the resource, because the protocol ordered before
. The fact is that this would only be anomalous if could know it had requested it

first. This might only happen if , according to the definition of precedence
(Def. 1). In other words, if there would be time for an information, departing from A
when occurs, to reach B, and be processed before occurs.

This example shows that not all messages have to be ordered by the physical order of
the requests. That is only required when two send events are time-like separated, by

Because the length of the ACT/OBS chain is shorter than .

7

more than the time it takes to overcome their space-like separation .
Since in our model we make no assumptions about the way information is

propagated— it can even travel through the physical process— a conservative figure
to represent the above-mentioned space-like separation, is the absolute minimum propa-
gation delay between any two participants in the system. As noted before, this delay is
not necessarily related to networkmessage passing, it can be concerned with propagation
through a physical process under control— for example, from a computer controlling an
actuator, to another computer reading from a sensor in that process loop.

Supposenow that the request from , if received at , should cause not to request,
after being interpreted by a processing step with a duration of . If the participants
were separated by, say, 100 meter, their space-like separation would thus be at
the speed of light (the minimum propagation delay). In consequence, would have
to request, in real time, more than before , to cause the inhibition of .
Otherwise, the message-passing subsystem could order before — against their
physical order— and the system would still behave correctly, since no participant has
means to confirm or infirm such an ordering.

In fact, this second example shows that it is of no use to have a protocol order two
messages because they are just separated by more than the space-like separation— that
is, in this case— since a process needs time to generate the causal relation between
them— that is, in this case— and we may add that time to the causal chain. So, it
is also useful to represent the time-like separation between processing steps made by the
same participant, that we introduce as local granularity, the minimum interval between
any two related consecutive events in the time-line of a participant.

The parameters

The examples above served to exemplify what happens with distributed real-time pro-
grams in general: they perform execution steps within bounded delays and exchange
messages and/or perform input/outputs in result of those computations; they have a
limited capability (in the time domain) of acquiring information and producing respons-
es, formalised below.

Definition 5 Local granularity, , of a system, is the minimum delay between two consecutive
events in any participant , and :

Definition 6 Propagation delay, , of a system, is the minimum delay between an
event and the corresponding event:

Causal Delivery conditions
Finally, we are going to define the conditions underwhich a given temporal order protocol
performs causal delivery, according to thedefinition of theprecedence relation made
earlier. The problem as we see it has two facets:

“Time-like” ismeasured in the timecoordinate, “space-like” concerns the space coordinates, inRelativity
jargon.

8

the ability of the protocol proper to represent precedence, i.e. implement causal
delivery of messages, ignoring hidden channels;

the ability to do so with the additional problem presented by hidden channels.

We will call the environments where the protocol has to cope with hidden channels,
adverse, and favourable, if otherwise. Please note two things. Firstly, in ourmodel, a hidden
channel can be any form of information propagation (not just fast network communications),
either in the controlling computer system or in the controlled physical system. Secondly,
a hidden channel only presents a problem for the protocol when it is faster than the latter.
We formalise the two situations above:

adverse environments—environments where the channels external to the protocol can
deliver information faster than the protocol itself; in consequence, nothing can be
said about the lower bound of the propagation delay , except that it is not defined
by the protocol’s fastest execution, but by the fastest hidden channel:

favourable environments— environments where the channels external to the protocol
are slower than or as fast as the latter, or do not exist at all; in consequence, the
propagation delay is defined by the protocol’s fastest execution :

Adverse Environments

The following theorem is valid for the general case, that we called “adverse”, where
hidden channels exist and can have any speed .

Theorem 2 Given a system with local granularity and propagation delay , a protocol such
that , ensures causal delivery order.

The proof of theorem2 is made evident by figure 2.
PROOF

Consider a participant and two messages , received by such that is received before
. Assume is sent by some participant and by some participant :
i) q p.

Let . If there exists a relation , then necessarily
.

Consider the causal chain . Its shortest time
length occurs when event is . The length of the chain is thus greater or equal to

, as shown infigure 2. The time lengthof thedirect causal chain
is less or equal to , and thus, at most . In consequence, by hypothesis it is less
than , i.e. less than . Thus is received before .

At first glance, the equal sign might seem to ignore the “greater than” situation. However, note that
is the minimum propagation delay, includingmessage transmissions. “Favourable” just means that nothing
in the system delivers faster than the fastest protocol execution.

Well, up to the speed of light.

9

ii) q = p.
The time length of the direct causal chain is less or equal to ,
and thus, at most . In consequence, by hypothesis it is less than . If is
sent after , the time length of the causal chain is
greater or equal to . Message is thus received before message .

Favourable Environments

For favourable environments, the result of theorem 2 can be tightened by the introduction
of condition . This is beneficial since it lowers the allowed minimum
value of .

Theorem 3 Given a system with local granularity and propagation delay , and a pro-
tocol with steadiness and an absolute minimum delivery time of , such that

and , that protocol ensures causal delivery order.

PROOF
The proof style follows that of theorem 2.

i) q p.
In this case (figure 2, left), the length of the causal chain L1,

, is

Considering by hypothesis,

The length of the direct causal chain L2, , is

Comparing L1 and L2,

The highest value of is (definition 4) and the smallest value of is
:

So, L1 is longer than L2, and causal delivery is secured (is received before).
ii) q = p.

In this case (figure 2, right), by hypothesis, the length of the direct causal chain
is

The length of the causal chain is

10

 µ t µs µs

p

q

r

p

q

r

µs

TDmax

m1 m2

m1

m2

µ t

TDmax

Figure 2: Correctness of temporal order implemented by protocols with steadiness
(stands for)

Considering by hypothesis,

Comparing L1 and L2,

The highest value of is (definition 4):

So, L1 is longer than L2, and causal delivery is secured (is received before).
To duly appreciate the general result of theorems 2 and 3, and just for the sake of

example, consider a systemexhibiting apropagationdelay of , and adistributed
real-time control program with a granularity of , requiring temporal order to
be secured. A protocol with a steadiness as coarse as and would
do. An implication of the results of this section, is that the door is open for synchronous
timer-driven protocols to implement temporal orderings and causal delivery in real-time
applications. It remains to be seen, in the next section, what the limits to this ability are.
Before that, a final word about our model:

Wehave shown that, for environmentswhere both I/Ooperations andmessage
exchanges coexist, these message exchanges respect causal delivery. Nothing
was said about the order in which and take place, only about the
speed with which they propagate. For example, if an actuation takes

11

place at a participant , who later issues a message , can perfectly
take place after at another participant , even if .
However, this is not disturbing. Firstly, it is easy to see that the fact that an
event is observed late can never disturb causal delivery ofmessages. Secondly,
if we were concerned about an anomaly caused by observing before ,
then it would be possible to think of a protocol where could convey infor-
mation about the events that caused it. In fact, that is the classical scenario in
distributed control, where subsequent to an actuation, the actuator informs a
supervisor, through the network, as exemplified in [20] . The supervisor, upon
eventually observing the effect of that actuation, would already know about
it.
The really anomalous situation, as we pointed out in the beginning of this
paper, would consist in taking place before at , and being
delivered later than at . This would indeed violate causal delivery of
messages. Its avoidance was the subject of this section, namely the conditions
of theorems 2 and 3. We believe this model can be extended with adequate
protocols, towards a global causal order of events (messages and I/O), but that
is a subject of future research.

4 Requirements on communication
Clock-driven protocols normally yield tight-synchrony (small , with regard to to),
whereas their timer-driven counterparts yield loose-synchrony (moderate to large ,
which may be of the order of). In consequence, it is important to discuss the
practical implications of the results of the previous sections. The intention is to show the
reader and/or implementor that the results of the paper have indeed practical relevance,
and to provide him/her with a set of working formulas. We do not present proofs of the
working formulas we will derive, since they are easy to follow from theorems 2 and 3,
and the steadiness derivations below.

Steadiness of some types of protocols

From steadiness one can establish ordering properties of protocols. In consequence, we
determine the steadiness of a few synchronous protocols. We refer to their operation
in a sketchy way, assuming the reader is familiar with the cited protocols. A list of the
steadiness values is given in the table of figure 3, and the proof of their derivation is given
in appendix (cf. B.1).

Since messages are scheduled for transmission immediately after the request, the
clock-driven protocol in [4] is event-triggered, as opposed to TTP, analysed next, which
is time-triggered. Such a clock-driven protocol, also called -protocol, delivers messages
time-stamped at on the recipient’s clock. Transmission reliability is
achieved by diffusion of the message through several paths. The constant is system-
dependent [4]: , where is the maximum network delivery delay.

In page 475.

12

STEADINESS
Clock-driven

Event-Triggered [AAS]
Clock-driven

Time-Triggered [MARS]
Timer-driven

Event-Triggered [DELTA-4]

Figure 3: Steadiness of a few known real-time protocols

Introducing granularity of the clocks [8], the constant becomes
(Cristian [4] assumed continuous clocks, so in his paper,). Since clocks may be as
much as apart (the precision), two runs of the protocol from different senders may not
have the same delivery time to a given recipient. Steadiness, as discussed in the appendix,
is .

Time-triggered protocols, such as the TTP protocol described in [6], are clock-driven
protocols whereby participants only transmit at pre-specified periodic instants, driven
by the global clock. TTP is thus a TDMA protocol. What the protocol does exactly is to
write directly on memory, immediately data arrives at a site, and this, taking into account
that every message is sent twice, and one transmission may fail. TTP being so embedded
in the specialised approach of the MARS system, makes it difficult to establish general
results. However, given that MARS is completely time-triggered, the new data is used in
synchrony by all sites at the start of the next “computing period”, defined over a periodic
time-base called action lattice. In consequence, and for the benefit of generality, we derive
a model of time-triggered, clock-driven protocols:

transmission requests are served at the start of the next period of the action lattice;

the protocol delivers the messages sent in period of the lattice, time-stamped
, at on the recipient’s clock;

the constant is , where: is themaximumwaiting
time for a transmission, equal to a lattice period; is the maximum network
delivery delay (for example, extremely short inMARS—twoLAN round-trip times);
and , the precision and the granularity of the global clock;

Based on this model, we derive the parameters for the protocol (cf. B.1), amongst
which steadiness, whose expression is .

The last example concerns a timer-driven protocol, such as the AMp protocol used
in the DELTA-4 system [22]. The protocol executes in two phases. Only one component
may fail during a run. The network delays may vary with load. The sender, in the first
phase, sends the message using transmit-with-reply rounds, with duration , and
is repeated at most times, to tolerate up to omission faults. In the second, it
sends the decision to deliver themessage to all recipients, when the first phase succeeds—
i.e. when all replies come— in a non-acknowledged datagram, with duration . After
the first phase concludes, recipients set-up a timeout, , to detect a missing

13

decision frame. If the timeout expires, they request a decision from the sender, which
they do up to times, after which they suspect sender failure. A two-phase group
membership protocol, accumulating the function of termination, is immediately started,
which will finally secure message delivery: Step1 collects the pending message context;
Step2 terminates and establishes the new group view. A delivery time analysis of AMp,
discussed in the appendix, reveals that there is a ratio of 1:11 between the AMpminimum
and maximum delivery times, which yields . This may vary in other timer-
driven protocols, depending on assumptions about failures and load variation.

4.1 Protocol behaviour in several environments

Before we proceed, it is important to stress two points:

The framework of this paper is the absence of any restriction to the semantics
of participants interactions. As such, an ordering securing precedence must be
observed, such as that provided by protocols implementing causal delivery (Def. 2).
The fact that real-life problems can sometimes benefit from assumptions tending
to relax ordering requirements [16] does not invalidate the need for addressing the
cases where that cannot be done.

One important characteristic of the timeliness of a real-time process is its minimum
response time, i.e. the shortest delay to produce an output (eg.), given an input
(eg.). This is represented by , in our model. As such, the main objective of
the sequel of this section is to find expressions for , in order to find out, for each
communication environment, the kind of applications it can serve.

For example, we show that in an adverse environment, the restrictions imposed
on clock-driven protocols degrade their effectiveness to a point where timer-driven
ones do just as well. On the other hand, for certain favourable environments, timer-
driven protocols are sufficient. However, when high precision is necessary, only
clock-driven protocols apply.

Clock-driven protocols in adverse environments

Let us recall that an environment is adverse to the ordering protocol, if it has hidden
communication channels that are faster than the protocol itself.

a) Considering aworst-case scenario of , from theorem 2wewill have in general
. So, adverse environments are only tractable if the applications are “slower”

than the protocol. From the appendix (cf. B.1), we obtain , for clock-driven
protocols. In consequence, a general () working formula for clock-driven protocols
in adverse environments is:

b) Let us consider a slightly less pessimistic scenario, where though the physical
environment may exhibit undefined propagation delay, we have an I/O subsystemwhich
takes care of handling observations and actuations correctly, with regard to temporal
order. In the computing part, we can make the assumption that hidden channels are all
network-based, having as a lower bound, the propagation delay of the fastest datagram:

14

E-T CLOCK-DRIVEN PROTOCOLS WORK. FORMULAS

adverse environments
()

adverse environments
and all-network hidden channels

using very precise clocks

favourable environments

Figure 4: Working formulas for clock-driven protocols

(but still). From theorem2, we obtain .
On the other hand, we have , where is the maximum generic
network delivery delay— , for event-triggered systems, or , for time-
triggered systems (cf. beginning of section 4). Thus:

Remember that includes . We know that precision is related to the clock
reading error, dictated by the variance in network delivery delay, ,
where is a constant dependent on the synchronisation protocol [15], which includes

in time-triggered systems :

So, a working formula for clock-driven protocols in adverse environments where
hidden channels are all network-based, is:

c)In some systems, may be too large to render the optimisation above usable. In
these cases, the only solution lies in using clock synchronisation protocols overcoming
the precision limitation, either with hardware support [8], or taking advantage of LAN
properties [17]. In this case, we can easily have , yielding a significant im-
provement of the utility of the working formula of (b). This shows high-precision clock
synchronisation as being advantageous in adverse environments with network-based
hidden channels, confirming the views expressed in [8].

15

TIMER-DRIVEN PROTOCOLS WORK. FORMULAS
adverse environments

T-driven good vs. C-driven if
C-driven () T-driven ()

all-network
hidden-channels T-driven good vs. C-driven if

C-driven () T-driven ()

favourable environments
of C-driven normally better

than of T-driven

Figure 5: Compared behaviour of timer-driven protocols

Clock-driven protocols in favourable environments

One may consider, however, that environments are normally better behaved. Let us recall
that an environment is favourable to the ordering protocol, if no hidden communication
channel is faster than the protocol itself.

From theorem 3 we will have in general . In consequence, from the steadiness
derivations (cf. B.1), a general working formula for clock-driven protocols in favourable
environments is:

Timer-driven protocols

It is harder to defineworking formulas for timer-driven protocols, since their performance
depends on anumber of factors. However, fromwhatwasderived above, we can establish
a comparison with clock-driven protocols, exemplified in the table of figure 5.

a) In adverse environments without restrictions, timer-driven protocols are as good
(or as bad) as clock-driven ones: the correctness condition is the same (cf. theorem 2),
and although a comparison is difficult, in similar architectures of clock-driven
protocols should not be much different from of timer-driven ones. Given that

is the dominant term in the message delivery time of clock-driven protocols, in
the above-mentioned situation both types have comparable performance, with regard to
causal delivery.

b) In adverse environments with only network-based hidden channels the situation is
different in absolute terms. However, clock-driven protocols may again be no better than
timer-driven ones, if again for similar architectures, the same condition of (a) holds, and

is the same in both.
c) In favourable environments, there are no hidden channels to worry about: the al-

lowed pace of computation, , depends on steadiness, not on maximum delivery time.
Clock-driven protocols are extremely effective here, mainly if high-precision protocols are

16

used, since steadiness is practically given by precision. Timer-driven protocols have nor-
mally a coarse steadiness, which does not make them appropriate for “fast” applications.

In spite of these remarks, in a number of settings, for example, continuous processes,
valves, slow-motion discrete processes, etc., both (concerning physical actuator/sensor
feedback), and (concerning processing and actuation times), are large enough for the
system to fall under the favourable environment assumption and furthermore, to allow
low-precision clock-driven or even timer-driven operation, from the point of view of
order. As an example, consider a system with a synchronous timer-driven protocol for
LANs, with relatively loose synchronism, , , and hidden
channels with . Then, , and the environment is favourable,
so, . In consequence, such a setting would support control programs of
granularity greater than .

5 An evaluation of our approach
Let us analyse the situation under the classical model [10], to assess whether there is any
real advantage in the notions introduced in this paper.

Lamport started by defining the "happened before relation", and proposed a solution
based on logical order (with logical clocks).

HB [Lamport]:

for , ;

for , if is the sending of a message and is the receipt of that message;

if and .

To solve the problem of anomalous behaviour, he introduced a "strong clock condi-
tion", whose purpose is to preserve precedence relations among events, even if created
by events external to the ordering protocol. Then he proposed an implementation based
on physical clocks, to guarantee the correctness of his message-based formulation of the
HB relation. With the same purpose, we propose a formulation which generalises the HB
relation (Definition 1), and then propose solutions based on that new relation, which are
in consequence more general, as we will see below.

Lamport, for his implementation: defined correctness conditions specifically for clock-
driven systems; was only concerned with hidden message passing channels, and made
correctness depend only on the absolute minimum space-like separation. Recapitulating:

C1 [Lamport]: "Let be a number such that if event occurs at physical time and event in
another process satisfies , then occurs later than physical time . In other words, is
less than the shortest transmission time for interprocess messages"

C2 [Lamport]: "Anomalous behaviour is avoided if "
[In our terminology, this means: , , , that is, . The original paper

stated C2 as , where is the accuracy preservation of the clock set, that is, the rate
at which they deviate from real time. We have ignored it, since it is a second order factor [15].]

So, while Lamport’s definition of correctness depends on the absoluteminimumspace-
like separation, , in our model we introduce the minimum time-like separation, i.e. the

17

minimum time it takes to process events, as the local granularity (Def. 5), together with
(Def. 6).
Additionally, Lamport’s definitions were limited by implementation-dependent pa-

rameters: he stipulated the minimum space-like separation, , to be greater than , the
precision of clocks. For the time-like separation, he just proposed that events local to
a participant be separated by at least one clock tick. We are proposing a formulation,
expressed by theorems 2 and 3, which is independent of protocol implementation— it
may also be used with timer-driven protocols— and of environment— the and
external events address network message passing as well as physical process feedback
loops. On the other hand, it covers any speed of channels (Lamport’s is only valid for

).
Finally, Lamport’s results for clock-driven systems have to be revised with the in-

troduction of clock granularity. As explained in [8, 5], clocks are granular, and it is not
relevant to use a finer granularity for local clocks than the precision achieved by the global
clock. This makes ordering properties dependent on clock granularity, besides precision.
Our formulation is perfectly in line with this evolution [16].

We now compare our formulation with Lamport’s, in detail.
UnderLamport’smodel, no solutionwould exist for adverse environments. In the lim-

it situation, the expression of theorem2wouldbecome (): . Since,
by hypothesis, , we would have ,
which is clearly impossible, showing that there is not a solution for adverse environments
under Lamport’s model.

For favourable environments, the situation according to Lamport’s model is, intro-
ducing granularity, . This ensures that the reception time-stamp is higher than
the transmission time-stamp. However, this is not enough to build a protocol. Lamport
gives additional conditions that lead to correct operation, and which are precursors of
Cristian’s protocol [4]. To this effect, see the discussion of clock-driven protocols under
favourable environments, in the last section.

6 Conclusions and related work
There has been some work related to the temporal ordering properties of systems. Earlier
on, Lamport established the fundamental theory behind it [10]. Later, the impact of finite
precision [4] and granularity [8] have beenpointed out as disturbance factors of theoretical
models based on fully-synchronous systems and perfect and continuous clocks. A model
for real-time objects and a discussion on the impact of temporal uncertainties on total
order protocols has been advanced in [7]. To the author’s knowledge, the characterisation
of protocol ability to perform causal delivery, with regard to the execution environment,
had not been addressed in previous papers.

We started by recalling [22] that a protocol with a given degree of synchronism is
capable of ordering messages separated by a given interval (-precedence). A recent
work in this line [5] discusses how to match sparse time-bases to -precedent sets of
events. In doing so, wehave shown that there is no fundamental reasonwhy synchronous
timer-driven protocols should not be able to provide temporal order.

Then, we proposed a model for causal delivery that generalises that of Lamport [10]:

18

external events address physical process feedback loops as well as network message pass-
ing; local granularity represents the time it takes to process events; propagation delay repre-
sents the time it takes for information to be propagated between nodes, for any speed of
channels.

Finally, we evaluated the capabilities of real protocols in several kinds of environ-
ments. One side-effect of our model, besides confirming the suitability of timer-driven
protocols for a number of settings, has been to showunexpected limitations of clock-driven
protocols, despite their general ability to provide fine-grained orderings.

We intend to experiment with these concepts, to explore new forms of communication
in distributed real-time systems, in the scope of adaptive time-critical systems: systems
reliably supporting mixed event- and time-triggered operation. As discussed in [9], there
is a duality between these two styles of system, and its understanding may help pursuing
the afore-mentioned objective.

Acknowledgements

The author wishes to thank André Schiper for his collaboration in rendering this material
clearer and formally sounder. Vassos Hadzilacos and SamTouegmade useful suggestions
with regard to terminology. A warm acknowledgement also goes to Andreas Krueger,
for the many detailed comments, and to the anonymous reviewers, whose contributions
have improved the paper.

19

A Consolidated List of New Results
Definition 1: Precedence. An event precedes () another event if one of the following
conditions hold:

for , ;

for , if is an external event and an external event ;

for , if there exists an event such that and .

Definition 3: -precedence (): An event is said to -precede an event , ,
if .

Definition 4: Steadiness of a protocol, , is the greatest difference, for all participants ,
between and :

Definition 5: Local granularity, , of a system, is the minimum delay between two consec-
utive events in any participant , and :

Definition 6: Propagation delay, , of a system, is the minimum delay between an
event and the corresponding event:

Theorem 1: A protocol with steadiness delivers messages and such that
, in temporal order.

Theorem 2: Given a system with local granularity and propagation delay , a protocol
such that , ensures causal delivery order.

Valid for any environment (adverse or favourable):

Theorem 3: Given a system with local granularity and propagation delay , and a
protocol with steadiness and an absolute minimum delivery time of , such that

and , that protocol ensures causal delivery order.

Valid for favourable environments:

20

Application of the theorems to E-triggered C-driven protocols
E-T CLOCK-DRIVEN PROTOCOLS WORK. FORMULAS

adverse environments
()

adverse environments
and all-network hidden channels

using very precise clocks

favourable environments

Application of the theorems to T-driven protocols
TIMER-DRIVEN PROTOCOLS WORK. FORMULAS
adverse environments

T-driven good vs. C-driven if
C-driven () T-driven ()

all-network
hidden-channels T-driven good vs. C-driven if

C-driven () T-driven ()

favourable environments
of C-driven normally better

than of T-driven

B Informal proof of ancillary results

B.1 Derivation of protocol parameters
For each protocol, we start by deriving the absolute worst-case bounds on delivery time,
and . Then we derive steadiness, which in some cases is not the difference of the latter, but
smaller, due to common mode effects that occur on transmissions to a single recipient (used to
measure). denotes the value of the clock of site , during the clock interval that starts at
real time . A clock interval lasts , the clock granularity.

Event-triggered clock-driven protocols

We recall that Cristian’s protocol delivers messages time-stamped at on the
recipient’s clock, and that the constant is .

Intuitively, we should seek for delivery time extremes, in the cases where the worst-case
separation of clocks (precision) occurs.

21

Thus, must occur in transmissions from a site to a site where leads by .
Message time-stamped , is deliveredat thebeginning of clock interval ,
at real time . The latest that message can be sent by with time-stamp , is just before the
start of the clock interval , at real time . So, this will yield the shortest
delivery time:

If is the beginning of clock interval , and is the beginning of clock interval
, then, given precision,

So,

Delivery at occurs ticks later than the beginning of clock interval :

Then,

As for , it must occur in transmissions from a site to a site where leads
by . Message time-stamped , is delivered at the beginning of clock interval

, at real time . The earliest that message can be sent by with time-stamp , is
just at the start of the clock interval , at real time . So this will yield the longest
delivery time:

If is the beginning of clock interval , then, given precision,

Delivery at occurs ticks later than the beginning of clock interval :

Then,

Next we derive steadiness. Since steadiness is measured as observed at one site, then it is
impossible to simultaneously observe the two limit situations above, that is: transmission from a

22

site to a site where leads by ; transmission from a site to a site where leads by
. In fact, this would lead to a precision of .
It is easy to see that whether we start the proof by the absolute maximum or by the absolute

minimum delivery times, the conclusion will be the same: if the sending site clock must be far
apart from the recipient clock, the other extreme must occur from a site in phase with the recipient
clock. We go back to our proof of the absolute minimum delivery time, and from then on, we
derive the maximum delivery time for that same site, to achieve steadiness.

The absolute minimum delivery time must occur in transmissions from a site to a site
where leads by , as shown in the afore-mentioned proof. Consider again message
time-stamped , delivered at the beginning of clock interval , at real time
. We saw that the latest that message can be sent by with time-stamp , is just before

the start of the clock interval , at real time , yielding:

Conversely, given a message also delivered at at the beginning of a given clock interval,
the earliest that message can be sent from another site to , will yield themaximum delivery time
at . Given , the earliest that message can be sent by with time-stamp ,
is just at the start of the clock interval , at real time . The more ’s clock leads
’s clock, the earlier will occur, and the limit situation will yield the longest delivery time at :

Given that by the hypothesis made, ’s clock lags ’s clock by , ’s clock is among the fastest
clocks in the system, so ’s clock cannot be faster than ’s. In consequence, , and
thus, if is the beginning of clock interval , then,

Delivery at occurs ticks later than the beginning of clock interval :

Then,

In consequence, steadiness of clock-driven protocols is

Time-triggered clock-driven protocols

We now derive the parameters of time-triggered, clock-driven protocols, such as the TTP time-
triggered protocol [6]. We follow the model presented in section 4. A benefit of this model is
that it shows that these protocols are indeed similar to the event-triggered, clock-driven ones. In

23

consequence, we are going to derive our informal proof of the parameters of a time-triggered,
clock-driven protocol, by recapitulation of the proof of event-triggered, clock-driven protocols,
just made, and induction for the present case.

Seeking for delivery time extremes, must occur in transmissions from a site to
a site where leads by . Message time-stamped , is delivered at the beginning of
clock interval , at real time . A message from with time-stamp , is
sent (time-triggered) at the start of the clock interval , at real time . So, this
will yield the shortest delivery time:

If is the beginning of clock interval , then, given precision,

Delivery at occurs ticks later than the beginning of clock interval :

Then,

As for , it must occur in transmissions from a site to a site where leads
by . Message time-stamped , is delivered at the beginning of clock interval

, at real time . The earliest that message can be sent (time-triggered) by with time-
stamp , is obviously at the start of the clock interval , at real time . So
this will yield the longest delivery time:

If is the beginning of clock interval , then, given precision,

Delivery at occurs ticks later than the beginning of clock interval :

Then,

Next we derive steadiness. As for event-triggered clock-driven protocols, steadiness is mea-
sured as observed at one site, so the same impossibility holds. In consequence, we follow the
same approach: use the absolute minimum delivery time, and from then on, derive the maximum
delivery time for that same site, to achieve steadiness.

24

We saw that the absolute minimum delivery time is:

Conversely, given a message also delivered at at the beginning of a given clock interval,
the earliest that message can be sent from another site to , will yield the maximum delivery
time at . Given , the earliest that message can be sent by with time-
stamp is, by the hypothesis about time-triggered behaviour, at the start of the clock interval

, at real time . The more ’s clock leads ’s clock, the earlier will occur,
and the limit situation will yield the longest delivery time at :

We saw in the event-triggered proof that, in order to follow the precision hypothesis,
, and thus, if is the beginning of clock interval , then,

Delivery at occurs ticks later than the beginning of clock interval :

Then,

In consequence, steadiness of time-triggered clock-driven protocols is

Timer-driven protocols

Timer-driven protocols are harder to analyse, because they are normally more complex than
the protocols just analysed. An analytical performance study of the AMp, done in the DELTA-4
project [18], showed a few interesting results.

Maximum and minimum bounds are denoted by the subscripts and . For ex-
ample, accounts for the minimum duration of a transmit-with-reply round.

is the minimum transmission time of a given message. is the
duration of the timer started by recipients waiting for a decision of a just-arrived message. The
study presented the following results:

the smallest delivery time, corresponding to the no-failure, minimum network load case,

the largest delivery time, corresponding to the worst-case network load and failure scenario
(i.e. the sender fails),

25

The best case corresponds to the completion of the transmit-with-reply round in the minimum
time (transmission of the datamessage followed by the reply), followed by the transmission of the
decision message to terminate the protocol. Theworst case corresponds to the failure of the sender,
in the worst network load conditions. That is, maximum duration of the transmit-with-reply of
the datamessage, followed by expirations of the timer (since the sender is dead),
and subsequent run of the group membership protocol (again under worst-case network load), in
two steps, finally having the message delivered at all sites.

The absolute performance figures of this kind of protocols are affected by a number of factors,
which vary from setting to setting. However, the relative numbers do not vary much from setting
to setting. In fact, we determined that 1:11 is a suitable bound for the ratio between the AMp
minimum and maximum delivery times, which yields .

B.2 Difference between steadiness and temporal uncertainty
Let us recall the difference between steadiness () as we define it, and temporal uncertainty (),
as defined by Kopetz:

To substantiate the remark we made earlier, we claim that in theorems 1 and 3, the tightest
result is obtained with , and not with . The informal proof is as follows:

(i) Suppose there exists a protocol such that . In consequence, if we replace by
in theorem 1, though still correct, it would be less tight. As for theorem 2, the same substitution
would yield a condition, also coarser.

(ii) We now prove that such a protocol where exists. From section B.1, an event-
triggered clock-driven protocol has

In consequence,

whereas, from the same section,

so,

References
[1] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A Communication Sub-System

for High-Availability. In Digest of Papers, The 22nd International Symposium on Fault-Tolerant Computing
Systems, pages 76–84. IEEE, 1992.

[2] K. Birman and T. Joseph. Reliable Communication in the Presence of Failures. ACM, Transactions on
Computer Systems, 5(1), February 1987.

[3] KennethBirman, AndreSchiper, andPat Stephenson. LightweightCausal andAtomicGroupMulticast.
ACM Transactions on Computer Systems, 9(3), August 1991.

[4] F. Cristian, Aghili. H., R. Strong, and D. Dolev. Atomic Broadcast: From Simple Message Diffusion to
Byzantine Agreement. InDigest of Papers, The 15th International Symposium on Fault-Tolerant Computing,
Ann Arbor-USA, June 1985. IEEE.

26

[5] H.Kopetz. SparseTimeversusDenseTime inDistributedSystems. InProceedings of the 12th International
Conference on Distributed Computing Systems, Yokohama, Tokyo, June 1992. IEEE.

[6] H.KopetzandG.Grunsteidl. TTP - a Time-Triggered Protocol for Fault-TolerantReal-TimeSystems. In
Digest of Papers, The 23th International Symposium on Fault-Tolerant Computing, pages 524–533, Toulouse,
France, June 1993. IEEE.

[7] Hermann Kopetz and K.H.(Kane) Kim. Temporal Uncertainties in Interactions among Real-time
Objects. In Proceedings of the Ninth Symposium on ReliableDistributed Systems, pages 165–174,Huntsville,
Alabama, October 1990. IEEE.

[8] Hermann Kopetz and Wilhelm Ochsenreiter. Clock Syncronization in Distributed Real-Time Systems.
IEEE Transactions on Computers, C-36(8):933–940, August 1987.

[9] Hermann Kopetz and Paulo Verı́ssimo. Real-time and Dependability Concepts. In S.J. Mullender,
editor, Distributed Systems, 2nd Edition, ACM-Press, pages 411–446. Addison-Wesley, 1993.

[10] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed System. CACM, 7(21), July
1978.

[11] P.M. Melliar-Smith and L.E. Moser. Fault-Tolerant Distributed SystemsBased on Broadcast Communi-
cation. In Proceedings of the 9th Internacional Conference on Distributed Computing systems, pages 129–133.
IEEE, June 1989.

[12] Larry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting. Preserving and Using Context
Information in Interprocess Communication. ACM Transactions on Computer Systems, 7(3), August
1989.

[13] L. Rodrigues and P. Verı́ssimo. AMp: a Multi-primitive Group Communications Service. In Proceed-
ings of the 11th Symposium on Reliable Distributed Systems, pages 112–121,Houston, Texas, October 1992.
INESC AR/66-92.

[14] A. Schiper, J. Eggli, and A. Sandoz. A New Algorithm to Implement Causal Ordering. In Proceedings
of the 3rd Int Workshop on Distributed Algorithms, volume LNCS 392, pages 219–232, Nice - France,
September 1989. Springer Verlag.

[15] Fred B. Schneider. Understanding Protocols for Byzantine Clock Synchronization. Technical report,
Cornell University, Ithaca, New York, August 1987.

[16] P. Verı́ssimo. Ordering and Timeliness Requirements of Dependable Real-Time Programs. Journal of
Real-Time Systems, Kluwer Eds., 7(2):105–128, September 1994. Also as INESC AR/14-94.

[17] P. Verı́ssimo and L. Rodrigues. A posteriori Agreement for Fault-tolerant Clock Synchronization on
Broadcast Networks. In Digest of Papers, The 22th International Symposium on Fault-Tolerant Computing,
Boston - USA, July 1992. INESC AR/65-92.

[18] P. Verı́ssimo, J. Rufino, H. Fonseca, and L. Rodrigues. The performance of the AMp protocol on
token-bus and fddi nac’s. Technical Report RT/109-91, INESC, Lisboa, Portugal, November 1991.

[19] Paulo Verı́ssimo. Real-time Data Management with Clock-less Reliable Broadcast Protocols. In Pro-
ceedings of the Workshop on the Management of Replicated Data, Houston, Texas-USA, November 1990.
IEEE. also as INESC AR/25-90.

[20] Paulo Verı́ssimo. Real-time Communication. In S.J. Mullender, editor, Distributed Systems, 2nd Edition,
ACM-Press, pages 447–490. Addison-Wesley, 1993.

[21] Paulo Verı́ssimo, P. Barrett, P. Bond, A. Hilborne, L. Rodrigues, and D. Seaton. The Extra Performance
Architecture (XPA). In D. Powell, editor, Delta-4 - A Generic Architecture for Dependable Distributed
Computing, ESPRIT Research Reports, pages 211–266. Springer Verlag, November 1991.

[22] Paulo Verı́ssimo, L. Rodrigues, and J. Rufino. The Atomic Multicast protocol (AMp). In D. Powell,
editor, Delta-4 - A Generic Architecture for Dependable Distributed Computing, ESPRIT Research Reports,
pages 267–294. Springer Verlag, November 1991.

27

