
Research Advances in Middleware for Distributed
Systems: State of the Art

Richard E. Schantz
BBN Technologies
schantz@bbn.com

Douglas C. Schmidt
Electrical & Computer Engineering Dept.
University of California, Irvine
schmidt@uci.edu

1 INTRODUCTION

Two fundamental trends influence the way we conceive and construct
new computing and information systems. The first is that information
technology of all forms is becoming highly commoditized i.e., hardware
and software artifacts are getting faster, cheaper, and better at a relatively
predictable rate. The second is the growing acceptance of a network-
centric paradigm, where distributed applications with a range of quality of
service (QoS) needs are constructed by integrating separate components
connected by various forms of communication services. The nature of
these interconnections can range from very small and tightly coupled
systems, such as avionics mission computing systems, to very large and
loosely coupled systems, such as global telecommunications systems and
so-called “grid” computing.

The interplay of these two trends has yielded new architectural
concepts and services embodying layers of middleware. Middleware is
systems software that resides between the applications and the underlying
operating systems, network protocol stacks, and hardware. Its primary role
is to functionally bridge the gap between application programs and the
lower-level hardware and software infrastructure in order to:

1. Make it feasible, easier, and more cost effective to develop and evolve
distributed systems

2. Coordinate how parts of applications are connected and how they
interoperate and

3. Enable and simplify the integration of components developed by
multiple technology suppliers.

The growing importance of middleware stems from the recognition of
the need for more advanced and capable support–beyond simple
connectivity–to construct effective distributed systems. A significant
portion of middleware-oriented R&D activities over the past decade have
therefore focused on

1. Identifying, evolving, and expanding our understanding of current
middleware services to support the network-centric paradigm and

2. Defining additional middleware layers and capabilities to meet the
challenges associated with constructing future network-centric systems.

These activities are expected to continue forward well into this decade
to address the needs of next-generation distributed systems.

The past decade has yielded significant progress in middleware, which
has stemmed in large part from the following trends:

• Years of iteration, refinement, and successful use – The use of
middleware and middleware oriented system architectures is not new
[Sch86, Sch98, Ber96]. Middleware concepts emerged alongside
experimentation with the early Internet (and even its predecessor the
ARPAnet) and systems based on middleware have been operational
continuously since the mid 1980’s. Over that period of time, the ideas,
designs, and (most importantly) the software that incarnates those ideas
have had a chance to be tried and refined (for those that worked), and
discarded or redirected (for those that didn’t). This iterative technology
development process takes a good deal of time to get right and be
accepted by user communities, and a good deal of patience to stay the
course. When this process is successful, it often results in frameworks,
components, and patterns that reify the knowledge of how to apply
these technologies, along with standards that codify the boundaries of
these technologies, as described next.

• The dissemination of middleware frameworks, components, and
patterns – During the past decade, a substantial amount of R&D effort
has focused on developing frameworks, components, and patterns as a
means to promote the development and reuse of successful middleware
technology. Patterns capture successful solutions to commonly
occurring software problems that arise in a particular context [Gam95].
Patterns can simplify the design, construction, and performance tuning
of middleware and applications by codifying the accumulated expertise

of developers who have confronted similar problems before. Patterns
also raise the level of discourse in describing software design and
programming activities. Frameworks and components are concrete
realizations of groups of related patterns [John97]. Well-designed
frameworks reify patterns in terms of functionality provided by
components in the middleware itself, as well as functionality provided
by an application. Frameworks also integrate various approaches to
problems where there are no a priori, context-independent, optimal
solutions. Middleware frameworks [Sch02] and component toolkits
can include strategized selection and optimization patterns so that
multiple independently developed capabilities can be integrated and
configured automatically to meet the functional and QoS requirements
of particular applications.

• The maturation of middleware standards – Also over the past decade,
standards for middleware frameworks and components have been
established and have matured considerably. For instance, the Object
Management Group (OMG) has defined the following specifications
for CORBA [Omg00] in the past several years:

o CORBA Component Model, which standardizes component
implementation, packaging, and deployment to simplify server
programming and configuration

o Minimum CORBA, which removes non-essential features from the
full OMG CORBA specification to reduce footprint so that
CORBA can be used in memory-constrained embedded systems

o Real-time CORBA, which includes features that allow applications
to reserve and manage network, CPU, and memory resources
predictably end-to-end

o CORBA Messaging, which exports additional QoS policies, such
as timeouts, request priorities, and queueing disciplines, to
applications and

o Fault-tolerant CORBA, which uses entity redundancy of objects to
support replication, fault detection, and failure recovery.

These middleware specifications go well beyond the interconnection
standards conceived originally and reflect attention to more detailed issues
beyond basic connectivity and remote procedure calls. Robust
implementations of these CORBA capabilities and services are now
available from multiple suppliers, some using open-source business
models and some using traditional business models.

In addition to CORBA, some other notable successes to date in the
domain of middleware services, frameworks, components, and standards
include:

• Java 2 Enterprise Edition (J2EE) [Tho98] and .NET [NET01], which
have introduced advanced software engineering capabilities to the
mainstream IT community and which incorporate various levels of
middleware as part of the overall development process, albeit with
only partial support for performance critical and embedded solutions.

• Akamai et al, which have legitimized a form of middleware service as
a viable business, albeit using proprietary and closed, non-user
programmable solutions.

• Napster, which demonstrated the power of having a powerful,
commercial-off-the-shelf (COTS) middleware infrastructure to start
from in quickly (weeks/months) developing a very capable system,
albeit without much concern for system lifecycle and software
engineering practices, i.e., it is one of a kind.

• WWW, where the world wide web middleware/standards led to easily
connecting independently developed browsers and web pages, albeit
also the world wide wait, because there was no system engineering or
attention paid to enforcing end-to-end quality of service issues.

• The Global Grid, which is enabling scientists and high performance
computing researchers to collaborate on grand challenge problems,
such as global climate change modeling, albeit using architectures and
tools that are not yet aligned with mainstream IT COTS middleware.

These competing and complementary forms of and approaches to
middleware based solutions represent simultaneously a healthy and robust
technical area of continuing innovation, and a source of confusion due to
the multiple forms of similar capabilities, patterns, and architectures.

2 ADDRESSING DISTRIBUTED APPLICATION
CHALLENGES WITH MIDDLEWARE

Requirements for faster development cycles, decreased effort, and
greater software reuse motivate the creation and use of middleware and
middleware-based architectures. When implemented properly, middleware
helps to:

• Shield software developers from low-level, tedious, and error-prone
platform details, such as socket-level network programming.

• Amortize software lifecycle costs by leveraging previous development
expertise and capturing implementations of key patterns in reusable
frameworks, rather than rebuilding them manually for each use.

• Provide a consistent set of higher-level network-oriented abstractions
that are much closer to application requirements in order to simplify
the development of distributed and embedded systems.

• Provide a wide array of reuseable, off-the-shelf developer-oriented
services, such as naming, logging and security that have proven
necessary to operate effectively in a networked environment.

Over the past decade, various middleware technologies have been
devised to alleviate many complexities associated with developing
software for distributed applications. Their successes have added
middleware as a new category of systems software to complement the
familiar operating system, programming language, networking, and
database offerings of the previous generation. Some of the most successful
middleware technologies have centered on distributed object computing
(DOC). DOC is an advanced, mature, and field-tested middleware
connectivity paradigm that also supports flexible and adaptive behavior.
DOC middleware architectures are composed of relatively autonomous
software objects that can be distributed or collocated throughout a wide
range of networks and interconnects. Clients invoke operations on target
objects to perform interactions and invoke functionality needed to achieve
application goals. Through these interactions, a wide variety of
middleware-based services are made available off-the-shelf to simplify
application development. Aggregations of these simple, middleware-
mediated interactions are increasingly forming the basis of large-scale
distributed system deployments.

2.1 The Structure and Functionality of DOC Middleware

Just as networking protocol stacks can be decomposed into multiple
layers, such as the physical, data-link, network, transport, session,
presentation, and application layers, so too can DOC middleware be
decomposed into multiple layers, such as those shown in Figure 1.

Figure 1. Layers of DOC Middleware and Surrounding Context

Below, we describe each of these middleware layers and outline some
of the COTS technologies in each layer that have matured and found
widespread use in recent years.

2.1.1 Host infrastructure middleware
Host infrastructure middleware encapsulates and enhances native OS

communication and concurrency mechanisms to create reusable network
programming components, such as reactors, acceptor-connectors, monitor
objects, active objects, and component configurators [Sch00b]. These
components abstract away the peculiarities of individual operating systems
and help eliminate many tedious, error-prone, and non-portable aspects of
developing and maintaining networked applications via low-level OS
programming APIs, such as Sockets or POSIX pthreads. Widely used
examples of host infrastructure middleware include:

• The Sun Java Virtual Machine (JVM) [JVM97], which provides a
platform-independent way of executing code by abstracting the
differences between operating systems and CPU architectures. A JVM
is responsible for interpreting Java bytecode, and for translating the
bytecode into an action or operating system call. It is the JVM’s
responsibility to encapsulate platform details within the portable

bytecode interface, so that applications are shielded from disparate
operating systems and CPU architectures on which Java software runs.

• .NET [NET01] is Microsoft's platform for XML Web services, which
are designed to connect information, devices, and people in a common,
yet customizable way. The common language runtime (CLR) is the
host infrastructure middleware foundation upon which Microsoft’s
.NET services are built. The Microsoft CLR is similar to Sun’s JVM,
i.e., it provides an execution environment that manages running code
and simplifies software development via automatic memory
management mechanisms, cross-language integration, interoperability
with existing code and systems, simplified deployment, and a security
system.

• The ADAPTIVE Communication Environment (ACE) is a freely
available, highly portable toolkit that shields applications from
differences between native OS programming capabilities, such as file
handling, connection establishment, event demultiplexing, interprocess
communication, (de)marshaling, concurrency, and synchronization.
ACE provides an OS adaptation layer and wrapper facades [Sch02]
that encapsulate OS file system, concurrency, and network
programming mechanisms. ACE also provides reusable frameworks
[Sch03] that handle network programming tasks, such as synchronous
and asynchronous event handling, service configuration and
initialization, concurrency control, connection management, and
hierarchical service integration.

The primary differences between ACE, JVMs, and the .NET CLR are
that (1) ACE is always a compiled C++ interface, rather than an
interpreted bytecode interface, which removes a level of indirection and
helps to optimize runtime performance, (2) ACE is open-source, so it's
possible to subset it or modify it to meet a wide variety of needs, and (3)
ACE runs on more OS and hardware platforms than JVMs and CLR.

2.1.2 Distribution middleware
Distribution middleware defines higher-level distributed programming

models whose reusable APIs and components automate and extend the
native OS network programming capabilities encapsulated by host
infrastructure middleware. Distribution middleware enables clients to
program distributed applications much like stand-alone applications, i.e.,
by invoking operations on target objects without hard-coding dependencies
on their location, programming language, OS platform, communication
protocols and interconnects, and hardware. At the heart of distribution
middleware are request brokers, such as:

• The OMG's Common Object Request Broker Architecture (CORBA)
[Omg00], which allows objects to interoperate across networks
regardless of the language in which they were written or the platform
on which they are deployed.

• Sun's Java Remote Method Invocation (RMI) [Wol96], which enables
developers to create distributed Java-to-Java applications, in which the
methods of remote Java objects can be invoked from other JVMs,
possibly on different hosts. RMI supports more sophisticated object
interactions by using object serialization to marshal and unmarshal
parameters, as well as whole objects. This flexibility is made possible
by Java’s virtual machine architecture and is greatly simplified by
using a single language..

• Microsoft's Distributed Component Object Model (DCOM) [Box97],
which enables software components to communicate over a network
via remote component instantiation and method invocations. Unlike
CORBA and Java RMI, which run on many operating systems,
DCOM is implemented primarily on Windows platforms.

• SOAP [SOAP01] is an emerging distribution middleware technology
based on a lightweight and simple XML-based protocol that allows
applications to exchange structured and typed information on the Web.
SOAP is designed to enable automated Web services based on a
shared and open Web infrastructure. SOAP applications can be written
in a wide range of programming languages, used in combination with
a variety of Internet protocols and formats (such as HTTP, SMTP, and
MIME), and can support a wide range of applications from messaging
systems to RPC.

An example of distribution middleware R&D is the TAO project
[Sch98a] conducted by researchers at Washington University, St. Louis,
the University of California, Irvine, and Vanderbilt University as part
several DARPA programs. TAO is an open-source Real-time CORBA
ORB that allows distributed real-time and embedded (DRE) applications
to reserve and manage

• Processor resources via thread pools, priority mechanisms, intra-
process mutual exclusion mechanisms, and a global scheduling service
for real-time systems with fixed priorities

• Communication resources via protocol properties and explicit bindings
to server objects using priority bands and private connections and

• Memory resources via buffering requests in queues and bounding the
size of thread pools.

TAO is implemented with reusable frameworks from the ACE [Sch02,
Sch03] host infrastructure middleware toolkit. ACE and TAO are mature
examples of middleware R&D transition, having been used in hundreds of
DRE systems, including telecom network management and call
processing, online trading services, avionics mission computing, software
defined radios, radar systems, surface mount “pick and place” systems,
and hot rolling mills.

2.1.3 Common middleware services
Common middleware services augment distribution middleware by

defining higher-level domain-independent services that allow application
developers to concentrate on programming business logic, without the
need to write the “plumbing” code required to develop distributed
applications by using lower-level middleware directly. For example,
application developers no longer need to write code that handles
transactional behavior, security, database connection pooling or threading,
because common middleware service providers bundle these tasks into
reusable components. Whereas distribution middleware focuses largely on
managing end-system resources in support of an object-oriented
distributed programming model, common middleware services focus on
allocating, scheduling, and coordinating various resources throughout a
distributed system using a component programming and scripting model.
Developers can reuse these component services to manage global
resources and perform common distribution tasks that would otherwise be
implemented in an ad hoc manner within each application. The form and
content of these services will continue to evolve as the requirements on the
applications being constructed expand. Examples of common middleware
services include:

• The OMG’s CORBA Common Object Services (CORBAservices)
[Omg98b], which provide domain-independent interfaces and
capabilities that can be used by many DOC applications. The OMG
CORBAservices specifications define a wide variety of these services,
including event notification, logging, multimedia streaming,
persistence, security, global time, real-time scheduling, fault tolerance,
concurrency control, and transactions.

• Sun’s Java 2 Enterprise Edition (J2EE) technology [Tho98], which
allows developers to create n-tier distributed systems by linking a
number of pre-built software services—called “Javabeans”—without
having to write much code from scratch. Since J2EE is built on top of
Java technology, J2EE service components can only be implemented
using the Java language. The CORBA Component Model (CCM)

[Omg99] defines a superset of J2EE capabilities that can be
implemented using all the programming languages supported by
CORBA.

• Microsoft’s .NET Web services [NET01], which complements the
lower-level middleware .NET capabilities, allows developers to
package application logic into components that are accessed using
standard higher-level Internet protocols above the transport layer, such
as HTTP. The .NET Web services combine aspects of component-
based development and Web technologies. Like components, .NET
Web services provide black-box functionality that can be described
and reused without concern for how a service is implemented. Unlike
traditional component technologies, however, .NET Web services are
not accessed using the object model–specific protocols defined by
DCOM, Java RMI, or CORBA. Instead, XML Web services are
accessed using Web protocols and data formats, such as the Hypertext
Transfer Protocol (HTTP) and eXtensible Markup Language (XML),
respectively.

2.1.4 Domain-specific middleware services
Domain-specific middleware services are tailored to the requirements

of particular domains, such as telecom, e-commerce, health care, process
automation, or aerospace. Unlike the other three DOC middleware layers,
which provide broadly reusable “horizontal” mechanisms and services,
domain-specific middleware services are targeted at vertical markets.
From a COTS perspective, domain-specific services are the least mature of
the middleware layers today. This immaturity is due partly to the historical
lack of distribution middleware and common middleware service standards,
which are needed to provide a stable base upon which to create domain-
specific services. Since they embody knowledge of a domain, however,
domain-specific middleware services have the most potential to increase
system quality and decrease the cycle-time and effort required to develop
particular types of networked applications. Examples of domain-specific
middleware services include the following:

• The OMG has convened a number of Domain Task Forces that
concentrate on standardizing domain-specific middleware services.
These task forces vary from the Electronic Commerce Domain Task
Force, whose charter is to define and promote the specification of
OMG distributed object technologies for the development and use of
Electronic Commerce and Electronic Market systems, to the Life
Science Research Domain Task Force, who do similar work in the area
of Life Science, maturing the OMG specifications to improve the

quality and utility of software and information systems used in Life
Sciences Research. There are also OMG Domain Task Forces for the
healthcare, telecom, command and control, and process automation
domains.

• The Siemens Medical Engineering Group has developed Syngo(R),
which is both an integrated collection of domain-specific middleware
services, as well as an open and dynamically extensible application
server platform for medical imaging tasks and applications, including
ultrasound, mammography, radiography, flouroscopy, angiography,
computer tomography, magnetic resonance, nuclear medicine, therapy
systems, cardiac systems, patient monitoring systems, life support
systems, and imaging- and diagnostic-workstations. The Syngo(R)
middleware services allow healthcare facilities to integrate diagnostic
imaging and other radiological, cardiological and hospital services via
a blackbox application template framework based on advanced
patterns for communication, concurrency, and configuration for both
business logic and presentation logic supporting a common look and
feel throughout the medical domain.

• The Boeing Bold Stroke [Sha98, Doe99] architecture uses COTS
hardware and middleware to produce a non-proprietary, standards-
based component architecture for military avionics mission computing
capabilities, such as navigation, display management, sensor
management and situational awareness, data link management, and
weapons control. A driving objective of Bold Stroke is to support
reusable product line applications, leading to a highly configurable
application component model and supporting middleware services.
Associated products ranging from single processor systems with
O(105) lines of source code to multi-processor systems with O(106)
lines of code have shown dramatic affordability and schedule
improvements and have been flight tested successfully. The domain-
specific middleware services in Bold Stroke are layered upon common
middleware services (the CORBA Event Service), distribution
middleware (Real-time CORBA), and host infrastructure middleware
(ACE), and have been demonstrated to be highly portable for different
COTS operating systems (e.g. VxWorks), interconnects (e.g. VME),
and processors (e.g. PowerPC).

2.2 The Benefits of DOC Middleware

Middleware in general–and DOC middleware in particular–provides
essential capabilities for developing an increasingly large class of
distributed applications. In this section we summarize some of the

improvements and areas of focus in which middleware oriented
approaches are having significant impact.

2.2.1 Growing focus on integration rather than on
programming

This visible shift in focus is perhaps the major accomplishment of
currently deployed middleware. Middleware originated because the
problems relating to integration and construction by composing parts were
not being met by either

• Applications, which at best were customized for a single use,
• Networks, which were necessarily concerned with providing the

communication layer, or
• Host operating systems, which were focused primarily on a single,

self-contained unit of resources.

In contrast, middleware has a fundamental integration focus, which
stems from incorporating the perspectives of both operating systems and
programming model concepts into organizing and controlling the
composition of separately developed components across host boundaries.
Every DOC middleware technology has within it some type of request
broker functionality that initiates and manages inter-component
interactions.

Distribution middleware, such as CORBA, Java RMI, or SOAP, makes
it easy and straightforward to connect separate pieces of software together,
largely independent of their location, connectivity mechanism, and
technology used to develop them. These capabilities allow DOC
middleware to amortize software life-cycle efforts by leveraging previous
development expertise and reifying implementations of key patterns into
more encompassing reusable frameworks and components. As DOC
middleware continues to mature and incorporates additional needed
services, next-generation applications will increasingly be assembled by
modeling, integrating, and scripting domain-specific and common service
components, rather than by being programmed either entirely from scratch
or requiring significant customization or augmentation to off-the-shelf
component implementations.

2.2.2 The increased viability of open systems architectures
and open-source availability

By their very nature, systems developed by composing separate
components are more open than systems conceived and developed as
monolithic entities. The focus on interfaces for integrating and controlling

the component parts leads naturally to standard interfaces. This in turn
yields the potential for multiple choices for component implementations
and to open engineering concepts. Standards organizations such as the
OMG and The Open Group have fostered the cooperative efforts needed to
bring together groups of users and vendors to define domain-specific
functionality that overlays open integrating architectures, forming a basis
for industry-wide use of some software components. Once a common,
open structure exists, it becomes feasible for a wide variety of participants
to contribute to the off-the-shelf availability of additional parts needed to
construct complete systems. Since few companies today can afford
significant investments in internally funded R&D, it is increasingly
important for the information technology industry to leverage externally
funded R&D sources, such as government investment. In this context,
standards-based DOC middleware serves as a common platform to help
concentrate the results of R&D efforts and ensure smooth transition
conduits from research groups into production systems.

For example, research conducted under the DARPA Quorum program
[Quorum99] focused heavily on CORBA open systems middleware.
Quorum yielded many results that transitioned into standardized service
definitions and implementations for Real-time [OMG00B, Sch98a] and
Fault-tolerant [Omg98a, Cuk98] CORBA specification and productization
efforts. In this case, focused government R&D efforts leveraged their
results by exporting them into, and combining them with, other on going
public and private activities that also used a standards-based open
middleware substrate. Prior to the viability of common middleware
platforms, these same results would have been buried within a custom or
proprietary system, serving only as the existence proof, not as the basis for
incorporating into a larger whole.

2.2.3 Increased leverage for disruptive technologies
leading to increased global competition

Middleware that supports component integration and reuse is a key
technology to help amortize software life-cycle costs by:

1. Leveraging previous development expertise, e.g., DOC middleware
helps to abstract commonly reused low-level OS concurrency and
networking details away into higher-level, more easily used artifacts
and

2. Focusing on efforts to improve software quality and performance, e.g.,
DOC middleware combines various aspects of a larger solution
together, e.g., fault tolerance for domain-specific objects with real-time
QoS properties.

When developers needn’t worry as much about low-level details they
are freed to focus on more strategic, larger scope, application-centric
specializations concerns, such as distributed resource management and
end-to-end dependability. Ultimately, this higher level focus will result in
software-intensive distributed system components that apply reusable
middleware to get smaller, faster, cheaper, and better at a predictable pace,
just as computing and networking hardware do today. And that, in turn,
will enable the next-generation of better and cheaper approaches to what
are now carefully crafted custom solutions, which are often inflexible and
proprietary. The result will be a new technological economy where
developers can leverage frequently used common components, which
come with steady innovation cycles resulting from a multi-user basis, in
conjunction with custom domain-specific capabilities, which allow
appropriate mixing of multi-user low cost and custom development for
competitive advantage.

2.2.4 Growing focus on real-time embedded environments
integrating computational and real world physical
assets

Historically, conventional COTS software has been unsuitable for use
in mission-critical distributed systems due to its either being flexible and
standard, but incapable of guaranteeing stringent QoS demands (which
restricts assurability) or partially QoS-enabled, but inflexible and non-
standard (which restricts adaptability and affordability). As a result, the
rapid progress in COTS software for mainstream desktop business
information technology (IT) has not yet become as broadly applicable for
mission-critical distributed systems. However, progress is being made
today in the laboratory, in technology transition, in COTS products, and in
standards. Although off-the-shelf middleware technology has not yet
matured to cover the realm of large-scale, dynamically changing systems,
DOC middleware has been applied to relatively small-scale and statically
configured embedded systems [Sha98, NAS94]. Moreover, significant
pioneering R&D on middleware patterns, frameworks, and standards for
distributed systems has been conducted in the DARPA Quorum
[Quorum99] and PCES [PCES02] programs, which played a leading role
in:

1. Demonstrating the viability of integrating host infrastructure
middleware, distribution middleware and common middleware services
for DoD real-time embedded systems by providing foundation
elements for managing key QoS attributes, such as real time behavior,

dependability and system survivability, from a network-centric
middleware perspective

2. Transitioning a number of new middleware perspectives and
capabilities into DoD acquisition programs [Sha98, AegisOA,
Holzer00] and commercially supported products and

3. Establishing the technical viability of collections of systems that can
dynamically adapt within real-time constraints [Loy01] their collective
behavior to varying operating conditions, in service of delivering the
appropriate application level response under these different conditions.

3 FUTURE RESEARCH CHALLENGES AND
STRATEGIES

In certain ways, each of the middleware successes mentioned in
Section 1 Introduction can also be considered a partial failure, especially
when viewed from a more complete perspective. In addition, other notable
failures come from Air Traffic control, late opening of the Denver Airport,
lack of integration of military systems causing misdirected targeting, and
countless number of smaller, less visible systems which are cancelled, or
are fielded but just do not work properly. More generally, connectivity
among computers and between computers and physical devices, as well as
connectivity options, is proliferating unabated, which leads to society’s
demand for network-centric systems of increasing scale and demanding
precision to take advantage of the increased connectivity to better organize
collective and group interactions/behaviors. Since these systems are
growing (and will keep growing) their complexity is increasing, which
motivates the need to keep application programming relatively
independent of the complex issues of distribution and scale (in the form of
advanced software engineering practices and middleware solutions). In
addition, systems of national scale, such as the US air traffic control
system or power grid, will of necessity be incremental and developed by
many different organizations contributing to a common solution on an as
yet undefined common high-level platform and engineering development
paradigm.

Despite all the advances in the past decades, there are no mature
engineering principles, solutions, or established conventions to enable
large-scale, network-centric systems to be repeatably, predictably, and
cost effectively created, developed, validated, operated, and enhanced. As
a result, we are witnessing a complexity threshold that is stunting our
ability to create large-scale, network-centric systems successfully. Some of
the inherent properties that contribute to this complexity threshold include:

• Discrete platforms must be scaled to provide seamless end-to-end
solutions

• Components are heterogeneous yet they need to be integrated
seamlessly

• Most failures are only partial in that they effect subsets of the
distributed components

• Operating environments and configurations are dynamically changing
• Large-scale systems must operate continuously, even during upgrades
• End-to-end properties must be satisfied in time and resource

constrained environments
• Maintaining system-wide QoS concerns is expected

As described earlier, middleware resides between applications and the
underlying OS, networks, and computing hardware. As such, one of its
most immediate goals is to augment those interfaces with QoS attributes
that serve as the linkage between application requirements and resource
management strategies. Having a clear understanding of the QoS
information is important so that it becomes possible to:

• Identify the users’ (changeable) requirements at any particular point in
time and

• Understand whether or not these requirements are being (or even can
be) met.

This augmentation is beginning to occur, but largely on a component-
by-component basis, not end-to-end. It is also essential to aggregate these
requirements, making it possible to form decisions, policies, and
mechanisms that begin to address a more global information management
organization. Meeting these requirements will require new flexibility on
the parts of both the application components and the resource management
strategies used across heterogeneous systems of systems. A key direction
for addressing these needs is through the concepts associated with
managing adaptive behavior, recognizing that conditions are constantly
changing and not all requirements can be met all of the time, yet still
ensuring predictable and controllable end-to-end behavior.

Ironically, there is little or no scientific underpinning for QoS-enabled
resource management, despite the demand for it in most distributed
systems [Narain01]. Designers of today’s complex distributed systems
develop concrete plans for creating global, end-to-end functionality. These
plans contain high-level abstractions and doctrine associated with resource
management algorithms, relationships between these, and operations upon
these. There are few techniques and tools that enable users (e.g.,

commanders, administrators, and operators), developers (e.g., systems
engineers and application designers), and/or applications, to express such
plans systematically, and to have these plans integrated and enforced
automatically for managing resources at multiple levels in network-centric
embedded systems.

Although there are no well accepted standards in these areas, work is
progressing toward better understanding of these issues. To achieve these
goals, middleware technologies and tools need to be based upon some type
of layered architecture that is imbued with QoS adaptive middleware
services. Figure 2 illustrates one such approach that is based on the Quality
Objects (QuO) [ZBS97] project.

Figure 2. Decoupling Functional and QoS Attribute Paths

The QuO project and empirical demonstrations based on QuO
middleware [Loy01, WMDS] are an example of how one might organize
such a layered architecture designed to manage and package adaptive QoS
capabilities [Sch02A] as common middleware services. The QuO
architecture decouples DOC middleware and applications along the
following two dimensions:

• Functional paths, which are flows of information between client and
remote server applications. In distributed systems, middleware ensures
that this information is exchanged efficiently, predictably, scalably,
dependably, and securely between remote peers. The information itself

is largely application-specific and determined by the functionality
being provided (hence the term “functional path”).

• QoS attribute paths, which are responsible for determining how well
the functional interactions behave end-to-end with respect to key
distributed system QoS properties, such as

o How and when resources are committed to client/server
interactions at multiple levels of distributed systems

o The proper application and system behavior if available resources
are less than the expected resources and

o The failure detection and recovery strategies necessary to meet
end-to-end dependability requirements.

In the architecture shown in Figure 2, the QuO middleware is
responsible for collecting, organizing, and disseminating QoS-related
meta-information that is needed to

1. Monitor and manage how well the functional interactions occur at
multiple levels of distributed systems and

2. Enable the adaptive and reflective decision-making needed to support
QoS attribute properties robustly in the face of rapidly changing
mission requirements and environmental conditions.

In next-generation distributed systems, separating systemic QoS
attribute properties from the functional application properties will enable
the QoS properties and resources to change independently, e.g., over
different distributed system configurations for the same application, and
despite local failures, transient overloads, and dynamic functional or QoS
reconfigurations. An increasing number of next-generation applications
will be developed as distributed “systems of systems,” which include
many interdependent levels, such as network/bus interconnects, local and
remote endsystems, and multiple layers of common and domain-specific
middleware. The desirable properties of these systems of systems include
predictability, controllability, and adaptability of operating characteristics
for applications with respect to such features as time, quantity of
information, accuracy, confidence, and synchronization. All these issues
become highly volatile in distributed systems of systems, due to the
dynamic interplay of the many interconnected parts. These parts are often
constructed in a similar way from smaller parts.

To address the many competing design forces and runtime QoS
demands, a comprehensive methodology and environment is required to
dependably compose large, complex, interoperable DOC applications from

reusable components. Moreover, the components themselves must be
sensitive to the environments in which they are packaged. Ultimately, what
is desired is to take components that are built independently by different
organizations at different times and assemble them to create a complete
system. In the longer run, this complete system becomes a component
embedded in still larger systems of systems. Given the complexity of this
undertaking, various tools and techniques are needed to configure and
reconfigure these systems, perhaps hierarchically, so they can adapt to a
wider variety of situations.

The advent of open DOC middleware standards, such as CORBA and
Java-based technologies, is hastening industry consolidation towards
portable and interoperable sets of COTS products that are readily available
for purchase or open-source acquisition. These products are still deficient
and/or immature, however, in their ability to handle some of the important
attributes needed to support future systems, especially mision critical and
embedded distributed systems. Key attributes include end-to-end QoS,
dynamic property tradeoffs, extreme scaling (large and small), highly
mobile environments, and a variety of other inherent complexities. As the
uses and environments for distributed systems grow in complexity, it may
not be possible to sustain the composition and integration perspective we
have achieved with current middleware platforms without continued R&D.
Even worse, we may plunge ahead with an inadequate knowledge base,
reverting to a myriad of high-risk independent solutions to common
problems.

An essential part of what is needed to build the type of systems
outlined above is the integration and extension of ideas that have been
found traditionally in network management, data management, distributed
operating systems, and object-oriented programming languages. We must
create and deploy middleware-oriented solutions and engineering
principles as part of the commonly available new, network-centric
software infrastructure that is needed to develop many different types of
large-scale systems successfully. The payoff will be reusable DOC
middleware that significantly simplifies and reduces the inherent risks in
building applications for complex systems of systems environments.

The remainder of this section presents an analysis of the challenges and
opportunities for next-generation middleware and outlines the promising
research strategies that can help to overcome the challenges and realize the
opportunities.

3.1 Specific R&D Challenges

An essential part of what is needed to alleviate the inherent
complexities outlined in the discussions above is the integration and
extension of ideas that have been found traditionally in network
management, data management, distributed operating systems, and object-
oriented programming languages. The return on investment will yield
reusable middleware that significantly simplifies the development and
evolution of complex network-centric systems. The following are specific
R&D challenges associated with achieving this payoff:

3.1.1 Providing end-to-end QoS support, not just
component-level QoS

This area represents the next great wave of evolution for advanced
middleware. There is now widespread recognition that effective
development of large-scale network-centric applications requires the use of
COTS infrastructure and service components. Moreover, the usability of
the resulting products depends heavily on the properties of the whole as
derived from its parts. This type of environment requires predictable,
flexible, and integrated resource management strategies, both within and
between the pieces, that are understandable to developers, visible to users,
and certifiable to system owners. Despite the ease of connectivity provided
by middleware, however, constructing integrated systems remains hard
since it requires significant customization of non-functional QoS
properties, such as predictable latency, dependability, and security. In their
most useful forms, these properties extend end-to-end and thus have
elements applicable to

– The network substrate
– The platform operating systems and system services
– The programming system in which they are developed
– The applications themselves and
– The middleware that integrates all these elements together.

The need for autonomous and time-critical behavior necessitates more
flexible system infrastructure components that can adapt robustly to
dynamic end-to-end changes in application requirements and
environmental conditions. Next-generation applications will require the
simultaneous satisfaction of multiple QoS properties, such as predictable
latency/jitter/throughput, scalability, dependability, and security.
Applications will also need different levels of QoS under different
configurations, environmental conditions, and costs, and multiple QoS

properties must be coordinated with and/or traded off against each other to
achieve the intended application results. Improvements in current
middleware QoS and better control over underlying hardware and software
components–as well as additional middleware services to coordinate
these–will all be needed.

Two basic premises underlying the push towards end-to-end QoS
support mediated by middleware are that different levels of service are
possible and desirable under different conditions and costs and the level of
service in one property must be coordinated with and/or traded off against
the level of service in another to achieve the intended overall results.

3.1.2 Adaptive and reflective solutions that handle both
variability and control

It is important to avoid “all or nothing” point solutions. Systems today
often work well as long as they receive all the resources for which they
were designed in a timely fashion, but fail completely under the slightest
anomaly. There is little flexibility in their behavior, i.e., most of the
adaptation is pushed to end-users or administrators. Instead of hard failure
or indefinite waiting, what is required is either reconfiguration to reacquire
the needed resources automatically or graceful degradation if they are not
available. Reconfiguration and operating under less than optimal
conditions both have two points of focus: individual and aggregate
behavior. Moreover, there is a need for interoperability of control and
management mechanisms needed to carry out such reconfiguration. To
date interoperability concerns have focused on data interoperability and
invocation interoperability across components. Little work has focused on
mechanisms for controlling the overall behavior of the end-to-end
integrated systems. “Control interoperability” is needed to complement
data and invocation interoperability if we are to achieve something more
than a collection of independently operating components. There are
requirements for interoperable control capabilities to appear in the
individual resources first, after which approaches can be developed to
aggregate these into acceptable global behavior through middleware based
multi-platform aggregate resource management services.

To manage the broader range of QoS demands for next-generation
network-centric applications, middleware must become more adaptive and
reflective [ARMS01]. Adaptive middleware [Loy01] is software whose
functional and QoS-related properties can be modified either:

– Statically, e.g., to reduce footprint, leverage capabilities that exist in
specific platforms, enable functional subsetting, and minimize
hardware/software infrastructure dependencies or

– Dynamically, e.g., to optimize system responses to changing
environments or requirements, such as changing component
interconnections, power levels, CPU/network bandwidth, latency/jitter;
and dependability needs.

In mission-critical systems, adaptive middleware must make such
modifications dependably, i.e., while meeting stringent end-to-end QoS
requirements. Reflective middleware [Bla99] goes further to permit
automated examination of the capabilities it offers, and to permit
automated adjustment to optimize those capabilities. Reflective techniques
make the internal organization of systems–as well as the mechanisms used
in their construction–both visible and manipulatible for middleware and
application programs to inspect and modify at run-time. Thus, reflective
middleware supports more advanced adaptive behavior and more dynamic
strategies keyed to current circumstances, i.e., necessary adaptations can
be performed autonomously based on conditions within the system, in the
system's environment, or in system QoS policies defined by end-users.

3.1.3 Combining model-integrated computing with DOC
middleware

It has been increasingly recognized that source code is a poor way to
document distributed system designs. Starting from informal design
documentation techniques, such as flow-charts, model-integrated
computing (MIC) is evolving DOC middleware towards more formal,
semantically rich high-level design languages, and toward systematically
capturing core aspects of designs via patterns, pattern languages, and
architectural styles [MIC97]. MIC technologies are expanding their focus
beyond application functionality to specify application quality of service
(QoS) requirements, such as real-time deadlines and dependability
constraints. These model-based tools provide application and middleware
developers and integrators with higher levels of abstraction and
productivity than traditional imperative programming languages provide.
The following are some of the key R&D challenges associated with
combining MIC and DOC middleware:

– Determine how to overcome problems with earlier-generation CASE
environments that required the modeling tools to generate all the code.
Instead, the goal should be to compose large portions of distributed
applications from reusable, prevalidated DOC middleware components.

– Enhancing MIC tools to work in distributed environments where run-
time procedures and rules change at rapid pace, e.g., by synthesizing,

assembling, and validating newer extended components that conform to
new rules that arise after a distributed system has been fielded.

– Devising domain-specific MIC languages that make DOC middleware
more flexible and robust by automating the configuration of many
QoS-critical aspects, such as concurrency, distribution, transactions,
security, and dependability. This MIC-synthesized code may be needed
to help bridge interoperability and portability problems between
different middleware for which standard solutions do not yet exist.

– Train MIC tools to model the interfaces among various components in
terms of standard middleware, rather than language-specific features or
proprietary APIs.

3.1.4 Toward more universal use of standard middleware
Today, it is too often the case that a substantial percentage of the effort

expended to develop applications goes into building ad hoc and
proprietary middleware substitutes, or additions for missing middleware
functionality. As a result, subsequent composition of these ad hoc
capabilities is either infeasible or prohibitively expensive. One reason why
redevelopment persists is that it is still often relatively easy to pull together
a minimalist ad hoc solution, which remains largely invisible to all except
the developers. Unfortunately, this approach can yield substantial recurring
downstream costs, particularly for complex and long-lived network-centric
systems.

3.1.5 Leveraging and extending the installed base
In addition to the R&D challenges outlined above there are also

pragmatic considerations, including incorporating the interfaces to various
building blocks that are already in place for the networks, operating
systems, security, and data management infrastructure, all of which
continue to evolve independently. Ultimately, there are two different types
of resources that must be considered:

1. Those that will be fabricated as part of application development and
2. Those that are provided and can be considered part of the substrate

currently available.

While not much can be done in the short-term to change the direction
of the hardware and software substrate that’s installed today, a reasonable
approach is to provide the needed services at higher levels of (middleware-
based) abstraction. This architecture will enable new components to have
properties that can be more easily included into the controllable
applications and integrated with each other, leaving less lower-level

complexity for application developers to address and thereby reducing
system development and ownership costs. Consequently, the goal of next-
generation middleware is not simply to build a better network or better
security in isolation, but rather to pull these capabilities together and
deliver them to applications in ways that enable them to realize this model
of adaptive behavior with tradeoffs between the various QoS attributes. As
the evolution of the underlying system components change to become
more controllable, we can expect a refactoring of the implementations
underlying the enforcement of adaptive control.

3.2 Fundamental Research Concepts

The following four concepts are central to addressing the R&D
challenges described above:

3.2.1 Contracts and adaptive meta-programming
Information must be gathered for particular applications or application

families regarding user requirements, resource requirements, and system
conditions. Multiple system behaviors must be made available based on
what is best under the various conditions. This information provides the
basis for the contracts between users and the underlying system substrate.
These contracts provide not only the means to specify the degree of
assurance of a certain level of service, but also provide a well-defined,
high-level middleware abstraction to improve the visibility of adaptive
changes in the mandated behavior.

3.2.2 Graceful degradation
Mechanisms must also be developed to monitor the system and enforce

contracts, providing feedback loops so that application services can
degrade gracefully (or augment) as conditions change, according to a
prearranged contract governing that activity. The initial challenge here is
to establish the idea in developers’ and users’ minds that multiple
behaviors are both feasible and desirable. The next step is to put into place
the additional middleware support–including connecting to lower level
network and operating system enforcement mechanisms–necessary to
provide the right behavior effectively and efficiently given current system
conditions.

3.2.3 Prioritization and physical world constrained load
invariant performance

Some systems are highly correlated with physical constraints and have
little flexibility in some of their requirements for computing assets,

including QoS. Deviation from requirements beyond a narrowly defined
error tolerance can sometimes result in catastrophic failure of the system.
The challenge is in meeting these invariants under varying load
conditions. This often means guaranteeing access to some resources, while
other resources may need to be diverted to insure proper operation.
Generally collections of such components will need to be resource
managed from a system (aggregate) perspective in addition to a component
(individual) perspective.

3.2.4 Higher level design approaches, abstractions, and
software development tools

Better techniques and more automated tools are needed to organize,
integrate, and manage the software engineering paradigm and process used
to construct the individual elements, the individual systems, and the
systems of systems, without resorting to reimplementation for
composition. Promising results in applying and embedding model-based
software development practices [MIC97], as well as decomposition by
aspects or views, suggest that applying similar design time approaches to
QoS engineering may complement and make easier the runtime adaptation
needed to control and validate these complex systems.

3.3 Promising Research Strategies

Although it is possible to satisfy contracts, achieve graceful
degradation, and use modeling tools to globally manage some resources to
a limited degree in a limited range of systems today, much R&D work
remains. The research strategies needed to deliver these goals can be
divided into the seven areas described below:

3.3.1 Individual QoS Requirements
Individual QoS deals with developing the mechanisms relating to the

end-to-end QoS needs from the perspective of a single user or application.
The specification requirements include multiple contracts, negotiation, and
domain specificity. Multiple contracts are needed to handle requirements
that change over time and to associate several contracts with a single
perspective, each governing a portion of an activity. Different users
running the same application may have different QoS requirements
emphasizing different benefits and tradeoffs, often depending on current
configuration. Even the same user running the same application at
different times may have different QoS requirements, e.g., depending on
current mode of operation and other external factors. Such dynamic

behavior must be taken into account and introduced seamlessly into next-
generation distributed systems.

General negotiation capabilities that offer convenient mechanisms to
enter into and control a negotiated behavior (as contrasted with the service
being negotiated) need to be available as COTS middleware packages. The
most effective way for such negotiation-based adaptation mechanisms to
become an integral part of QoS is for them to be “user friendly,” e.g.,
requiring a user or administrator to simply provide a list of preferences.
This is an area that is likely to become domain-specific and even user-
specific. Other challenges that must be addressed as part of delivering QoS
to individual applications include:

– Translation of requests for service among and between the various
entities on the distributed end-to-end path

– Managing the definition and selection of appropriate application
functionality and system resource tradeoffs within a “fuzzy”
environment and

– Maintaining the appropriate behavior under composability.
Translation addresses the fact that complex network-centric systems

are being built in layers. At various levels in a layered architecture the
user-oriented QoS must be translated into requests for other resources at a
lower level. The challenge is how to accomplish this translation from user
requirements to system services. A logical place to begin is at the
application/middleware boundary, which closely relates to the problem of
matching application resources to appropriate distributed system resources.
As system resources change in significant ways, either due to anomalies or
load, tradeoffs between QoS attributes (such as timeliness, precision, and
accuracy) may need to be (re)evaluated to ensure an effective level of
QoS, given the circumstances. Mechanisms need to be developed to
identify and perform these tradeoffs at the appropriate time. Last, but
certainly not least, a theory of effectively composing systems from
individual components in a way that maintains application-centric end-to-
end properties needs to be developed, along with efficient implementable
realizations of the theory.

3.3.2 Run-time Requirements
From a system lifecycle perspective, decisions for managing QoS are

made at design time, at configuration/deployment time, and/or at run-time.
Of these, the run-time requirements are the most challenging since they
have the shortest time scales for decision-making, and collectively we
have the least experience with developing appropriate solutions. They are
also the area most closely related to advanced middleware concepts. This

area of research addresses the need for run-time monitoring, feedback, and
transition mechanisms to change application and system behavior, e.g.,
through dynamic reconfiguration, orchestrating degraded behavior, or even
off-line recompilation. The primary requirements here are measurement,
reporting, control, feedback, and stability. Each of these plays a significant
role in delivering end-to-end QoS, not only for an individual application,
but also for an aggregate system. A key part of a run-time environment
centers on a permanent and highly tunable measurement and resource
status service as a common middleware service, oriented to various
granularities for different time epochs and with abstractions and
aggregations appropriate to its use for run-time adaptation.

In addition to providing the capabilities for enabling graceful
degradation, these same underlying mechanisms also hold the promise to
provide flexibility that supports a variety of possible behaviors, without
changing the basic implementation structure of applications. This
reflective flexibility diminishes the importance of many initial design
decisions by offering late- and run-time-binding options to accommodate
actual operating environments at the time of deployment, instead of only
anticipated operating environments at design time. In addition, it
anticipates changes in these bindings to accommodate new behavior.

3.3.3 Aggregate Requirements
This area of research deals with the system view of collecting

necessary information over the set of resources across the system, and
providing resource management mechanisms and policies that are aligned
with the goals of the system as a whole. While middleware itself cannot
manage system-level resources directly (except through interfaces
provided by lower level resource management and enforcement
mechanisms), it can provide the coordinating mechanisms and policies that
drive the individual resource managers into domain-wide coherence. With
regards to such resource management, policies need to be in place to guide
the decision-making process and the mechanisms to carry out these policy
decisions.

Areas of particular R&D interest include:

– Reservations, which allow resources to be reserved to assure certain
levels of service

– Admission control mechanisms, which allow or reject certain users
access to system resources

– Enforcement mechanisms with appropriate scale, granularity and
performance and

– Coordinated strategies and policies to allocate distributed resources
that optimize various properties.

Moreover, policy decisions need to be made to allow for varying levels
of QoS, including whether each application receives guaranteed, best-
effort, conditional, or statistical levels of service. Managing property
composition is essential for delivering individual QoS for component
based applications, and is of even greater concern in the aggregate case,
particularly in the form of layered resource management within and across
domains.

3.3.4 Integration Requirements
Integration requirements address the need to develop interfaces with

key building blocks used for system construction, including the OS,
network management, security, and data management. Many of these areas
have partial QoS solutions underway from their individual perspectives.
The problem today is that these partial results must be integrated into a
common interface so that users and application developers can tap into
each, identify which viewpoint will be dominant under which conditions,
and support the tradeoff management across the boundaries to get the right
mix of attributes. Currently, object-oriented tools working with DOC
middleware provide end-to-end syntactic interoperation, and relatively
seamless linkage across the networks and subsystems. There is no
managed QoS, however, making these tools and middleware useful only
for resource rich, best-effort environments.

To meet varying requirements for integrated behavior, advanced tools
and mechanisms are needed that permit requests for different levels of
attributes with different tradeoffs governing this interoperation. The
system would then either provide the requested end-to-end QoS,
reconfigure to provide it, or indicate the inability to deliver that level of
service, perhaps offering to support an alternative QoS, or triggering
application-level adaptation. For all of this to work together properly,
multiple dimensions of the QoS requests must be understood within a
common framework to translate and communicate those requests and
services at each relevant interface. Advanced integration middleware
provides this common framework to enable the right mix of underlying
capabilities.

3.3.5 Adaptivity Requirements
Many of the advanced capabilities in next-generation information

environments will require adaptive behavior to meet user expectations and
smooth the imbalances between demands and changing environments.

Adaptive behavior can be enabled through the appropriate organization
and interoperation of the capabilities of the previous four areas. There are
two fundamental types of adaptation required:

1. Changes beneath the applications to continue to meet the required
service levels despite changes in resource availability and

2. Changes at the application level to either react to currently available
levels of service or request new ones under changed circumstances.

In both instances, the system must determine if it needs to (or can)
reallocate resources or change strategies to achieve the desired QoS.
Applications need to be built in such a way that they can change their QoS
demands as the conditions under which they operate change. Mechanisms
for reconfiguration need to be put into place to implement new levels of
QoS as required, mindful of both the individual and the aggregate points of
view, and the conflicts that they may represent.

Part of the effort required to achieve these goals involves continuously
gathering and instantaneously analyzing pertinent resource information
collected as mentioned above. A complementary part is providing the
algorithms and control mechanisms needed to deal with rapidly changing
demands and resource availability profiles and configuring these
mechanisms with varying service strategies and policies tuned for
different environments. Ideally, such changes can be dynamic and flexible
in handling a wide range of conditions, occur intelligently in an automated
manner, and can handle complex issues arising from composition of
adaptable components. Coordinating the tools and methodologies for these
capabilities into an effective adaptive middleware should be a high R&D
priority.

3.3.6 System Engineering Methodologies and Tools
Advanced middleware by itself will not deliver the capabilities

envisioned for next-generation embedded environments. We must also
advance the state of the system engineering discipline and tools that come
with these advanced environments used to build complex distributed
computing systems. This area of research specifically addresses the
immediate need for system engineering approaches and tools to augment
advanced middleware solutions. These include:

• View-oriented or aspect-oriented programming techniques, to support
the isolation (for specialization and focus) and the composition (to
mesh the isolates into a whole) of different projections or views of the
properties the system must have. The ability to isolate, and

subsequently integrate, the implementation of different, interacting
features will be needed to support adapting to changing requirements.

• Design time tools and model-integrated computing technologies, to
assist system developers in understanding their designs, in an effort to
avoid costly changes after systems are already in place (this is partially
obviated by the late binding for some QoS decisions referenced
earlier).

• Interactive tuning tools, to overcome the challenges associated with
the need for individual pieces of the system to work together in a
seamless manner

• Composability tools, to analyze resulting QoS from combining two or
more individual components

• Modeling tools for developing system performance models as adjunct
means (both online and offline) to monitor and understand resource
management, in order to reduce the costs associated with trial and
error

• Debugging tools, to address inevitable problems.

3.3.7 Reliability, Trust, Validation, and Certifiability
The dynamically changing behaviors we envision for next-generation

large-scale, network-centric systems are quite different from what we
currently build, use, and have gained some degrees of confidence in.
Considerable effort must therefore be focused on validating the correct
functioning of the adaptive behavior, and on understanding the properties
of large-scale systems that try to change their behavior according to their
own assessment of current conditions, before they can be deployed. But
even before that, longstanding issues of adequate reliability and trust
factored into our methodologies and designs using off-the-shelf
components have not reached full maturity and common usage, and must
therefore continue to improve. The current strategies organized around
anticipation of long life cycles with minimal change and exhaustive test
case analysis are clearly inadequate for next-generation dynamic systems
with stringent QoS requirements.

4 CONCLUDING REMARKS

In this age of IT ubiquity, economic upheaval, deregulation, and stiff
global competition it has become essential to decrease the cycle-time, level
of effort, and complexity associated with developing high-quality, flexible,
and interoperable large-scale, network-centric systems. Increasingly, these
types of systems are developed using reusable software (middleware)

component services, rather than being implemented entirely from scratch
for each use. Middleware was invented in an attempt to help simplify the
software development of large-scale, network-centric computing systems,
and bring those capabilities within the reach of many more developers than
the few experts at the time who could master the complexities of these
environments. Complex system integration requirements were not being
met from either the application perspective, where it was too difficult and
not reusable, or the network or host operating system perspectives, which
were necessarily concerned with providing the communication and
endsystem resource management layers, respectively.

Over the past decade, distributed object computing (DOC) middleware
has emerged as a set of software protocol and service layers that help to
solve the problems specifically associated with heterogeneity and
interoperability. It has also contributed considerably to better
environments for building network-centric applications and managing their
distributed resources effectively. Consequently, one of the major trends
driving researchers and practioners involves

1. Moving toward a multi-layered architecture (i.e., applications,
middleware, network and operating system infrastructure), which is
oriented around application composition from reusable components,
and

2. Moving away from the more traditional architecture, where
applications were developed directly atop the network and operating
system abstractions.

This middleware-centric, multi-layered architecture descends directly
from the adoption of a network-centric viewpoint brought about by the
emergence of the Internet and the componentization and commoditization
of hardware and software.

Successes with early, primitive middleware has led to more ambitious
efforts and expansion of the scope of these middleware-oriented activities,
so we now see a number of distinct layers of the middleware itself taking
shape. The result has been a deeper understanding of the large and
growing issues and potential solutions in the space between complex
distributed application requirements and the simpler infrastructure
provided by bundling existing network systems, operating systems, and
programming languages. Network-centric systems today are constructed as
a series of layers of intertwined technical capabilities and innovations. The
main emphasis at the lower middleware layers is in providing standardized
core computing and communication resources and services that drive
network-centric computing: overlays for the individual computers, the

networks, and the operating systems that control the individual host and
the message level communication.

At the upper layers, various types of middleware are starting to bridge
the previously formidable gap between the lower-level resources and
services and the abstractions that are needed to program, organize, and
control systems composed of coordinated, rather than isolated,
components. Key new capabilities in the upper layers include common and
domain-specific middleware services that

• Enforce real-time behavior across computational nodes
• Manage redundancy across elements to support dependable computing

and
• Provide coordinated and varying security services on a system wide

basis, commensurate with the threat

There are significant limitations with regards to building these more
complex systems today. For example, applications have increasingly more
stringent QoS requirements. We are also discovering that more things need
to be integrated over conditions that more closely resemble a volatile,
changing Internet, than they do a stable backplane. Adaptive and reflective
middleware systems [ARMS01] are a key emerging paradigm that will
help to simplify the development, optimization, validation, and integration
for distributed systems.

One problem is that the playing field is changing constantly, in terms
of both resources and expectations. We no longer have the luxury of being
able to design systems to perform highly specific functions and then
expect them to have life cycles of 20 years with minimal change. In fact,
we more routinely expect systems to behave differently under different
conditions, and complain when they just as routinely do not. These
changes have raised a number of issues, such as end-to-end oriented
adaptive QoS, and construction of systems by composing off-the-shelf
parts, many of which have promising solutions involving significant new
middleware-based capabilities and services.

In the brief space of this paper, we can do little more than summarize
and lend perspective to the many activities, past and present, that
contribute to making DOC middleware technology an area of exciting
current development, along with considerable opportunity and unsolved
challenging problems. We have provided many references to other sources
to obtain additional information about ongoing activities in this area. We
have also provided a more detailed discussion and organization for a
collection of activities that we believe represent the most promising future

R&D directions of middleware for large-scale, network-centric systems.
Downstream, the goals of these R&D activities are to:

1. Reliably and repeatably construct and compose network-centric
systems that can meet and adapt to more diverse, changing
requirements/environments and

2. Enable the affordable construction and composition of the large
numbers of these systems that society will demand, each precisely
tailored to specific domains.

To accomplish these goals, we must overcome not only the technical
challenges, but also the educational and transitional challenges, and
eventually master and simplify the immense complexity associated with
these environments, as we integrate an ever growing number of hardware
and software components together via DOC middleware and advanced
network-centric infrastructures.

5 ACKNOWLEDGEMENTS

We would like to thank Don Hinton, Joe Loyall, Jeff Parsons, Andrew
Sutton, Franklin Webber, and members of the Large-scale, Network-
centric Systems working group at the Software Design and Producitivity
workshop at Vanderbilt University, December 13-14, 2001 for comments
that helped to improve this paper. Thanks also to members of the Cronus,
ACE, TAO, and QuO user communities who have helped to shape our
thinking on DOC middleware for over a decade.

6 REFERENCES

[AegisOA] Guidance Document for Aegis Open Architecture Baseline
Specification Development, Version 2.0 (Draft), 5 July 2001.

[ARMS01] Schmidt D., Schantz R., Masters M., Sharp D., Cross J., and
DiPalma L., “Towards Adaptive and Reflective Middleware for Network-Centric
Combat Systems, Crosstalk, November 2001.

[Beck00] Beck K., eXtreme Programming Explained: Embrace Change,
Addison-Wesley, Reading, MA, 2000.

[Ber96] Bernstein, P., “Middleware, A Model for Distributed System
Service”", Communications of the ACM, 39:2, February 1996.

[Bla99] Blair, G.S., F. Costa, G. Coulson, H. Duran, et al, “The Design of a
Resource-Aware Reflective Middleware Architecture”, Proceedings of the 2nd
International Conference on Meta-Level Architectures and Reflection, St.-Malo,
France, Springer-Verlag, LNCS, Vol. 1616, 1999.

[Bol00] Bollella, G., Gosling, J. “The Real-Time Specification for Java,”
Computer, June 2000.

[Box97] Box D., Essential COM, Addison-Wesley, Reading, MA, 1997.

[Bus96] Buschmann, F., Meunier R., Rohnert H., Sommerlad P., Stal M.,
Pattern-Oriented Software Architecture- A System of Patterns, Wiley and Sons,
1996

[Chris98] Christensen C., The Innovator’s Dilemma: When New Technology
Causes Great Firms to Fail, 1997.

[Cuk98] Cukier, M., Ren J., Sabnis C., Henke D., Pistole J., Sanders W.,
Bakken B., Berman M., Karr D. Schantz R., “AQuA: An Adaptive Architecture
that Provides Dependable Distributed Objects ”, Proceedings of the 17th IEEE
Symposium on Reliable Distributed Systems, pages 245-253, October 1998.

[Doe99] Doerr B., Venturella T., Jha R., Gill C., Schmidt D. “Adaptive
Scheduling for Real-time, Embedded Information Systems,” Proceedings of the
18th IEEE/AIAA Digital Avionics Systems Conference (DASC), St. Louis,
Missouri, October 1999.

[Gam95] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Holzer00] Holzer R., “U.S. Navy Looking for More Adaptable Aegis Radar,”
Defense News, 18 September 2000.

[John97] Johnson R., “Frameworks = Patterns + Components”,
Communications of the ACM, Volume 40, Number 10, October, 1997.

[JVM97] Lindholm T., Yellin F., The Java Virtual Machine Specification,
Addison-Wesley, Reading, MA, 1997.

[Kar01] Karr DA, Rodrigues C, Loyall JP, Schantz RE, Krishnamurthy Y,
Pyarali I, Schmidt DC. “Application of the QuO Quality-of-Service Framework to
a Distributed Video Application,” Proceedings of the International Symposium on
Distributed Objects and Applications, September 18-20, 2001, Rome, Italy.

[Loy01] Loyall JL, Gossett JM, Gill CD, Schantz RE, Zinky JA, Pal P,
Shapiro R, Rodrigues C, Atighetchi M, Karr D. “Comparing and Contrasting
Adaptive Middleware Support in Wide-Area and Embedded Distributed Object
Applications”. Proceedings of the 21st IEEE International Conference on
Distributed Computing Systems (ICDCS-21), April 16-19, 2001, Phoenix,
Arizona.

[MIC97] Janos Sztipanovits and Gabor Karsai, “Model-Integrated
Computing,” IEEE Computer, Volume 30, Number 4, April 1997.

[Narain01] Narain S., Vaidyanathan R., Moyer S., Stephens W.,
Parameswaran K., and Shareef A., “Middle-ware For Building Adaptive Systems
via Configuration,” ACM Optimization of Middleware and Distributed Systems
(OM 2001) Workshop, Snowbird, Utah, June, 2001.

[NAS94] New Attack Submarine Open System Imple-mentation, Specification
and Guidance, August 1994.

[NET01] Thai T., Lam H., .NET Framework Essentials, O’Reilly, 2001.

[Omg98a] Object Management Group, “Fault Tolerance CORBA Using Entity
Redundancy RFP”, OMG Document orbos/98-04-01 edition, 1998.

[Omg98b] Object Management Group, “CORBAServices: Common Object
Service Specification,” OMG Technical Document formal/98-12-31.

[Omg99] Object Management Group, “CORBA Component Model Joint
Revised Submission,” OMG Document orbos/99-07-01.

[Omg00] Object Management Group, “The Common Object Request Broker:
Architecture and Specification Revision 2.4, OMG Technical Document
formal/00-11-07”, October 2000.

[Omg00A] Object Management Group. “Minimum CORBA,” OMG
Document formal/00-10-59, October 2000.

[Omg00B] Object Management Group. “Real-Time CORBA,” OMG
Document formal/00-10-60, October 2000.

[Omg01] Object Management Group, “Dynamic Scheduling Real-Time
CORBA 2.0 Joint Final Submission,” OMG Document orbos/2001-04-01.

[PCES02] The Programmable Composition of Embedded Software (PCES)
Project, DARPA Information Exploitation Office.
http://www.darpa.mil/ito/research/pces/index.html

[Quo01] Quality Objects Toolkit v3.0 User’s Guide, chapter 9, available as
http://www.dist-systems.bbn.com/tech/QuO/release/latest/docs/usr/doc/quo-
3.0/html/QuO30UsersGuide.htm

[Quorum99] DARPA, The Quorum Program,
http://www.darpa.mil/ito/research/quorum/index.html, 1999.

[RUP99] Jacobson I., Booch G., and Rumbaugh J., Unified Software
Development Process, Addison-Wesley, Reading, MA, 1999.

[Sch86] Schantz, R., Thomas R., Bono G., “The Architecture of the Cronus
Distributed Operating System”, Proceedings of the 6th IEEE International
Conference on Distributed Computing Systems (ICDCS-6), Cambridge,
Massachusetts, May 1986.

[Sch98] Schantz, RE, “BBN and the Defense Advanced Research Projects
Agency”, Prepared as a Case Study for America's Basic Research: Prosperity
Through Discovery, A Policy Statement by the Research and Policy Committee of

the Committee for Economic Development (CED), June 1998 (also available as:
http://www.dist-systems.bbn.com/papers/1998/CaseStudy).

[Sch02A] Schantz, R., Loyall, J., Atighetchi, M., Pal, P., “Packaging Quality
of Service Control Behaviors for Reuse”, ISORC 2002, The 5th IEEE
International Symposium on Object-oriented Real-time

distributed Computing, April 29 - May 1, 2002, Washington, DC. …

[Sch98a] Schmidt D., Levine D., Mungee S. “The Design and Performance of
the TAO Real-Time Object Request Broker”, Computer Communications Special
Issue on Building Quality of Service into Distributed Systems, 21(4), pp.
294—324, 1998.

[Sch00a] Schmidt D., Kuhns F., “An Overview of the Real-time CORBA
Specification,” IEEE Computer Magazine, June, 2000.

[Sch00b] Schmidt D., Stal M., Rohnert H., Buschmann F., Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects, Wiley
and Sons, 2000.

[Sch02] Schmidt D., Huston S., C++ Network Programming: Resolving
Complexity with ACE and Patterns, Addison-Wesley, Reading, MA, 2002.

[Sch03] Schmidt D., Huston S., C++ Network Programming: Systematic
Reuse with ACE and Frameworks, Addison-Wesley, Reading, MA, 2003.

[Sha98] Sharp, David C., “Reducing Avionics Software Cost Through
Component Based Product Line Development”, Software Technology Conference,
April 1998.

[SOAP01] Snell J., MacLeod K., Programming Web Applications with SOAP,
O’Reilly, 2001.

[Ste99] Sterne, D.F., G.W. Tally, C.D. McDonell et al, “Scalable Access
Control for Distributed Object Systems”, Proceedings of the 8th Usenix Security
Symposium, August,1999.

[Sun99] Sun Microsystems, “Jini Connection Technology”,
http://www.sun.com/jini/index.html, 1999.

[TPA97] Sabata B., Chatterjee S., Davis M., Sydir J., Lawrence T.,
“Taxonomy for QoS Specifications,” Proceedings of Workshop on Object-
oriented Real-time Dependable Systems (WORDS 97), February 1997.

[Tho98] Thomas, Anne “Enterprise JavaBeans Technology”,
http://java.sun.com/products/ejb/white_paper.html, Dec. 1998

[Wol96] Wollrath A., Riggs R., Waldo J. “A Distributed Object Model for the
Java System,” USENIX Computing Systems, 9(4), 1996.

