
1

A COMPARISON OF CAN AND TTP

H. Kopetz

Technische Universit�t Wien, Austria
hk@vmars.tuwien.ac.at

Abstract: This paper compares the principles of operation, the services, the dependability
mechanisms and the system level properties of distributed real-time systems that are based
on the Controller Area Network (CAN) protocol and the Time-Triggered protocol (TTP).
The paper comes to the conclusion that CAN is well suited for soft real-time systems where
flexibility is important, while TTP is most appropriate for the design of composable hard
real-time systems with high dependability requirements.

Keywords: Protocols, CAN, TTP, Real time, Composability

1. INTRODUCTION

The Controller Area Network (CAN) and the
Time-Triggered Protocol (TTP) are two
fundamentally different communication
protocols for the design of distributed real-time
systems. CAN belongs to the class of event-
triggered protocols where the temporal control
signals are derived primarily from non-time
events occurring outside or inside the computer
system. CAN was originally developed for non-
safety critical body- electronics applications
within vehicles. TTP belongs to the class of the
time-triggered protocols, where the temporal
control signals are solely derived from the
progression of time. TTP was originally
developed for high-dependability hard real-time
applications, where timely error detection and
fault-tolerance must be provided. For a detailed
comparison of soft versus hard real-time systems
see (Kopetz 1997, p.12).

It is the objective of this paper to compare these
two protocols from a number of different
vantage points. The paper starts by describing
the structure of a distributed architecture that is
shared by both protocols. After discussing the
differences between the event-based and state-
based view of a system, the principles of
operation of CAN and TTP are explained. In the

following section the protocol services of CAN
and TTP are compared. The dependability
enhancing mechanism of CAN and TTP are
discussed in Section 5. Section 6 is devoted to
system level properties of CAN and TTP based
systems, such as composability, extensibility
and error containment. The paper closes with a
summary and conclusion in Section 7.

2. ARCHITECTURE

The basic architecture of a distributed CAN and
TTP based system is alike. A large system is
decomposed into a set of subsystems called
clusters. Each cluster realizes a particular
application function. An example for clusters in
the automotive context is a cluster for body
electronics and a cluster for vehicle dynamics
control. A gateway node that is a member of
both clusters can implement a data sharing
channel between these two clusters.

2.1 Cluster

A cluster is a distributed computer system
consisting of a set of nodes that are
interconnected by a serial channel (see Figure 1).
In order to accomplish system functions that
cannot be realized on a single node, e.g., the

2

tight coordination of the engine, the steering,
and the brakes in the four wheels, the nodes
exchange messages via the serial
communication channel. Figure 1 depicts an
example of a distributed vehicle control system
consisting of 7 nodes.

Driver
Interface

CC

Power
Train

CC

I/O

Assistant
System

CC

Steering
Manager

CC

I/O

Gateway
Body

CC

I/O

Suspen-
sion

CC

I/O

CC: Communication Controller

Communication
Network

Interface (CNI)
within a node

Brake
Manager

CC

I/O

Body Electronics
 Network

Figure 1: Example of a distributed system
consisting of 7 nodes.

2.2 Node

A node of the distributed system consists of
three major subsystems, the host computer, the
communication controller (CC), and the process
I/O subsystem to interface with the signals of
the sensors and actuators in the environment
(Figure 2). These three subsystems are
connected by two interfaces: the communication
network interface (CNI) between the host
computer and the communication controller, and
the controlled object interface (COI) between the
host computer and the process I/O subsystem.

Process I/O Subsystem

Host computer including
application software

Communication Network Interface (CNI)

Communication Controller

Controlled Object Interface (COI)

Control signals and data items to and
 from the sensor and actuators

Messages to and from the
real-time communication system

In ET systems, the locus of
control is in the host computer

In TT systems, the locus of control
is in the communication system
(Dispatching table).

Figure 3: Structure of a Node.

Host Computer: The host computer of the
node contains a CPU, memory, a local real-time
clock, an operating system and the application
software. The host computer receives its input
data via the CNI and COI and delivers its output
data to the CNI and COI. The purpose of the
host computer is to execute the computational
tasks of the real-time application within the
given deadlines.

C o m m u n i c a t i o n S y s t e m : The
communication system is formed by the
communication channel and the entirety of all
communication controllers in the nodes of a
cluster. A time-triggered communication

controller contains a dispatching table in its
local memory that determines at what points in
time a particular message is sent or is expected
to arrive. An event-triggered communication
controller does not need such a dispatching table,
because the transmission of a message is
triggered by a send command from the host
(Figure 3).

The purpose of the communication system is to
carry messages from the sender node to one or
more receiver nodes in the same cluster within
given time constraints. A message carries a
statement about attributes of significant state
variables (e.g., speed, torque) at a particular
point in real-time or about the occurrence of an
event. A message is an atomic unit consisting
of three parts:

(i) the name of the state variable or of the
event,

(ii) the observed value of the state variable
v(t), and

(iii) the time t of observation of the state
variable or of the event

Only the value of the state variable/event must
be explicitly carried in the message. If the
message does not contain the observation time,
it is sometimes assumed that the time of arrival
of the message at the receiver can be taken as
the observation time. In this case the latency
jitter, i.e., the difference between the maximum
and the minimum protocol execution time,
determines the error in the temporal domain.

3. PRINCIPLES OF OPERATION

In this section the principles of operation of a
CAN based system and a TTP based system are
presented. The section starts with the
introduction of the concepts of event messages
and state messages.

3.1 Event Messages versus State Messages

To fully appreciate the differences between CAN
and TTP it is necessary to gain a full
understanding of the differences between event-
based and state-based systems. We start with the
definition of the basic notions event and state.

The flow of real time can be modeled by a
directed time line that extends from the past into
the future. Any occurrence that happens at a cut
of this time line is called an event. The present
point in time, now, is a very special event that
separates the past from the future. An interval
on the time line is defined by two events, the
start event and the terminating event. Any
property of an object that remains valid during a
finite interval is called a state attribute, the
corresponding information state information. An

3

observation is an event that records the state of
an RT entity at a particular instant, the point of
observation. A change of state is thus an event
that cannot be observed directly, only the
consequences of the event, the new state can be
observed. The difference between the state
information of the state before the event
occurrence and the state information of the
succeeding new state is called event information.

A message is called an event message if it is
sent immediately after the occurrence of an event
and contains in its data field the event
information. A message is called a state
message if it sent periodically at a priori known
time points and contains in its data field the
state information about the observed state. The
following Table 1 depicts the differences
between state messages and event messages.

Characteristic Event Message State Message

Example of message contents "Valve has closed by 5
degrees"

"Valve stands at 60 degrees"

Contents of data field event information state information

Instant of sending After event occurrence Periodically at a priori known
points in time.

Temporal control Interrupt caused by event
occurrence

sampling, caused by the
progression of time

Idempotence [Kopetz97, p.110] no yes

Handling at receiver queued and consumed on
reading

new version replaces previous
version, not consumed on
reading

Semantics at receiver Exactly once At least once

Consequences of message loss Loss of state synchronization
between sender and receiver

Unavailability of current state
information for a sampling
interval.

Typical communication protocol Positive Acknowledgment or
Retransmission (PAR)

Unidirectional datagram

Typical communication topology Point to point Multicast

Load on communication system Depends on number of event
occurrences

Constant

Table 1: Differences between event messages and state messages.

There are a number of intermediate message
forms between state and event messages. For
example it is possible--and in many instances
useful--to pack the state information about the
new state into an event message that is only
sent after the occurrence of a state change. An
extensive discussion about all these intermediate
forms is contained in (Kopetz 1997) p.32.

We call a communication system that is
designed for the transmission of event messages
an event-triggered (ET) system. In an ET
system, the signaling of significant events from
the environment to the computer system is
realized by the well-known interrupt mechanism,
which brings the occurrence of a significant
event to the attention of the CPU. ET systems
require a dynamic scheduling strategy to activate
the appropriate software task that services the
event.

We call a communication system that is
designed for the transmission of state message a
time-triggered (TT) system. In a time-triggered
(TT) system, all activities are initiated by the
progression of time. There is only one interrupt
in each node of a distributed TT system, the
periodic clock interrupt, which partitions the
continuum of time into the sequence of equally
spaced granules. In a distributed TT real-time
system, it is assumed that the clocks of all
nodes are synchronized to form a global notion
of time, and that every observation of the
controlled object is either explicitly or
implicitly timestamped with this synchronized
time.

4

3.2 CAN

The specification of CAN used in this paper is
taken from the official SAE CAN publication
(CAN 1990).

CAN is an event-triggered communication
system. Messages are sent if the host computer
requests the transmission of a message, the
channel is idle and the message priority wins
over the messages that other nodes intend to
send at about the same time.

Frame Format: CAN supports four different
frame types: data frames, remote frames, error
frames, and an overload frame. The structure of
a data frame is depicted in Figure 3. A data frame
consists of 7 fields: the start of frame bit, an 11
bit arbitration field that contains the message
identifier, a one bit Remote-Transmission-
Request (RTR) field, a 6 bit control field, a data
field of between 0 and 64 bits, a 16 bit CRC
field, a 2 bit ack field and a 7 bit end-of-frame
field.

1 11 1 6 0 to 64 16 2 7

Start of Frame (dominant bit) End of Frame

Arbitration Field Ack Field

 Control Field Data Field CRC Field

Length
in Bits

RTR Bit

Figure 3: Format of a CAN Data Frame

At the physical layer CAN uses NRZ encoding
with bit stuffing. A sequence of more than 5
identical bits is a violation of the bit-stuffing
rule. This characteristic feature is used for
constructing error frames and overload frames.

Message Arbitration: In CAN, each
message type must have a unique identifier that
serves two purposes

(i) it assigns a name to the data contained in
the message and

(ii) it defines the priority of the message. The
identifier with the smallest digital value
has the highest priority.

CAN distinguishes between two states of the
communication channel: dominant and
recessive. The dominant states--which
corresponds to the value "0"--overwrites the
recessive state. A sending CAN controller must
monitor the channel and determine whether its
recessive bit has been overwritten by a dominant
bit from another sending controller. A losing
controller must stop its transmission
immediately and continue with the receive
operation. The message with the most number
of dominant bits--that is the one with the
smallest digital value-- will win the arbitration
and transmit its data bytes.

Transmission of Messages: The CNI of
the CAN controller contains a CAN
communication object for every message sent or

received. A CAN communication object
consists of three descriptor bytes and up to 8
data bytes. The descriptor bytes of a
communication object contain the message
identifier (11 bits), the data length code (4 bits)
and 9 status/control bits.

The host computer requests the transmission of
a message by setting the "transmission request"
bit in the descriptor byte of the selected
communication object in the CNI. The
communication controller will start
transmission of this message only if the
"transmission request" bit is set and the
"channel idle" state is detected on the channel. If
more than one node intends to transmit a
message simultaneously they all will start
transmitting the "start of frame" bit as soon as
the "channel idle" state is detected on the
channel. In the following arbitration phase,
where each controller sends the identifier bits
contained in the arbitration field (Figure 3), the
message with the lowest numerical identifier
value will win the arbitration and will be sent
on the channel. The receiver stores the data of
the message in the data bytes of the
communication object at the receiver's CNI.
Depending on the setting of the control bits in
the receiver's communication object, the
receiving controller will raise a "message-
received" interrupt to the host computer. After
checking the CRC of an incoming message the
receiving CAN controller will acknowledge the
correct receipt of the message by setting the
second ack bit to dominant (Figure 3). The
sender thus knows that at least one receiver has
received the message correctly.

Remote Frame: The Remote Transmission
Request (RTR bit in Figure 3) provides the
capability for a node to request the transmission
of a particular message from another node. It
also serves a diagnostic purpose to determine
whether the primary supplier of a given message
is functional.

Error Frame: The normal operation of a node
is an error-active node. If an error-active receiver
or the sender detects a transmission error (e.g.,
incorrect CRC) then an error flag is transmitted
by the error detecting node. The error flag
consists of six consecutive dominant bits and
has thus a characteristic feature that violates the
bit stuffing rule. All other nodes will interpret
the error flag as a bit-stuffing violation and will
transmit their own error flag. The total length of
the error flag sequence thus varies between six
and twelve dominant bits.

Overload Frame: If a receiving CAN
controller requires a delay time before it is ready
to receive the next message it can send an
overload frame.

5

3.3 TTP

The specification of TTP used in this paper is
taken from the TTP specification that was the
basis for the existing TTP implementation
produced in the European research projects Brite
Euram X-by-Wire and Esprit OMI TTA. Since
this implementation is still the subject of
evaluation by the industrial partners and the
specification may possibly be changed as a
consequence of this evaluation, the detailed TTP
specification is not in the public domain at the
moment.

TTP is a time-triggered communication system.
Media-access is controlled by a conflict free
TDMA (time-division-multiple access) strategy.
Every node is assigned to a unique sending slot
in a TDMA round. Every TTP controller
contains a dispatching table (message descriptor
list--MEDL) that contains the information
which node is allowed to send which message at
a particular point in time. The MEDLs of a
cluster are constructed before run time and are
common knowledge to all nodes. Every TTP
control ler contains two repl icated
communication channels in order that the loss of
one channel can be tolerated

Structure of the MEDL: The MEDL
controls when a message must be sent or
received from the communication channels and
contains the position of the data in the CNI
(Figure 4). The length of MEDL is determined
by the length of the cluster cycle, i.e., the
sequence of TDMA rounds after which the
operation of the cluster repeats itself.

Time Address Attributes
D L I A

entry n-1

entry n

entry n+1

Figure 4: Format of the MEDL.

An entry in the MEDL comprises three fields: a
time field, an address field, and an attribute field
(Figure 4). The time field contains the point in
global time when the message specified in the
address field must be communicated. The address
field points to the CNI communication objects
where the data items must be stored to or
retrieved from. The attribute field comprises four
subfields:

(i) a direction subfield (D) that specifies if the
message is an input message or an output
message,

(ii) a length subfield (L), denoting the length
of the message that must be
communicated,

(iii) an initialization subfield (I) that specifies
whether the message is an initialization
message or a normal message, and

(iv) an additional parameter subfield (A) that
contains additional protective information
concerning mode changes.

The host can only execute mode changes that are
permitted by the attribute field of the MEDL. In
a safety-critical system, all mode changes
requested by a host can be blocked by the
MEDL. The host cannot access the MEDL that
is stored in the TTP communication controller.

Frame Format: TTP supports two different
frame types: normal (N) frames and initialization
(I) frames. The structure of an N-frame is
depicted in Figure 5. A normal frame consists of
4 fields: the start of frame field, a 4 bit header
field, a data field of between 0 and 128 bits, and
a 16 bit CRC field. The first bit of the header
field informs whether the frame is an I-frame or
an N-frame. The other three header bits are used
to activate a mode change. During normal
operation, these three mode-change bits are not
set. An I-frame has the same format as an N-
frame but contains in its data field the controller
(C) state of the TTP controller. This C-state
consists of the global time, the index of the
current MEDL entry, and the membership
vector. The membership vector is a bit vector
where every node of the system is assigned to an
a priori specified bit position. This bit is set to
"TRUE" if this node has sent a correct message
in the previous TDMA round, otherwise it is set
to "FALSE". I-frames are required for the
initialization of a TTP based system and for the
reintegration of failed nodes.

1 4 0 to 128 16

Start of Frame

Header Data Field CRC Field

Length
in Bits

Figure 5: Format of a TTP Frame
At the physical layer TTP uses MFM coding
(Miesterfeld 1991) because MFM coding
supports bit synchronization without a data-
dependent frame length.

Transmission of Messages: The CNI of
the TTP controller contains a communication
object for all relevant messages sent or received.
A TTP communication object consists of one
descriptor byte and up to 16 data bytes. The
descriptor byte of a communication object
contains the message receive status (4 bits), and
a concurrency control field (4 bits) for the Non-
Blocking-Write (NBW) Protocol (Kopetz and
Reisinger 1993). The NBW protocol is used for
concurrency control when the host computer and

6

the communication controller intend to access a
communication object at the same time.

The communication controller will send a
message whenever the global time reaches a
value that is equal to the value for this message
send time in the (controller internal) MEDL.
The message is sent on both channels. If one of
the two messages arrives correctly at the
receiver, the receiver will set the membership bit
of the sender to "TRUE" and store the message
in the communication object of the receiver, as
indicated in the receiver's MEDL. In case none
of the two messages arrives correctly at the
receiver, the sender will set the membership bit
of the sender as "FALSE". The missing message
is marked in the message receive status field of
the receiver's communication object.

Initialization Frame: During MEDL
design it must be ensured that some nodes send
periodically I-frames with the internal state (C-
state) of the sending TTP controller. A
reintegrating node synchronizes itself with the
rest of the cluster by setting its internal state to
the C-state received in the I-frame.

Continuous State Agreement: To enforce
agreement of the controller states (C-state)
among the ensemble without having to include
the C-state in each message, TTP uses an
innovative technique of CRC calculation for N-
Messages (Figure 6). The CRC at the sender is
calculated over the message contents
concatenated with the sender's C-state. The CRC
check at the receiver is calculated over the
received message contents concatenated with the
receiver's C-state. If the result of the CRC check
at the receiver is negative, then, either the
message has been corrupted during transmission
or there is a disagreement between the C-states
of the sender and receiver. In both cases, the
message must be discarded.

Header Data Field C-State of Sender CRC

Header Data Field C-State of Receiver CRC

Header Data Field CRC

CRC Calculation at Sender:

Message on the Network:

CRC Calculation at Receiver:

Figure 6: Calculation of the CRC of normal
messages.

4. PROTOCOL SERVICES

4.1 Data Integrity

Both protocols, CAN and TTP protect the data
field of a message by a 16 bit CRC field. In

TTP the CRC has the additional function to
detect a C-state disagreement between sender and
receiver. The normal Hamming distance in both
protocols is 6.

4.2 Throughput

CAN: The arbitration logic of CAN requires
bit synchronization, i.e., that every bitcell must
stabilize on the channel before the next bitcell
can be transmitted. This limits the maximum
throughput of CAN to about 1 Mbit/sec in a
n e t w o r k o f a b o u t
100 m length. The assymetric states on the
physical communication channel--a high
resistance recessive state and a low resistance
dominant state--lead to an asymmetric analog
waveform of the channel.

TTP: TTP requires message synchronization,
but no bit synchronization. There is no protocol
limit to the throughput rate of TTP based
systems. The prototype TTP controller chip
under construction will support transmission
r a t e s o f 5 1 2 k b i t s / s e c ,
1 Mbit/sec, and 2 Mbits/sec on a twisted pair.
TTP based systems are well suited for
implementation on high-speed fiber networks.

4.3 Latency

The time interval between the start of
transmission of a message at the sender's CNI
and the delivery of the message at the receiver's
CNI is called the latency of a message. The
variability of this delay, i.e., the interval dmax-
dmin, where dmax is the maximum latency and dmin

is the minimum latency is called the jitter of the
communication system.

Control applications are sensitive to a large
latency (increase of the dead time) and even more
sensitive to jitter. In the SAE class C
application requirements document SAE J2056/1
(SAE 1995) it is stated on p. 23.441: "From the
application perspective, latency relates to the
time delay associated with the transfer of
information from one application program to
another. In this respect it is necessary for the
latency to be minimal (in some cases less than 1
millisecond) and predictable (as defined by the
systems exchanging data). Predictability has to
do with how the message latencies change over
time--whether they follow a statistical
distribution or are deterministic. As a control
system is designed, the delay resulting from
information transfer is accounted for in such a
way that the control algorithm is able
compensate for that fact. From this perspective
the necessity of predictable latency (latency
defined within a given tolerance) can be
understood." In control application the jitter

7

should be two orders of magnitude smaller than
the latency.

An application that will not work properly if the
jitter is beyond a given application- specific
value is called a jitter-sensitive application.
Excessive jitter can be the cause of two types of
errors in a jitter-sensitive real-time application:
it can give rise to the sporadic creation of
orphans and it will introduce an additional
measurement error.

Orphans: Consider a scenario where a client
requests a service from a server. In order to detect
a failure of the server, the client activates a
client time-out concurrently to sending the
request message to the server (Figure 7).

Client

Server

Client -Timeout less than

 2d max+ WCET of Server

Orphan

Real-Time

Figure 7: The creation of orphans by an
incorrect value of the client time-out.

If this client time-out is less than the maximum
reply interval from the server (which is two
times the maximum transmission latency plus
the worst-case execution time at the server) then
a reply message will arrive after the client has
started the time-out processing. This late reply
message is called an orphan. If the orphan is
not properly handled, it can cause a transient
failure of the application.

The probability of an orphan occurring depends
on the form of the latency distribution. Consider
a typical latency distribution as shown in Figure
8. The probability that the latency will be larger
than an application specific critical latency
value, e.g., the one determined by the size of the
client time-out parameter in Figure 7, is rather
small, giving rise to sporadic difficult-to-
reproduce system failures.

Latency

Probability Density

dmin dmax

Application specific
critical latency value

System operates
correctly

System Failure

Figure 8: Typical probability density
distribution of the latency

Additional Measurement Error: If there is
no global notion of time available in a
distributed control system, a jitter Dt of the
communication system introduces an additional
measurement error of the size

Dv =
dv(t)
dt

 Dt

where v(t) denotes the time variability of the
measured value v. It depends on the
characteristics of the given application whether
this additional measurement error, introduced by
the jitter of the communication system, is of
concern. In control applications this additional
measurement error is often interpreted as an
additional perturbance of the control loop and
causes a degradation of the control quality.

CAN: In CAN the occurrences of events in
the host computer (the execution of the "send
message command" in the host software)
determine when the communication system
must send a message. The jitter of the highest
priority CAN message is bound by the longest
message transmission interval. If the host of a
node sends continuously highest priority
messages (e.g., because of a babbling idiot error
in the application software of the host
computer), then no other nodes will be able to
access the channel at all. Thus a number of
assumptions about node behavior must be made
to determine the worst-case jitter of non-highest
priority CAN messages. For a complete analysis
of hard real-time communications the reader is
referred to the excellent contribution by (Tindell
1995 et al.).

In a system without a global time the host
computers operate asynchronously at their own
pace. It is not possible to control a priori the
phase relationships between the execution of the
"send message commands" in the different nodes
of Figure 1. Assume that every node of Figure 1
sends a sporadic message with a minimum
interarrival time of 1 msec. Assume further that
all messages are of the same size, and it takes
100 msec to transmit a message. We define a
critical instant (Liu and Layland 1973) as a point
in time when all nodes connected to the channel
intend to send a message simultaneously.
Since the occurrence of a critical instant, where
all 7 nodes execute the "send message
command" at the same time, cannot be ruled
out, the worst case jitter, in the above example,
is 600 msec. The actual latency in the above
example will vary between the minimum of 100
msec (channel idle) and the maximum of 700
msec (critical instant) depending dynamically on
the load generated by the hosts.

In general, the latency in a CAN based system
depends on the maximum number and the
activity of nodes on the channel. This makes it
difficult to select a proper value for the client
time-out in the application software of the client
at design time. There is a further dilemma: To
avoid orphans, the client time-out must be set to
the largest latency value that is ever expected to
occur. However the client time-out determines
the error detection latency that should be small

8

in safety critical systems (see example in
Section 4.4 below).

TTP: In TTP every host knows a priori when
a message will be transmitted. It can schedule
the host local activities (e.g., sampling of the
environment) using this common knowledge.
The latency jitter in TTP is determined by the
precision of the clock synchronization, i.e., in
the order of microseconds.

4.4 Membership

In dependable systems, a failure of a node must
be reported in a consistent manner to all
operating nodes within a low latency. This is
the task of the membership service. A point in
real-time when the membership of a node can be
established, is called a membership point of the
node. A small temporal delay between the
membership point of a node and the instant
when all other nodes of the ensemble are
informed in a consistent manner about the
membership, is critical for the correct operation
of many safety-relevant applications.

ABS ABS

ABS ABS

Brake

Figure 9: Example of an intelligent
ABS in a car.

Example : Consider an intelligent ABS
(Antiblock System) braking system in a car,
where a node of a distributed computer system is
placed at each wheel. A distributed control
algorithm in each of the four wheel computers
calculates the brake-force distribution to the
wheels (Figure 9), depending on the position of
the brake pedal actuated by the driver. If a wheel
computer fails or the communication to a wheel
computer is lost, the hydraulic brake-force
actuator at this wheel autonomously transits to a
defined state, e.g., in which the wheel is free-
running. If the other nodes learn about the
computer failure at this wheel within a short
latency, e.g., a single control loop cycle of
about 5 msec, then the brake force can be
redistributed to the three functioning wheels, and
the car can still be controlled. If, however, the
loss of a node is not recognized with such a low
latency, then, the brake force distribution to the
wheels, based on the assumptions that all four
wheel computers are operational, is wrong and
the car might go out of control.

CAN: In a purely event-triggered systems,
such as CAN based systems, it is impossible to
implement a timely membership service at the
protocol level. If a node does not receive a

message from another node within a given time
interval it cannot distinguish between the case
when the node has failed from the case when
there was no event occurrence at the sender's
node (and therefore the operational sender did not
send a message). In CAN the membership
service must be implemented in the host
computer by executing a periodic time-triggered
task in the operating system that sends special
membership messages to all other nodes.

TTP: TTP provides a timely node membership
service as part of the protocol. The number of
bits in the membership field of the C-state
corresponds to the maximum number of nodes
in a cluster. Every node-send slot is a
membership point for the sending node. If one
out of the redundant messages of the sending
node is correctly received by a receiving node,
the receiving node considers the sending node
operational at this membership point. The node
is considered operational until its following
membership point in the next TDMA round. If a
node fails within this interval, the failure will
only be recognized at the coming membership
point. The delay of the membership information
is in the order of one TDMA round.

If a particular node did not receive any correct
message from a sending nodeÐe.g., because the
incoming link of the receiver has failedÐit
assumes that this sending node has crashed, and
it eliminates the sending node from its
membership vector. If, however, all other nodes
received at least one of these messages they
come to a different conclusion about the
membership. From this moment onward, two
cliques have formed that cannot communicate
with each other because they contain a different
C-state. TTP contains a mechanism that makes
sure that in such a conflict situation the
majority view wins, i.e., that the node with the
failed input port, which is in the minority, is
eliminated from the membership.

4.5 Clock Synchronization

A global notion of time is required if time
stamps that are generated locally at one node
must be interpreted at another node.

CAN: The CAN protocol specification does
not include a clock synchronization service. It
is possible to implement distributed clock
synchronization at the host level. This requires
the transmission of additional high priority
messages with low jitter.

TTP: TTP provides the fault-tolerant internal
synchronization of the local clocks to generate a
global time-base of known precision in the
microsecond range. Because every receiving node
knows a priori the expected time of arrival of
each message, the deviation between the a priori

9

specified arrival time (contained in the receiver's
MEDL) and the observed arrival time is an
indication of the clock difference between the
sender's clock and the receiver's clock. It is thus
not necessary to exchange explicit
synchronization messages or to carry the value
of the send time in the message, thus extending
the message length. Continuous clock
synchronization is performed without any
overhead in message length or message number
by periodically applying a fault-tolerant clock
synchronization algorithm, i.e., the FTA
algorithm (Kopetz and Ochsenreiter 1987) with
hardware support from the TTP Controller.

5. DEPENDABILITY

There are fundamental differences in the support
for dependability between CAN and TTP based
systems.

5.1 Error Handling Strategy

CAN: The principle error-handling strategy of
CAN is an immediate retry. If a communication
error is detected in a CAN based system, the
error-detecting node sends an error frame and
requests the retransmission of the erroneous
frame. Any error-active node of a CAN based
system can request such a retransmission of a
message. To reduce the probability that a single
erroneous node interferes continuously with the
proper operation of the CAN network, every
CAN controller maintains local error counters.
If the error counters increase beyond a preset
limit--indicating that the node itself is the cause
of the observed error--then the node will enter
the error passive state.

TTP: The principle error-handling strategy of
TTP is error masking, fail silence and restart
after a self test. Two copies of every message are
sent, one on each replicated channel. As long as
any one of these two messages arrives, the
timely service is provided. If a node failure must
be tolerated, it is assumed that in a fault-tolerant
reconfiguration a self-checking replicated node
will continue to provide the requested service. In
this scenario, four physical messages are sent for
every logical message. If a fatal communication
error is detected in a TTP based system the error
detecting node records this error in its local
membership vector and does not change its
temporal behavior. If the error is transient, a
correct message will be received in the next
TDMA round. If the detecting node is at fault
(e.g., because of an incoming link failure), the
clique avoidance algorithm of TTP will force a
fail-silent shutdown of the erroneous node.

5.2 Babbling Idiot Avoidance

A babbling idiot is a node that tries to send
messages at incorrect points in time. A babbling
idiot can interfere with the correctly operating
nodes and thus cause the total loss of
communication on a single bus. Babbling idiot
failures are considered to be the most critical
failures in a shared channel system.

CAN : CAN does not provide any special
mechanism to handle babbling idiot failures.

TTP: TTP contains a number of mechanisms
to avoid the total loss of communication by
babbling idiots. At the physical layer TTP
supports replicated channels. At the next level
up, the TTP controller contains an independent
device, the bus guardian (driven by its own
crystal resonator), to ensure that a node will
only transmit during its statically preallocated
time slot. The sending activity of the node is
controlled by the controller internal MEDL data
structure that is not accessible to the host of the
node. Therefore even a maliciously faulty host
cannot interfere with the proper temporal
operation of the communication system in a
correctly configured TTP cluster.

5.3 Replica Determinism

A set of nodes is replica determinate, if all the
nodes in this set contain the same externally
visible state, and produce the same output
messages in the same order at points in time
that are at most an application specific time
interval apart. Replica determinism is needed to:

(i) Implement fault-tolerance by active
redundancy (Schneider 1990): If the
replicated nodes proceed along significantly
different computational trajectories, then,
the switchover from the result of one
replica to that of the other will upset the
controlled object, and may even lead to a
serious error. The voter in a fault-tolerant
system based on majority voting may
reach an erroneous result if the inputs to
the voter are not replica determinate.

(ii) Facilitate the system test: A replica
deterministic system always produces
identical results, in the value domain and
the time domain, from the same input data
presented at exactly the same relative
points in time. A non-determinate system
may produce different results from identical
input data, thus complicating the
regression test and the debugging of the
system.

The basic causes of replica non-determinism are:
differing inputs, different order of messages, a

10

difference between the progress of the
computation and that of the local clocks in the
replicas, differing oscillator drifts caused by the
physical variations of the resonators, and
algorithmic peculiarities. For a further
discussion of the deep issues of replica
determinism the reader is referred to the book
(Poledna 1995).

CAN : CAN is not a replica deterministic
communication system. It is not possible to
guarantee that the message order on two
replicated CAN channels of a single node will
always be the same.

T T P : TTP is is a replica deterministic
communication system based on a sparse time-
base (Kopetz 1997, p.57). It is up to the
software in the host of a node to provide replica
determinism at the host level. It is thus possible
to build fault-tolerant systems by implementing
actively redundant replica deterministic nodes
connected by a TTP communication system.

6. SYSTEM LEVEL PROPERTIES

6.1 Composability

A system is said to be composable with respect
to a specified property if the system integration
will not invalidate this property once the
property has been established at the subsystem
level. Examples of such properties are
timeliness or testability. In a distributed real-
time system, the integration effect is achieved
by interactions among the different nodes.
Therefore, the communication system plays a
central role in determining the composability of
a distributed architecture with respect to its
temporal properties.

CAN: In a CAN based system the temporal
properties of the data in the CNIs, e.g., the time
it takes for sending the data from one CNI to
another CNI, are not determined within the
communication system alone. It is within the
sphere of control of the host computers (see
Figure 2) to decide when messages are to be sent
and what channel access conficts will occur.
Temporal control in a CAN based system is
thus a global issue, depending on the behavior
of the application software in all nodes of the
distributed system. It follows that the temporal
properties of the data in the CNIs are modified
during the integration of a system. Only if the
software of all nodes adheres to a predetermined
access pattern it is possible to give bounds for
the maximum latency. The latency jitter is in
the same order of magnitude as the latency. A
CAN based system is thus not composable with
respect to its temporal properties.

TTP: In TTP the temporal control of the
communication network is determined by the
contents of the MEDLs in the communication
controllers, and is not dependent on the
application software in the host. The temporal
properties of the data in the CNIs--such as when
a new version of a message will arrive and how
long it takes to transmit a message-- are
precisely specified at design time. It is thus
possible to test each host individually with
respect to its precisely specified CNI. Since
system integration will not change these
temporal properties of the CNI, a TTP based
system is composable with respect to its
temporal properties.

6.2 Extensibility

Extensibility refers to the effort required to
extend an operational system, by adding new
nodes or new messages.

CAN: In CAN a new active node can be added
by simply connecting it to the CAN bus.
Provided the applications are not jitter-sensitive,
the extended network will operate with minimal
additional software effort. In a jitter-sensitive
application, the difficult-to-predict change in the
worst case latency caused by the addition of the
new node can be the reason for sporadic timing
failures.

Listening error-inactive CAN nodes can be added
to a CAN network without any change in the
temporal control pattern of the CAN network.

TTP: In TTP a new node can only be added
simply if a sending slot for the new node has
been reserved during the design of the controller
internal MEDLs. If such a change has been
prepared for in the design of the MEDL the
addition of a new node will not change the
temporal properties of any of the CNIs.
Otherwise, all MEDLs must be modified to
accommodate the sending slot of the new node.
Such a MEDL change may lead to an alteration
in the temporal properties of the CNIs, the
consequences of which can and should be
investigated before the change is made.

Listening TTP nodes can be added to a TTP
network without any change in the temporal
control pattern of the TTP network.

6.3 Error Containment

A large dependable computer system must be
structured into partitions that act as error-
containment regions in such a way that the
consequences of faults that occur in one of these
partitions can be detected and corrected or masked
before these consequences corrupt the rest of the
system. Well-defined error containment regions

11

simplify the diagnosis of faults and are a
necessary prerequisite for the certification of
large systems consisting of critical and non-
critical components.

In a distributed system it is conducive to
consider a node with the system- and application
software as an integral unit of error containment.
The interfaces between a node and the rest of the
system, i.e. the CNIs, must support a high
degree of error detection such that an error that

occurs inside the host of a node does not
propagate across the CNI to the rest of the
system.

CAN: CAN does not support any mechanism
of error containment across the CNI. A single
error (software or hardware) in any host
connected to a CAN channel can cause the total
loss of communiction between all nodes on this
channel.

Characteristic CAN TTP

Application domain Soft real-time systems with
flexibility requirements.

Hard real-time systems with
composability, timeliness and
dependability requirements.

Temporal control Event triggered from host Time triggered within the
communication system

Temporal composability Not supported Supported

Extensibility Excellent in non time-critical
applications

Only simple if extension
planned for in original design

Membership service Not provided Provided

Clock synchronization Not provided Provided in microsec. range

Replica determinism Not provided Provided

Latency jitter Variable, load dependent Constant

Speed Up to 1 Mbit/sec Up to 2 Mbit/sec

Media access Carrier sense multiple access
with collision avoidance

Time division multiple

access (TDMA)

Frame size 44 control bits plus
 0 to 64 data bits

21 control bits plus
0 to 128 data bits

Frame types Data
Remote
Error
Overload

Initialization (I)
Normal (N)

Bit encoding NRZ with bit stuffing Modified Frequency
Modulation (MFM)

Error handling strategy Immediate retry Replicated channels, fail-
silence

Error containment No provisions Containment of control errors

across the CNI

Babbling idiot avoidance No provisions Independent bus guardian

Table 2: Comparison of CAN and TTP.

TTP: In TTP the data-sharing CNIs act as
control-error containment boundaries. Since
there is no control signal passed across the CNI,
it is not possible for a control error to propagate
from one node to another node or to interfere

with the temporal control pattern of the
communication system.

To contain data errors, a special High Error
Detection Coverage Mode (HEDC) has been
developed for TTP based systems. The HEDC
mode provides two mechanisms to increase the

12

error-detection coverage with respect to transient
faults in the data field of a message:

(i) The calculation of an end-to-end CRC by
the application task at the sending host to
protect the complete path of the message
between the sender task and the receiver
task. The end-to-end CRC is calculated in
addition to the 16 bit communication CRC
of TTP. In a safety-critical application, the
messages are thus protected by two CRC
fields, one at the communication level, and
one at the end-to-end (application) level.
To ensure data integrity, the receiving node
checks the end-to-end CRC at its CNI.

(ii) The time-redundant execution of
application tasks at the sender. This service
can be provided by the operating system in
the host without any modification of the
application software. If the end-to-end
CRCs of the messages produced by the
two task executions are not identical, then,
one of the task executions has been
corrupted by a transient fault. In this
situation, it cannot be determined which
one of the executions is incorrect.
Therefore, both results are considered
suspect, and none of the messages is sent.
Since in a fault-tolerant configuration there
is a replicated node providing the identical
service, no service interruption is seen by
the client.

Fault injection experiments have shown that
both mechanisms are needed in high-
dependability systems (Karlsson 95).

7. SUMMARY AND CONCLUSION

Table 2 compares the characteristic features of
CAN in TTP in tabular form. From this table it
can be concluded that the CAN protocol is most
appropriate for soft real-time systems that
require flexibility and do not have substantial
timeliness and dependability requirements. If
composability, hard real-time performance and
dependability are more prominent issues than
flexibility, then the TTP protocol seems to be
the more suitable choice.

ACKNOWLEDGMENTS

This paper has been supported in part by the
ESPRIT OMI project TTA, by the Brite Euram

project X-by-Wire and by the ESPRIT LTR
project DEVA.

REFERENCES

CAN (1990). Controller Area Network CAN, an In-
Vehicle Serial Communication Protocol. SAE
Handbook 1992 SAE Press. pp. 20.341-
20.355.

Karlsson, J., P. Folkesson, et al. (1995).
Integration and Comparison of Three
Physical Fault Injection Techniques.
Predictably Dependable Computing Systems
B. Randell, J. L. Laprie, H. Kopetz and B.
Littlewood Eds. Heidelberg. Springer Verlag.
pp. 309-327.

Kopetz, H. (1997). Real-Time Systems, Design
Principles for Distributed Embedded
Applications; ISBN: 0-7923-9894-7 .
Boston. Kluwer Academic Publishers.

Kopetz, H. and W. Ochsenreiter (1987). Clock
Synchronisation in Distributed Real-Time
Systems. IEEE Trans. Computers. Vol. 36.
pp. 933-940.

Kopetz, H. and J. Reisinger (1993). The Non-
Blocking Write Protocol NBW: A Solution to
a Real-Time Synchronisation Problem. Proc.
14th Real-Time Systems Symposium ,
Raleigh-Durham, North Carolina.

Liu, C. L. and J. W. Layland (1973). Scheduling
Algorithms for Multiprogramming in a Hard-
Real-Time Environment. J. of the ACM. Vol.
20 . pp. 46-61.

Miesterfeld, F. and H. R. (1991). Survey of vehicle
mul t ip lexign encoding techniques .
Automotive Technology International '92'
M. Scarlett Ed. London. Sterling Publications
International. pp. 253-265.

Poledna, S. (1995). Fault-Tolerant Real-Time
Systems, The Problem of Replica
Determinism. Hingham, Mass, USA. Kluwer
Academic Publishers.

SAE (1995). Class C Application Requirements,
Survey of Known Protocols J20056. S A E
Handbook SAE Press, Warrendale, PA. pp.
23.437-23.461.

Schneider, F. B. (1990). Implementing Fault-
Tolerant Services Using the State Machine
Approach: A Tutorial. ACM Computing
Surveys. Vol. 22. pp. 299-319.

Tindell, K. (1995). Analysis of Hard Real-Time
Communications. Real-Time Systems. Vol.
9. pp. 147-171.

