
Real-time CORBA Specification

January 2005
Version 1.2

formal/05-01-04

An Adopted Specification of the Object Management Group, Inc.

Copyright © 1998, 1999, Alcatel
Copyright © 1989- 2001, Hewlett-Packard Company
Copyright © 1998, 1999, Highlander Communications, L.C.
Copyright © 1998, 1999, Inprise Corporation
Copyright © 1995 - 2001, IONA Technologies, Ltd.
Copyright © 1998 - 2001, Lockheed Martin Federal Systems, Inc.
Copyright © 1998, 1999, 2001, Lucent Technologies, Inc.
Copyright © 1998, 1999, Nortel Networks
Copyright © 2002, Object Management Group, Inc.
Copyright © 1998, 1999, 2001, Objective Interface Systems, Inc.
Copyright © 1998, 1999, Object-Oriented Concepts, Inc.
Copyright © 1991 - 2001, Sun Microsystems, Inc.
Copyright © 1998, 1999, Tri-Pacific Software, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work

covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are

implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Contents
1. Real-time CORBA Base Architecture . 1-1

1.1 Goals of the Specification . 1-1

1.2 Extending CORBA. 1-2

1.3 Approach to Real-time CORBA. 1-2
1.3.1 The Nature of Real-time . 1-2
1.3.2 Meeting Real-time Requirements 1-3
1.3.3 Distributable Thread . 1-3
1.3.4 End-to-End Predictability 1-4
1.3.5 Management of Resources 1-5

1.4 Compatibility . 1-5
1.4.1 Interoperability . 1-5
1.4.2 Portability . 1-6
1.4.3 CORBA - Real-time CORBA Interworking 1-6

1.5 Real-time CORBA Architectural Overview 1-6
1.5.1 Real-time CORBA Modules 1-7
1.5.2 Real-time ORB. 1-7
1.5.3 Thread Scheduling. 1-8
1.5.4 Real-time CORBA Priority 1-8
1.5.5 Native Priority and PriorityMappings 1-8
1.5.6 Real-time CORBA Current. 1-8
1.5.7 Priority Models . 1-9
1.5.8 Real-time CORBA Mutexes and Priority

Inheritance . 1-9
1.5.9 Threadpools . 1-9
1.5.10 Priority Banded Connections 1-10
1.5.11 Non-Multiplexed Connections 1-10
1.5.12 Invocation Timeouts . 1-10
1.5.13 Client and Server Protocol Configuration 1-10
1.5.14 Real-time CORBA Configuration 1-10
January 2005 Real-time CORBA, v1.2 i

Contents
2. Real-time CORBA Extensions . 2-1

2.1 Real-time ORB. 2-2
2.1.1 Real-time ORB Initialization 2-2
2.1.2 Real-time CORBA System Exceptions. 2-3

2.2 Real-time POA. 2-3

2.3 Native Thread Priorities . 2-4

2.4 CORBA Priority. 2-5

2.5 CORBA Priority Mappings . 2-6
2.5.1 C Language binding for PriorityMapping. 2-6
2.5.2 C++ Language binding for PriorityMapping . . . 2-7
2.5.3 Ada Language binding for PriorityMapping. . . . 2-7
2.5.4 Java Language binding for PriorityMapping . . . 2-8
2.5.5 Semantics . 2-8

2.6 Real-time Current. 2-9

2.7 Real-time CORBA Priority Models 2-10
2.7.1 PriorityModelPolicy . 2-10
2.7.2 Scope of PriorityModelPolicy 2-11
2.7.3 Client Propagated Priority Model 2-12
2.7.4 Server Declared Priority Model 2-13
2.7.5 Setting Server Priority on a per-Object

Reference Basis . 2-13

2.8 Priority Transforms . 2-15
2.8.1 C Language Binding for PriorityTransform 2-16
2.8.2 C++ Language Binding for PriorityTransform . . 2-16
2.8.3 Ada Language binding for PriorityTransform . . 2-17
2.8.4 Java Language binding for PriorityTransform . . 2-17
2.8.5 Semantics . 2-17

2.9 Mutex Interface . 2-18

2.10 Threadpools . 2-19
2.10.1 Creation of Threadpool without Lanes 2-21
2.10.2 Creation of Threadpool with Lanes 2-22
2.10.3 Request Buffering . 2-22
2.10.4 Scope of ThreadpoolPolicy 2-23

2.11 Implicit and Explicit Binding . 2-23
2.11.1 Scope of PriorityBandedConnectionPolicy 2-25
2.11.2 Binding of Priority Banded Connection. 2-26

2.12 PrivateConnectionPolicy . 2-27

2.13 Invocation Timeout . 2-28

2.14 Protocol Configuration. 2-28
2.14.1 ServerProtocolPolicy . 2-29
2.14.2 Scope of ServerProtocolPolicy 2-31
2.14.3 ClientProtocolPolicy . 2-31
ii Real-time CORBA, v1.2 January 2005

Contents
2.14.4 Scope of ClientProtocolPolicy. 2-32
2.14.5 Protocol Configuration Semantics 2-32

2.15 Consolidated IDL . 2-33

3. Dynamic Scheduling . 3-1

3.1 Overview . 3-2
3.1.1 Dynamic Scheduling . 3-2
3.1.2 Distributable Thread . 3-3

3.2 Rationale . 3-3

3.3 Notional Scheduling Service Architecture 3-3

3.4 Goals of this Specification . 3-4

3.5 Scope . 3-4

3.6 Sequencing: Scheduling and Dispatching 3-5

3.7 Well Known Scheduling Disciplines 3-7
3.7.1 Fixed Priority Scheduling 3-7
3.7.2 Earliest Deadline First (EDF) 3-8
3.7.3 Least Laxity First (LLF) . 3-9
3.7.4 Maximize Accrued Utility (MAU) 3-10

3.8 Distributed System Scheduling . 3-11

3.9 Distributable Thread . 3-11

3.10 Scheduler . 3-14
3.10.1 Scheduler Characteristics 3-15
3.10.2 Scheduling Parameter Elements. 3-16
3.10.3 Pluggable Scheduler and Interoperability 3-17
3.10.4 Distributable Threads . 3-17
3.10.5 Implicit Forking and Joining 3-18
3.10.6 Scheduling Segments, Parameter Elements, and

Schedulable Entities . 3-19
3.10.7 Scheduling Points. 3-24
3.10.8 Schedule-Aware Resources 3-25
3.10.9 Exceptions . 3-25
3.10.10 Summary . 3-26

3.11 Scheduler Interoperability . 3-26

3.12 Scheduler Portability . 3-27

3.13 Dynamic Scheduling Interoperation. 3-27

3.14 ThreadAction Interface . 3-27
3.14.1 do Operation . 3-27

3.15 RTScheduling::Current Interface . 3-28
3.15.1 spawn Operation . 3-28
3.15.2 UNSUPPORTED_SCHEDULING_DISCIPLINE

Exception . 3-29
3.15.3 begin_scheduling_segment Operation 3-29
January 2005 Real-time CORBA, v1.2 iii

Contents
3.15.4 update_scheduling_segment Operation 3-31
3.15.5 end_scheduling_segment Operation. 3-32
3.15.6 Id Related Operations . 3-33
3.15.7 scheduling_parameter and

implicit_scheduling_parameter Attributes 3-34
3.15.8 current_scheduling_segment_names Attribute . . 3-35

3.16 RTScheduling::ResourceManager Interface 3-35
3.16.1 IDL . 3-35

3.17 RTScheduling::DistributableThread Interface 3-35
3.17.1 IDL . 3-35
3.17.2 cancel Operation . 3-36

3.18 RTScheduling::Scheduler Interface 3-36
3.18.1 Scheduler::

INCOMPATIBLE_SCHEDULING_DISCIPLINES
Exception . 3-36

3.18.2 Scheduler::scheduling_policies Attribute 3-37
3.18.3 Scheduler::poa_polices Attribute 3-37
3.18.4 Scheduler::scheduling_discipline_name Attribute 3-37
3.18.5 Scheduler::create_resource_manager Operation 3-38
3.18.6 Scheduler::set_scheduling_parameter Operation 3-39

Compliance . A-1
iv Real-time CORBA, v1.2 January 2005

Preface
Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization’s charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

Intended Audience

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architecture Guide, the ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.
January 2005 Real-time CORBA, v1.2 i

Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference
Model, which consists of the following components:

• Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

• Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities will be contained in CORBAfacilities:
Common Facilities Architecture.

• Application Objects, which are products of a single vendor on in-house
development group that controls their interfaces. Application Objects correspond
to the traditional notion of applications, so they are not standardized by OMG.
Instead, Application Objects constitute the uppermost layer of the Reference
Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

Associated Documents

The CORBA documentation set includes the following books:

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It also provides information about the policies and procedures of OMG,
such as how standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for the Object Services.

• CORBAfacilities: Common Facilities Architecture contains the architecture for
Common Facilities.
ii Real-time CORBA, v1.2 January 2005

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

You can download the OMG formal documents free-of-charge from our web site in
PostScript and PDF format. Please note the OMG address and telephone numbers
below:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

http://www.omg.org

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to the CORBA specifications to be called CORBA-compliant. For
instance, if a vendor supports C++, their ORB must comply with the OMG IDL to C++
binding specified in the C++ Language Mapping Specification.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to the Common Object Request
Broker Architecture (CORBA) specification, “Compliance to COM/CORBA
Interworking.”

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions
January 2005 Real-time CORBA: Definition of CORBA Compliance iii

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgements

The following companies submitted and/or supported parts of this specification:

• Alcatel

• Ericsson

• France Telecom

• Hewlett-Packard Company

• Highlander Communications, L.C.

• Humboldt-University

• Inprise Corporation

• IONA Technologies, Plc.

• Lockheed Martin Federal Systems, Inc.

• Lucent Technologies, Inc.

• MITRE Corporation

• Motorola, Inc.

• Nortel Networks

• Objective Interface Systems, Inc.

• Object-Oriented Concepts, Inc.

• SPAWAR Systems Center

• Sun Microsystems, Inc.

• Tri-Pacific Software, Inc.

• University of Rhode Island

• Washington University
iv Real-time CORBA, v1.2 January 2005

Real-time CORBA Base Architecture 1
Contents

This chapter contains the following topics.

Real-time CORBA is an optional set of extensions to CORBA tailored to equip ORBs
to be used as a component of a real-time system.

1.1 Goals of the Specification

In any architecture, there is a tension between a general purpose solution and
supporting specialist applications. Real-time developers have to pay strict attention to
the allocation of resources and to the predictability of system execution. By providing
the developer with handles on managing resources and on predictability, Real-time
CORBA sacrifices some of the general purpose nature of CORBA in order support the
development of real-time systems.

Real-time development has further specialist areas: “hard” real-time and “soft” real-
time; different resource contention protocols and scheduling algorithms, etc. This
specification provides a Real-time CORBA that is sufficiently general to span these

Topic Page

“Goals of the Specification” 1-1

“Extending CORBA” 1-2

“Approach to Real-time CORBA” 1-2

“Compatibility” 1-5

“Real-time CORBA Architectural Overview” 1-6
January 2005 Real-time CORBA, v1.2 1-1

1

variations in the form of a single compliance point. The one restriction imposed by the
specification is to fixed priority scheduling. Real-time CORBA does not currently
address dynamic scheduling.

The prescriptions made by this specification are not essential for general purpose
CORBA development. Furthermore, for some use-cases of CORBA; for example,
Enterprise Distributed Computing, the features of Real-time CORBA would be
irrelevant. EDC tends to focus on usability and developer productivity. Placing these
goals way above predictability means that EDC CORBA developers would never do
things like configure thread pools.

The goals of the specification are to support developers in meeting real-time
requirements by facilitating the end-to-end predictability of activities in the system and
by providing support for the management of resources.

Real-time CORBA brings to real-time system development the same benefits of
implementation flexibility, portability, and interoperability that CORBA brought to
client-server development.

There is one important non-goal for this specification. It is not a goal to provide a
portability layer for the real-time operating system (RTOS) itself. The POSIX Real-
time extensions already address this need. Real-time CORBA is compatible with the
POSIX Real-time Extensions but by not wrapping the RTOS the specification
facilitates the use of Real-time CORBA on operating systems that fall outside of the
POSIX Real-time Extensions.

1.2 Extending CORBA

To provide specialist capabilities for specialist application without over constraining
non real-time development, Real-time CORBA is positioned as a separate Extension to
CORBA. The set of capabilities provided by Real-time CORBA constitute an optional,
additional compliance point.

Real-time CORBA is defined as extensions to CORBA 2.2 (formal/98-12-01) and the
Messaging Specification (orbos/98-05-05). It is necessary to look beyond CORBA 2.2
because the policy framework used in Real-time CORBA is that from the Messaging
Specification. Secondly, deferred synchronous, asynchronous, and oneway invocations
are important tools in developing real-time systems.

1.3 Approach to Real-time CORBA

1.3.1 The Nature of Real-time

Developers of CORBA-compliant distributed, object oriented systems rely on the
CORBA Specification to support the functional aspects of those systems. However,
there is a class of problems where some of the requirements relate the functionality of
the system to Real-World time, be it measured in minutes or in microseconds. For
these systems, timeliness is as important as functionality.
1-2 Real-time CORBA, v1.2 January 2005

1

A parcel delivery service that commits to next day delivery across the country is
relating the functional requirement of transporting a parcel from “A” to “B” to Real-
world time; that is, “one day.” For the organization to meet this non-functional
requirement, it must analyze the system, identify the activities, and bound the time
taken to perform them. It must also decide what resources (people, planes, etc.) are
allocated to the problem. The use of those resources in performing particular activities
must be coordinated so that one activity doesn’t prejudice the Real-World time
requirement of another activity. If the arrival rate of parcels and the isolation of
resources from the outside world are known, then the organization can (ignoring
component failures) guarantee “next day” delivery. If the arrival pattern of parcels is
variable and the peak rate would suggest a large amount of resources (which would at
other times be largely idle), then the organization could fall back to statistical
predictability: offering “next day delivery or your money back.”

Relating functional requirements to real-world time may take several forms. A
response time requirement might say that the occurrence of event “A” shall cause an
event “B” within 24 hours. A throughput requirement might say that the system shall
cope with 1000 occurrences of an event per hour. A statistical requirement might say
that 95% of the occurrences of event “A” shall cause an event “B” within 24 hours. All
these forms of requirement are real-time requirements. A system that meets real-time
requirements is a real-time system.

1.3.2 Meeting Real-time Requirements

Deterministic behavior of the components of a real-time system promotes the
predictability of the overall system. In order to decide a priori if a real-time
requirement is met, the system must behave predictably. This can only happen if all the
parts of the system behave deterministically and if they “combine” predictably.

The interfaces and mechanisms provided by Real-time CORBA facilitate a predictable
combination of the ORB and the application. The application manages the resources by
using the Real-time CORBA interfaces and the ORB’s mechanisms coordinate the
activities that comprise the application. The real-time ORB relies upon the RTOS to
schedule threads that represent activities being processed and to provide mutexes to
handle resource contention.

1.3.3 Distributable Thread

This specification provides an abstraction for distributed real-time programming as an
end-to-end schedulable entity termed distributable thread. Such a distributed execution
model is essential to support:

• the statically-scheduled Real-time CORBA Base Architecture described in this and
the following chapter; and

• as a foundation for dynamically scheduled real-time CORBA systems described in
the Dynamic Scheduling chapter below.
January 2005 Real-time CORBA: Approach to Real-time CORBA 1-3

1

Prior versions of this specification loosely described the term “activity.” This term was
avoided to reduce conflict with prior usage in CORBA specifications such as
Workflow Management (formal/00-05-02) and Additional Structuring Mechanisms for
the OTS Specification (formal/02-09-03).

This specification does not attempt to address more advanced issues such as fault
tolerance, propagation of system information, and control along the path of a
distributable thread, etc. These facilities may be provided in a subsequent revision of
this specification.

For further details on the term distributable thread refer to Section 3.9, “Distributable
Thread,” on page 3-11.

1.3.4 End-to-End Predictability

One goal of this specification is to provide a standard for CORBA ORB
implementations that support end-to-end predictability. For the purposes of this
specification, “end-to-end predictability” of timeliness in a fixed priority CORBA
system is defined to mean:

• respecting thread priorities between client and server for resolving resource
contention during the processing of CORBA invocations;

• bounding the duration of thread priority inversions during end-to-end processing;

• bounding the latencies of operation invocations.

A Real-time CORBA system will include the following four major components, each
of which must be designed and implemented in such a way as to support end-to-end
predictability, if end-to-end predictability is to be achieved in the system as a whole:

1. the scheduling mechanisms in the OS;

2. the real-time ORB;

3. the communication transport;

4. the application(s).

Real-time ORBs conformant to this specification are still reliant on the characteristics
of the underlying operating system and on the application if the overall system is to
exhibit end-to-end predictability.

Note – An OS that implements the IEEE POSIX 1003.1-1996 Real-time Extensions
has the necessary features to facilitate end-to-end predictability. It is still possible for
an OS that doesn’t implement some or all of the POSIX Real-time Extensions
specification to support end-to-end predictability. Real-time CORBA is not restricted
to such OSs.
1-4 Real-time CORBA, v1.2 January 2005

1

1.3.5 Management of Resources

Providing end-to-end predictability will entail explicit choices in how much resources
are deployed in a system. Certain requirements will lead to static partitioning of these
resources among activities.

For real-time requirements of the statistical kind and for some throughput
requirements, the level of resources needed to make the system “schedulable” can be
prohibitive. Real-time CORBA systems can still provide assurances that requirements
are met due to the explicit control provided over resources.

Resources come in three categories: process, storage, and communication resources.
Real-time CORBA offers control over threadpools, which objects the threads within
them are used for, and what priorities they might run at. Real-time CORBA also
appends some storage resources to threadpools for the specific capability of handling a
number of concurrent requests above the number of threads provided. Real-time
CORBA provides control over transport connections: which are shared and which are
allocated for what priority of activity.

1.4 Compatibility

1.4.1 Interoperability

Real-time CORBA does not prescribe an RT-IOP as an ESIOP. There are a number of
pragmatic reasons for this. There are many specialized scenarios in which Real-time
CORBA can be deployed. These different scenarios do not exhibit enough common
characteristics to allow a common interaction protocol to be defined. Secondly, each
scenario will impose a different transport protocol. Without agreeing on a common
transport, interoperability isn’t possible.

Instead of specifying an RT-IOP, this specification uses the “standard extension”
mechanisms provided by IIOP. These mechanisms are GIOP ServiceContexts, IOR
Profiles, and IOR Tagged Components. Using these it is possible for IIOP to provide
protocol support for the mechanisms prescribed in Real-time CORBA.

The benefit is that two Real-time CORBA implementations will interoperate.
Interoperability may not be as important for a Real-time CORBA system as for a
CORBA system because real-time dictates a measure of system-wide design control to
deliver predictability and therefore also some control over which ORB to deploy.

The second benefit is that the specified extensions define what features of a vendors
own Real-time IOP can be mapped onto IIOP. This allows vendors to bridge between
different Real-time CORBA implementations.
January 2005 Real-time CORBA: Compatibility 1-5

1

1.4.2 Portability

Providing real-time applications with portability across real-time ORBs is a goal of
this specification, providing a portability layer for real-time operating systems is not a
goal. Basing such an RTOS wrapper on say, POSIX Real-time Extension would
constrain the range of operating systems to which Real-time CORBA can add value.

Any real-time system will be carefully configured to meet its real-time requirements.
This includes taking account of the behavior and timings of the ORB itself. Porting an
application to a different Real-time ORB will necessitate that the application be
reconfigured. Portability cannot be “write once run everywhere” for Real-time
CORBA. What it does do is reduce the risk to a development of having to port.

1.4.3 CORBA - Real-time CORBA Interworking

In many systems Real-time CORBA components will have to interwork with CORBA
components. The interfaces (in particular IIOP extensions) are specified so that this is
functionally possible. Clearly, in any given system, there will be timing and
predictability implications that need to be considered if the real-time component is not
to be compromised.

CORBA applications can be ported to Real-time ORBs. They simply will not make use
of the extra functions provided. Porting a real-time application to a non-real-time ORB
will sacrifice the predictability of that application but the two platforms are
functionally equivalent.

1.5 Real-time CORBA Architectural Overview

Real-time CORBA defines a set of extensions to CORBA. The extensions to the
CORBA Core are specified in the Real-time CORBA Extensions chapter. The
extensions to the Real-time Base Architecture required to support dynamically
scheduled systems is specified in the Dynamic Scheduling chapter.

Figure 1-1 shows the key Real-time CORBA entities that are specified. The features
that these relate to are described in overview in the following sections.
1-6 Real-time CORBA, v1.2 January 2005

1

Figure 1-1 Real-time CORBA Extensions

1.5.1 Real-time CORBA Modules

All CORBA IDL specified by Real-time CORBA is contained in new modules
RTCORBA and RTPortableServer (with the exception of new service contexts, which
are additions to the IOP module.)

1.5.2 Real-time ORB

Real-time CORBA defines an extension of the ORB interface, RTCORBA::RTORB,
which handles operations concerned with the configuration of the real-time ORB and
manages the creation and destruction of instances of other Real-time CORBA IDL
interfaces.

IIOP

CORBA::
Current

RTCORBA::

Scheduling

RTCORBA::

Servant

POA RT POA

RTCORBA::

serverclient

ORB RTORB

RTCORBA::ESIOP (others)

Threadpool

Priority

Service

Current

PriorityMapping(GIOP/TCP)

Real-time CORBA entity existing CORBA entity
January 2005 Real-time CORBA: Real-time CORBA Architectural Overview 1-7

1

1.5.3 Thread Scheduling

Real-time CORBA uses threads as a schedulable entity. Generally, a thread represents
a sequence of control flow within a single node. Threads for part of an activity.
Activities are “scheduled” by coordination of the scheduling of their constituent
threads. Real-time CORBA specifies interfaces through which the characteristics of a
thread that are of interest can be manipulated. These interfaces are Threadpool creation
and the Real-time CORBA Current interface.

Note – The Real-time CORBA view of a thread is compatible with the POSIX
definition of a thread.

1.5.4 Real-time CORBA Priority

Real-time CORBA defines a universal, platform independent priority scheme called
Real-time CORBA Priority. It is introduced to overcome the heterogeneity of different
Operating System provided priority schemes, and allows Real-time CORBA
applications to make prioritized CORBA invocations in a consistent fashion between
nodes with different priority schemes.

For consistency, Real-time CORBA applications always should use CORBA Priority to
express the priorities in the system, even if all nodes in a system use the same native
thread priority scheme, or when using the server declared priority model.

1.5.5 Native Priority and PriorityMappings

Real-time CORBA defines a NativePriority type to represent the priority scheme that
is ‘native’ to a particular Operating System.

Priority values specified in terms of the Real-time CORBA Priority scheme must be
mapped into the native priority scheme of a given scheduler before they can be applied
to the underlying schedulable entities. On occasion, it is necessary for the reverse
mapping to be performed, to obtain a Real-time CORBA Priority to represent the
present native priority of a thread. The latter can occur, for example, when priority
inheritance is in use, or when wishing to introduce an already running thread into a
Real-time CORBA system at its present (native) priority.

To allow the Real-time ORB and applications to do both of these things, Real-time
CORBA defines a PriorityMapping interface.

1.5.6 Real-time CORBA Current

Real-time CORBA defines a Real-time CORBA Current interface to provide access to
the CORBA priority of a thread.
1-8 Real-time CORBA, v1.2 January 2005

1

1.5.7 Priority Models

One goal of Real-time CORBA is to bound and to minimize priority inversion in
CORBA invocations. One mechanism that is employed to achieve this is propagation
of the activity priority from the client to the server, with the requirement that the server
side ORB make the up-call at this priority (subject to any priority inheritance protocols
that are in use).

However, in some scenarios, it is sufficient to design the application system by setting
the priority of servers, and having them handle all invocations at that priority. Hence,
Real-time CORBA supports two models for the priority at which a server handles
requests from clients:

• Client Propagated Priority Model: in which the server honors the priority of the
invocation, set by the client. The invocation’s Real-time CORBA Priority is
propagated to the server ORB and the server-side ORB maps this Real-time
CORBA Priority into its own native priority scheme using its PriorityMapping.

Requests from non-Real-time CORBA ORBs; that is, ORBs that do not propagate a
Real-time CORBA Priority with the invocation are handled at a priority specified
by the server.

• Server Declared Priority Model: in which the server handles requests at a Real-time
CORBA Priority assigned on the server side. This model is useful for setting a
boundary where new activities are begun with a CORBA invocation.

1.5.8 Real-time CORBA Mutexes and Priority Inheritance

The Mutex interface provides the mechanism for coordinating contention for system
resources. Real-time CORBA specifies an RTCORBA::Mutex locality constrained
interface, so that applications can use the same mutex implementation as the ORB.

A conforming Real-time CORBA implementation must provide an implementation of
Mutex that implements some form of priority inheritance protocol. This may include,
but is not limited to, simple priority inheritance or a form of priority ceiling protocol.
The mutexes that Real-time CORBA makes available to the application must have the
same priority inheritance properties as those used by the ORB to protect resources.
This allows a consistent priority inheritance scheme to be delivered across the whole
system.

1.5.9 Threadpools

Real-time CORBA uses the Threadpool abstraction to manage threads of execution on
the server-side of the ORB. Threadpool characteristics can only be set when the
threadpool is created. Threadpools offer the following features:

• preallocation of threads - This helps reduce priority inversion, by allowing the
application programmer to ensure that there are enough thread resources to satisfy a
certain number of concurrent invocations, and helps reduce latency and increase
predictability, by avoiding the destruction and recreation of threads between
invocations.
January 2005 Real-time CORBA: Real-time CORBA Architectural Overview 1-9

1

• partitioning of threads - Having multiple thread pools associated with different
POAs allows one part of the system to be isolated from the thread usage of another,
possibly lower priority, part of the application system. This can again be used to
reduce priority inversion.

• bounding of thread usage - A threadpool can be used to set a maximum limit on
the number of threads that a POA or set of POAs may use. In systems where the
total number of threads that may be used is constrained, this can be used in
conjunction with threadpool partitioning to avoid priority inversion by thread
starvation.

• buffering of additional requests beyond the number that can be dispatched
concurrently by the assigned number of threads.

1.5.10 Priority Banded Connections

To reduce priority inversion due to use of a non-priority respecting transport protocol,
RT CORBA provides the facility for a client to communicate with a server via multiple
connections, with each connection handling invocations that are made at a different
CORBA priority or range of CORBA priorities. The selection of the appropriate
connection is transparent to the application, which uses a single object reference as
normal.

1.5.11 Non-Multiplexed Connections

Real-time CORBA allows a client to obtain a private transport connection to a server,
which will not be multiplexed (shared) with other client-server object connections.

1.5.12 Invocation Timeouts

Real-time CORBA applications may set a timeout on an invocation in order to bound
the time that the client application is blocked waiting for a reply. This can be used to
improve the predictability of the system.

1.5.13 Client and Server Protocol Configuration

Real-time CORBA provides interfaces that enable the selection and configuration of
protocols on the server and client side of the ORB.

1.5.14 Real-time CORBA Configuration

New Policy types are defined to configure the following server-side RT CORBA
features:

• server-side thread configuration (through Threadpools)

• priority model (propagated by client versus declared by server)

• protocol selection
1-10 Real-time CORBA, v1.2 January 2005

1

• protocol configuration

Which of the CORBA policy application points (ORB, POA, Current) a given policy
may be applied at is given along with the description of each policy.

Real-time CORBA defines a number of policies that may be applied on the client-side
of CORBA applications. These policies allow:

• the creation of priority-banded sets of connections between clients and servers;

• the creation of a non-multiplexed connection to a server;

• client-side protocol selection and configuration.

In addition, Real-time CORBA uses an existing CORBA policy, to provide invocation
timeouts.
January 2005 Real-time CORBA: Real-time CORBA Architectural Overview 1-11

1

1-12 Real-time CORBA, v1.2 January 2005

Real-time CORBA Extensions 2
Contents

This chapter contains the following topics.

Topic Page

“Real-time ORB” 2-2

“Real-time POA” 2-3

“Native Thread Priorities” 2-4

“CORBA Priority” 2-5

“CORBA Priority Mappings” 2-6

“Real-time Current” 2-9

“Real-time CORBA Priority Models” 2-10

“Priority Transforms” 2-15

“Mutex Interface” 2-18

“Threadpools” 2-19

“Implicit and Explicit Binding” 2-23

“Priority Banded Connections” 2-24

“PrivateConnectionPolicy” 2-27

“Invocation Timeout” 2-28

“Protocol Configuration” 2-28

“Consolidated IDL” 2-33
January 2005 Real-time CORBA, v1.2 2-1

2

2.1 Real-time ORB

Real-time CORBA defines an extension to the CORBA::ORB interface,
RTCORBA::RTORB. This interface is not derived from CORBA::ORB as the latter
is expressed in pseudo IDL, for which inheritance is not defined. Nevertheless,
RTORB is conceptually the extension of the ORB interface.

The RTORB interface provides operations to create and destroy other constituents of a
Real-time ORB.

There is a single instance of RTCORBA::RTORB per instance of CORBA::ORB.
The object reference for the RTORB is obtained by calling
ORB::resolve_initial_references with the ObjectId “RTORB.”

RTCORBA::RTORB is a local interface. The reference to the RTORB object may not
be passed as a parameter of an IDL operation nor may it be stringified. Any attempt to
do so shall result in a MARSHAL system exception (with a Standard Minor
Exception Code of 4).

// IDL
module RTCORBA {

local interface RTORB {

...

};

};

2.1.1 Real-time ORB Initialization

Real-time ORB initialization occurs within the CORBA::ORB_init operation. That is
a Real-time ORB’s implementation of CORBA::ORB_init shall perform any actions
necessary to initialize the real-time capability of the ORB.

In order to give the developer some control over a Real-time ORB’s use of priorities
the ORB_init operation shall be capable of handling an argv element of the form:

–ORBRTpriorityrange<optional-white-space><short>,<short>

Where <short> is a string encoding of an integer between 0 and 32767. The first
integer should be smaller than the second. If the argv element string does not conform
to these constraints, then a BAD_PARAM system exception shall be raised.

The two integers represent a range of CORBA Priorities available for use by ORB
internal threads. Note that priority of Real-time CORBA application threads is
controlled by other mechanisms. If the ORB cannot map these integers onto the native
priority scheme, then it shall raise a DATA_CONVERSION system exception.
2-2 Real-time CORBA, v1.2 January 2005

2

If the ORB deems the range of priorities to be too narrow for it to function properly,
then it shall raise an INITIALIZE system exception (with a Standard Minor Exception
Code of 1). For example, an implementation may not be able to function with less
than, say, three distinct priorities without risking deadlock.

2.1.2 Real-time CORBA System Exceptions

Real-time CORBA provides a more constraining environment for an application than
the environment provided by CORBA. This is reflected in the additional circumstances
in which system exceptions can be generated. These circumstances need to be
differentiated from the use of the same exception in CORBA.

Real-time CORBA uses many of the Standard System Exceptions with the same
meaning as applies in CORBA. These uses need no differentiation. Where the use of a
CORBA Standard System Exception has a meaning particular to Real-time CORBA,
Standard Minor Exception Codes are assigned.

2.2 Real-time POA

Real-time CORBA defines an extension to the POA, in the form of the interface
RTPortableServer::POA.

// IDL
module RTPortableServer {

local interface POA : PortableServer::POA {

...

};

};

Conformance to the Real-time CORBA Extensions also necessarily implies
conformance to CORBA. In particular, a Real-time ORB will handle interfaces of type
PortableServer::POA in accordance with the CORBA specification. For a Real-time
ORB all such instances shall be of the subtype RTPortableServer::POA. That is it

Table 2-1 Standard Minor Exception Codes used for Real-time CORBA

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION

MARSHAL 4 Attempt to marshal local object.

DATA_CONVERSION 2 Failure of PriorityMapping object.

INITIALIZE 1 Priority range too restricted for ORB.

BAD_INV_ORDER 18 Attempt to reassign priority.

NO_RESOURCES 2 No connection for request’s priority.
January 2005 Real-time CORBA: Real-time POA 2-3

2

shall always be possible to treat an instance of PortableServer::POA as an instance
of RTPortableServer::POA; for example, successfully narrow in some language
mappings.

A call to ORB::resolve_initial_references(“RootPOA”) shall return an interface
of type RTPortableServer::POA. A Real-time POA will differ from a POA in two
ways. Firstly, it shall provide additional operations to support object level priority
settings (see Section 2.7.5, “Setting Server Priority on a per-Object Reference Basis,”
on page 2-13). Secondly, its implementation shall understand the Real-time Policies
defined in this Extension. As the Real-time POA interface is derived from the POA
interface, it shall support all the semantics prescribed for the POA.

2.3 Native Thread Priorities

A real-time operating system (RTOS) sufficient to use for implementing a Real-time
ORB compliant with this specification, will have some discrete representation of a
thread priority. This representation typically specifies a range of values and a direction
for which values, higher or lower, represent the higher priority. The particular range
and direction in this priority representation varies from RTOS to RTOS. This
specification refers to the RTOS specific thread priority representation as a native
thread priority scheme. The priority values of this scheme are referred to as native
thread priorities.

Native thread priorities are used to designate the execution eligibility of threads. The
ordering of native thread priorities is such that a thread with higher native priority is
executed at the exclusion of any threads in the system with lower native priorities.

A native thread priority is an integer value that is the basis for resolving competing
demands of threads for resources. Whenever threads compete for processors or ORB
implementation-defined resources, the resources are allocated to the thread with the
highest native thread priority value.

The base native thread priority of a thread is defined as the native priority with which
it was created, or to which it was later set explicitly. The initial value of a thread’s base
native priority is dependent on the semantics of the specific operating environment.
Hence it is implementation specific.

At all times, a thread also has an active native thread priority, which is the result of
considering its base native thread priority together with any priorities it inherits from
other sources; for example, threads or mutexes. An active native thread priority is set
implicitly as a result of some other action. Its value is only temporary, at some point it
will return to the base native thread priority.

Priority inheritance is the term used for the process by which the native thread priority
of other threads is used in the evaluation of a thread’s active native thread priority. A
priority inheritance protocol must be used by a conforming Real-time CORBA ORB to
implement the execution semantics of threads and mutexes. It is an implementation
issue as to whether the Real-time ORB implements simple priority inheritance,
immediate ceiling locking protocol, original ceiling locking protocol, or some other
priority inheritance protocol.
2-4 Real-time CORBA, v1.2 January 2005

2

Whichever priority inheritance protocol is used, the native thread priority ceases to be
inherited as soon as the condition calling for the inheritance no longer exists. At the
point when a thread stops inheriting a native thread priority from another source, its
active native thread priority is re-evaluated.

The thread’s active native priority is used when the thread competes for processors.
Similarly, the thread’s active native priority is used to determine the thread’s position
in any queue; that is, dequeuing occurs in native thread priority order.

Native priorities have an IDL representation in Real-time CORBA, which is of type
short:

// IDL
module RTCORBA {

typedef short NativePriority;

};

This means that native priorities must be integer values in the range -32768 to +32767.
However, for a particular RTOS, the valid range will be a sub-range of this range.

Real-time CORBA does not support the direct use of native priorities: instead, the
application programmer uses CORBA Priorities, which are defined in the next section.
However, applications will still use native priorities where they make direct use of
RTOS features.

2.4 CORBA Priority

To overcome the heterogeneity of RTOSs, that is different RTOSs having different
native thread priority schemes, Real-time CORBA defines a CORBA Priority that has
a uniform representation system-wide. CORBA Priority is represented by the
RTCORBA::Priority type:

//IDL
module RTCORBA {

 typedef short Priority;
 const Priority minPriority = 0;
 const Priority maxPriority = 32767;

};

A signed short is used in order to accommodate the Java language mapping. However,
only values in the range 0 (minPriority) to 32767 (maxPriority) are valid. Numerically
higher RTCORBA::Priority values are defined to be of higher priority.

For each RTOS in a system, CORBA priority is mapped to the native thread priority
scheme. CORBA priority thus provides a common representation of priority across
different RTOSs.
January 2005 Real-time CORBA: CORBA Priority 2-5

2

2.5 CORBA Priority Mappings

Real-time CORBA defines the concept of a PriorityMapping between CORBA
priorities and native priorities. The concept is defined as an IDL native type so that the
mechanism by which priorities are mapped is exposed to the user. Native is chosen
rather than interface (even if locality constrained) because the full capability of the
ORB; for example, POA policies and CORBA exceptions are too heavyweight for this
use. Furthermore, a CORBA interface would entail the creation and registration of an
object reference.

// IDL
module RTCORBA {

native PriorityMapping;

};

Language mapping for this IDL native are defined for C, C++, Ada, and Java later in
this section.

A Real-time ORB shall provide a default mapping for each platform; that is, RTOS
that the ORB supports. Furthermore, a Real-time ORB shall provide a mechanism to
allow users to override the default priority mapping with a priority mapping of their
own.

The PriorityMapping is a programming language object rather than a CORBA Object
and therefore the normal mechanism for coupling an implementation to the code that
uses it (an object reference) doesn’t apply. This specification does not prescribe a
particular mechanism to achieve this coupling.

Note – Possible solutions include: recourse to build/link tools and provision of
proprietary interfaces. Other solutions are not precluded.

2.5.1 C Language binding for PriorityMapping

/* C */
CORBA_boolean RTCORBA_PriorityMapping_to_native (

RTCORBA_Priority corba_priority,
RTCORBA_NativePriority* native_priority);

CORBA_boolean RTCORBA_PriorityMapping_to_CORBA (
RTCORBA_NativePriority native_priority,
RTCORBA_Priority* corba_priority);
2-6 Real-time CORBA, v1.2 January 2005

2

2.5.2 C++ Language binding for PriorityMapping

// C++
namespace RTCORBA {

class PriorityMapping {
public:

virtual CORBA::Boolean to_native (
RTCORBA::Priority corba_priority,
RTCORBA::NativePriority &native_priority);

virtual CORBA::Boolean to_CORBA (
RTCORBA::NativePriority native_priority,
RTCORBA::Priority &corba_priority);

};
};

2.5.3 Ada Language binding for PriorityMapping

-- Ada
package RTCORBA.PriorityMapping is

type Object is tagged private;

procedure To_Native (
Self : in Object ;
CORBA_Priority : in RTCORBA.Priority ;
Native_Priority: out RTCORBA.NativePriority ;
Returns : out CORBA.Boolean) ;

procedure To_CORBA (
Self : in Object ;
Native_Priority: in RTCORBA.NativePriority ;
CORBA_Priority : out RTCORBA.Priority ;
Returns : out CORBA.Boolean) ;

end RTCORBA.PriorityMapping ;
January 2005 Real-time CORBA: CORBA Priority Mappings 2-7

2

2.5.4 Java Language binding for PriorityMapping

// Java
package org.omg.RTCORBA;

public class PriorityMapping {

boolean to_native (
short corba_priority,
org.omg.CORBA.ShortHolder native_priority

);
boolean to_CORBA (

short native_priority,
org.omg.CORBA.ShortHolder corba_priority

);
}

2.5.5 Semantics

The priority mappings between native priority and CORBA priority are defined by the
implementations of the to_native and to_CORBA operations of a PriorityMapping
object (note, not a CORBA Object). The to_native operation accepts a CORBA
Priority value as an in parameter and maps it to a native priority, which is given back
as an out parameter. Conversely, to_CORBA accepts a NativePriority value as an in
parameter and maps it to a CORBA Priority value, which is again given back as an out
parameter.

As the mappings are used by the ORB, and may be used more than once in the normal
execution of an invocation, their implementations should be as efficient as possible.
For this reason, the mapping operations may not raise any CORBA exceptions,
including system exceptions. The ORB is not restricted from making calls to the
to_native and/or to_CORBA operations from multiple threads simultaneously. Thus,
the implementations should be re-entrant.

Rather than raising a CORBA exception upon failure, a boolean return value is used to
indicate mapping failure or success. If the priority passed in can be mapped to a
priority in the target priority scheme, TRUE is returned and the value is returned as the
out parameter. If it cannot be mapped, FALSE is returned and the value of the out
parameter is undefined.

Both to_native and to_CORBA must return FALSE when passed a priority that is
outside of the valid priority range of the input priority scheme. For to_native this
means when it is passed a short value outside of the CORBA Priority range, 0-32767;
that is, a negative value. For to_CORBA this means when it is passed a short value
outside of the native priority range used on that RTOS. This range will be platform
specific.
2-8 Real-time CORBA, v1.2 January 2005

2

Neither to_native nor to_CORBA is obliged to map all valid values of the input
priority scheme (the CORBA Priority scheme or the native priority scheme,
respectively.) This allows mappings to be produced that do not use all values of the
native priority scheme of a particular scheduler and/or that do not use all values of the
CORBA Priority scheme.

When the ORB receives a FALSE return value from a mapping operation that is called
as part of the processing of a CORBA invocation, processing of the invocation
proceeds no further. A DATA_CONVERSION system exception (with a Standard
Minor Exception Code of 2) is raised to the application making the invocation. Note
that it may not be possible to raise an exception to the application if the failure occurs
on a call to a mapping operation made on the server side of a oneway invocation.

A Real-time ORB cannot assume that the priority mapping is idempotent. Users should
be aware that a mapping that produces different results for the same inputs will make
the goal of a schedulable system harder to obtain. Users may choose to implement a
priority mapping that changes (through other, user specified interfaces). Users should
however note that post-initialization changes to the mapping may well compromise the
ORB’s ability to deliver a consistently schedulable system.

2.6 Real-time Current

The RTCORBA::Current interface, derived from CORBA::Current, provides access
to the CORBA Priority (and hence indirectly to the native priority also) of the current
thread. The application can obtain an instance of Current by invoking the
CORBA::ORB::resolve_initial_references(“RTCurrent”) operation.

A Real-time CORBA Priority may be associated with the current thread, by setting the
priority attribute of the RTCORBA::Current object:

//IDL
module RTCORBA {

local interface Current : CORBA::Current {
attribute Priority base_priority;

};

};

A BAD_PARAM system exception shall be thrown if an attempt is made to set the
priority to a value outside the range 0 to 32767.

When the attribute is set to a valid Real-time CORBA Priority value, the value is
immediately used to set the base native priority of the thread. The native priority value
to use is determined by calling PriorityMapping::to_native on the installed
PriorityMapping. The native thread priority shall be set before the set attribute call
returns.
January 2005 Real-time CORBA: Real-time Current 2-9

2

If the to_native call returns FALSE or if the returned native thread priority is illegal
for the particular underlying RTOS, then a Real-time ORB shall raise a
DATA_CONVERSION system exception (with a Standard Minor Exception Code
of 2). In this case the priority attribute shall retain its value prior to the set attribute
call.

Once a thread has a CORBA Priority value associated with it, the behavior when it
makes an invocation upon a CORBA Object depends on the value of the
PriorityModelPolicy of that target object.

Retrieving the value of this attribute returns the last value that was set from the current
thread. If this attribute has not previously been set for the current thread, attempting to
retrieve the value causes an INITIALIZE System Exception to be raised.

2.7 Real-time CORBA Priority Models

Real-time CORBA supports two models for the coordination of priorities across a
system. These two models provide two, alternate answers to the question: Where does
the priority at which the servant code executes come from? They are:

• Client Propagated Priority Model

• Server Declared Priority Model

These two models are described in Section 2.7.3, “Client Propagated Priority Model,”
on page 2-12 and Section 2.7.4, “Server Declared Priority Model,” on page 2-13,
respectively. The model to be used is selected by the PriorityModelPolicy described
first.

2.7.1 PriorityModelPolicy

The Priority Model is selected and configured by use of the PriorityModelPolicy:

//IDL
module RTCORBA {

// Priority Model Policy
const CORBA::PolicyType

PRIORITY_MODEL_POLICY_TYPE = 40;

enum PriorityModel {
CLIENT_PROPAGATED,
SERVER_DECLARED

};

local interface PriorityModelPolicy : CORBA::Policy {
2-10 Real-time CORBA, v1.2 January 2005

2

readonly attribute PriorityModel priority_model;
readonly attribute Priority server_priority;

};

};

When the Server Declared Model is selected for a given POA, the server_priority
attribute indicates the priority that will be assigned by default to CORBA Objects
managed by that POA. This priority can be overridden on a per-Object Reference
basis, as described in a sub-section below.

When the Client Propagated Model is selected, the server_priority attribute indicates
the priority to be used for invocations from non-Real-time CORBA ORBs; that is,
where there is no RTCorbaPriority ServiceContext on the request.

2.7.2 Scope of PriorityModelPolicy

The PriorityModelPolicy is applied to a Real-time POA at the time of POA creation.
This is either through an ORB level default having previously been set or by including
it in the policies parameter to create_POA. An instance of the PriorityModelPolicy
is created with the create_priority_model_policy operation. The attributes of the
policy are initialized with the parameters of the same name.

//IDL
module RTCORBA {

local interface RTORB {
...
PriorityModelPolicy create_priority_model_policy (

in PriorityModel priority_model,
in Priority server_priority

);
};

};

The PriorityModelPolicy is a client-exposed policy; that is, propagated from the
server to the client in IORs. It is propagated in a PolicyValue in a TAG_POLICIES
Profile Component, as specified by the CORBA QoS Policy Framework.

When an instance of PriorityModelPolicy is propagated, the PolicyValue’s ptype
has the value PRIORITY_MODEL_POLICY_TYPE and the pvalue is a CDR
encapsulation containing an RTCORBA::PriorityModel and an
RTCORBA::Priority.

Note – Client-exposed policies and the mechanism for their propagation are defined in
the CORBA Messaging specification (see the Common Object Request Broker
Architecture (CORBA) specification, Messaging chapter).
January 2005 Real-time CORBA: Real-time CORBA Priority Models 2-11

2

The PriorityModelPolicy is propagated so that the client ORB knows which Priority
Model the target object is using. This allows it to determine whether to send the Real-
time CORBA priority with invocations on that object, and, in the case that the Server
Declared model is used in combination with Priority Banded Connections, allows it to
select the band connection to invoke over based on the declared priority in the tagged
component.

The client may not override the PriorityModelPolicy.

2.7.3 Client Propagated Priority Model

If the target object supports the CLIENT_PROPAGATED value of the
PriorityModelPolicy, the CORBA Priority is carried with the CORBA invocation
and is used to ensure that all threads subsequently executing on behalf of the
invocation run at the appropriate priority. The propagated CORBA Priority becomes
the CORBA Priority of any such threads. These threads run at a native priority mapped
from that CORBA Priority. The CORBA Priority is also passed back from server to
client, so that it can be used to control the processing of the reply by the client ORB.

The CORBA Priority is propagated from client to server, and back again, in a CORBA
Priority service context, which is passed in the invocation request and reply messages.

module IOP {

 const ServiceId RTCorbaPriority = 10;

};

The context_data contains the RTCORBA::Priority value as a CDR encapsulation
of an IDL short type.

Note – The RTCorbaPriority const should be added to a future version of GIOP.

The thread that runs the servant code, initially has the CORBA Priority of the invoking
thread. Therefore if, as part of the processing of this request it makes CORBA
invocations to other objects, these onward invocations will be made with the same
CORBA Priority. If the CORBA Priority of the thread running the servant code is
changed by the application, any subsequent onward invocations will be made with this
new priority.

Note that priorities may be changed implicitly, by the platform (RT ORB + RTOS)
whilst the servant code is executing due to priority inheritance.
2-12 Real-time CORBA, v1.2 January 2005

2

2.7.4 Server Declared Priority Model

An object using the Server Declared Priority Model will have published its CORBA
Priority in its object reference. When such an object is the target of an invocation the
CORBA Priority at which the (remote) servant code will execute is available to the
client-side ORB. The client-side ORB may use this knowledge internally. For example,
in conjunction with priority banded connections.

Note – Client-side ORB execution to support an invocation should run at the priority
of the client making the invocation. The extent to which this is achieved is a matter for
implementation.

The client’s Real-time CORBA Priority value is not passed with the invocation, in a
service context, as it is in the Client Priority Propagation Model. A Real-time CORBA
Priority is not passed in a reply message either.

Server-side threads running on behalf of the invocation run at a native priority mapped
from the Real-time CORBA Priority associated with that CORBA Object, which is
given in the server_priority attribute of the PriorityModelPolicy used at its
creation.

Where an object, S1, using the Server Declared Priority Model makes invocations of
its own upon another target object, S2, that uses the Client Propagated Priority Model,
the priority propagated will be that of S1 and not that of S1’s client. If the CORBA
Priority of the thread executing S1’s code is changed by the application, any
subsequent onward invocations will be made with this new priority.

Note that priorities may be changed implicitly by the platform (RT ORB + RTOS)
while the servant code is executing due to priority inheritance.

2.7.5 Setting Server Priority on a per-Object Reference Basis

The server priority assigned under the Server Declared Priority Model, by the
server_priority attribute of the PriorityModelPolicy, can be overridden on a per-
Object Reference basis. This is achieved by assigning the alternate server priority at
the time of Object Reference creation or servant activation, using one of four
additional operations, which are provided by the Real-time CORBA POA,
RTPortableServer::POA. Thereafter, the ORB shall ensure that the servant code is
run at a native thread priority corresponding to the CORBA priority supplied as input
to these operations.

// IDL
module RTPortableServer {

local interface POA : PortableServer::POA {
January 2005 Real-time CORBA: Real-time CORBA Priority Models 2-13

2

Object create_reference_with_priority (
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority)

raises (WrongPolicy);

Object create_reference_with_id_and_priority (
in PortableServer::ObjectId oid,
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority)

raises (WrongPolicy);

PortableServer::ObjectId activate_object_with_priority (
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority)

raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id_and_priority (
in PortableServer::ObjectId oid,
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority)

raises (ServantAlreadyActive,
ObjectAlreadyActive, WrongPolicy);

};

};

If the priority parameter of any of the above operations is not a valid CORBA priority
or if it fails to match the priority configuration for resources assigned to the POA, then
the ORB shall raise a BAD_PARAM system exception.

For each of the above operations, if the POA does not support the
SERVER_DECLARED option for the PriorityModelPolicy, then the ORB shall
raise a WrongPolicy user exception.

For each of the above operations, if the POA supports the IMPLICIT_ACTIVATION
option for the ImplicitActivationPolicy, then the ORB shall raise a WrongPolicy
user exception. This relieves an ORB implementation of the need to retrieve the target
object’s priority from “somewhere” when a request arrives for an inactive object.

If the activate_object_with_id_and_priority operation is invoked with a different
priority to an earlier invocation of one of the create reference with priority operations,
for the same object, then the ORB shall raise a BAD_INV_ORDER system
exception (with a Standard Minor Exception Code of 18). If the priority value is the
same, then the operation will be successful.

In all other respects the semantics of the corresponding; that is, without the name
extensions “_with_priority” and “_and_priority” PortableServer::POA
operations shall be observed.
2-14 Real-time CORBA, v1.2 January 2005

2

2.8 Priority Transforms

Real-time CORBA supports the installation of user-defined Priority Transforms, to
modify the CORBA Priority associated with an invocation during the processing of the
invocation by a server. Use of these Priority Transforms allows application designers
to implement Real-time CORBA systems using priority models different from either
the Client Propagated or Server Declared priority models, described above.

There are two points at which a Priority Transform may affect the CORBA Priority
associated with an invocation:

• During the invocation up call (after the invocation has been received at the server
but before the servant code is invoked). This is referred to as an ‘inbound’ Priority
Transform, and will occur before the first time the server-side ORB uses the
RTCORBA::Priority value to obtain a native priority value, via a to_native
operation on the Priority Mapping.

• At the time of making an ‘onward’ CORBA invocation, from servant application
code. This is referred to as an ‘outbound’ Priority Transform.

Priority Transforms are user-provided functions that map one RTCORBA::Priority
value to another RTCORBA::Priority value. In addition to the input priority value,
the ObjectId of the target object is made available to the inbound transform while the
ObjectId of the invoking object is made available to the outbound transform. For
invocations not made from another CORBA Object; that is, made from an application
thread, the outbound transform is still called, with a null value for the ObjectId
parameter. The transform implementor has the option of leaving the priority
unmodified in this case.

A pair of priority transforms, one at each of these two points, may be required to
implement a particular priority protocol. For example, to implement a particular
variety of distributed priority ceiling protocol, the inbound transform could add a
constant offset to the CORBA Priority, and the outbound transform could subtract the
same offset from the CORBA Priority, so that the onward invocation is made with the
original CORBA Priority.

Priority Transforms are presented to the Real-time ORB as the implementation of the
transform_priority operation for an instance of the locality constrained CORBA
interface type RTCORBA::PriorityTransform:

// IDL
module RTCORBA {

native PriorityTransform;

};

Language mappings for this IDL native are defined for C, C++, Ada, and Java later in
this section.
January 2005 Real-time CORBA: Priority Transforms 2-15

2

The PriorityTransform is a programming language object rather than a CORBA
Object and therefore the normal mechanism for coupling an implementation to the
code that uses it (an object reference) doesn’t apply. This specification does not
prescribe a particular mechanism to achieve this coupling. A Real-time ORB shall
provide a mechanism to allow users to install a priority transform.

Note – Possible solutions include: recourse to build/link tools and provision of
proprietary interfaces. Other solutions are not precluded.

2.8.1 C Language Binding for PriorityTransform

The use of the the_priority parameter is that of an IDL inout parameter.

/* C */
CORBA_boolean RTCORBA_PriorityTransform_inbound (

RTCORBA_Priority* the_priority,
PortableServer_ObjectId oid);

CORBA_boolean RTCORBA_PriorityTransform_outbound (
RTCORBA_Priority* the_priority,
PortableServer_ObjectId oid);

2.8.2 C++ Language Binding for PriorityTransform

The use of the the_priority parameter is that of an IDL inout parameter.

// C++
namespace RTCORBA {

class PriorityTransform {
public:

virtual CORBA::Boolean inbound (
RTCORBA::Priority &the_priority,
PortableServer::ObjectId oid);

virtual CORBA::Boolean outbound (
RTCORBA::Priority &the_priority,
PortableServer::ObjectId oid);

};
};
2-16 Real-time CORBA, v1.2 January 2005

2

2.8.3 Ada Language binding for PriorityTransform

-- Ada
package RTCORBA.PriorityTransform is

type Object is tagged private;

procedure Inbound (
Self : in Object ;
The_Priority : in out RTCORBA.Priority ;
Oid : in PortableServer.ObjectId ;
Returns : out CORBA.Boolean) ;

procedure Outbound (
Self : in Object ;
The_Priority : in out RTCORBA.Priority ;
Oid : in PortableServer.ObjectId ;
Returns : out CORBA.Boolean) ;

end RTCORBA.PriorityTransform ;

2.8.4 Java Language binding for PriorityTransform

The use of the the_priority parameter is that of an IDL inout parameter.

// Java
package org.omg.RTCORBA;

public class PriorityTransform {

boolean inbound (
org.omg.CORBA.ShortHolder the_priority,
org.omg.PortableServer.ObjectId oid

);
boolean outbound (

org.omg.CORBA.ShortHolder the_priority,
org.omg.PortableServer.ObjectId oid

);
}

2.8.5 Semantics

Rather than raising a CORBA exception upon failure, a boolean return value is used to
indicate Transform failure or success. If the priority passed in can be transformed,
TRUE is returned and the value is returned as the out parameter. If it cannot be
transformed, FALSE is returned and the value of the out parameter is undefined.
January 2005 Real-time CORBA: Priority Transforms 2-17

2

Both the inbound and outbound functions must return FALSE when passed a priority
that is outside of the valid priority range for a CORBA Priority, 0-32767; that is, a
negative value. If the transform doesn’t recognize the ObjectId, then it should return
FALSE.

Neither inbound nor outbound is obliged to transform all valid CORBA priority values.
However, users should note that failure to do so will result in invocation at that priority
failing.

When the ORB receives a FALSE return value from a Transform operation that is
called as part of the processing of a CORBA invocation, processing of the invocation
proceeds no further. An ORB that receives a FALSE return from a transform function
shall, if possible, raise an UNKNOWN system exception on the application
invocation. Note that it may not be possible to raise an exception to the application if
the failure occurs on a call to a Transform operation made on the server side of a
oneway invocation.

A Real-time ORB cannot assume that the priority Transform is idempotent. Users
should be aware that a Transform that produces different results for the same inputs
will make the goal of a schedulable system harder to obtain. Users may choose to
implement a priority Transform that changes (through other, user specified interfaces).
Users should however note that post-initialization changes to the Transform may well
compromise the ORB’s ability to deliver a consistently schedulable system.

Note that Priority Transforms may be used with either the Client Propagated or the
Server Declared Priority Models. If the Client Propagated model is used, the input
priority to the inbound transform shall be the RTCORBA::Priority propagated from
the client. If the Server Declared model is used, the input priority to the inbound
transform will be the RTCORBA::Priority assigned to the target object. For the
outbound transform, the input priority shall be the derived CORBA Priority.

2.9 Mutex Interface

Real-time CORBA defines the following Mutex interface:

//IDL
module RTCORBA {

local interface Mutex {

void lock();
void unlock();
boolean try_lock(in TimeBase::TimeT max_wait);

// if max_wait = 0 then return immediately
};

local interface RTORB {
2-18 Real-time CORBA, v1.2 January 2005

2

...
Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);
...

};
};

A new RTCORBA::Mutex object is obtained using the create_mutex() operation of
RTCORBA::RTORB.

A Mutex object has two states: locked and unlocked. Mutex objects are created in the
unlocked state. When the Mutex object is in the unlocked state the first thread to call
the lock() operation will cause the Mutex object to change to the locked state.
Subsequent threads that call the lock() operation while the Mutex object is still in the
locked state will block until the owner thread unlocks it by calling the unlock()
operation.

Note – If a Real-time ORB is to run on a shared memory multi-processor, then the
Mutex implementation must ensure that the lock operations are atomic to all
processors.

The try_lock() operation works like the lock() operation except that if it does not get
the lock within max_wait time it returns FALSE. If the try_lock() operation does get
the lock within the max_wait time period, it returns TRUE.

The mutex returned by create_mutex must have the same priority inheritance
properties as those used by the ORB to protect resources. If a Real-time CORBA
implementation offers a choice of priority inheritance protocols, or offers a protocol
that requires configuration, the selection or configuration will be controlled through an
implementation specific interface.

While a thread executes in a region protected by a mutex object, it can be preempted
only by threads whose active native thread priorities are higher than either the ceiling
or inherited priority of the mutex object.

Note – The protocol implemented by the Mutex (which priority inheritance or priority
ceiling protocol) is not prescribed. Real-time CORBA is intended for a wide range of
RTOSs and the choice of protocol will often be predicated on what the RTOS does.

2.10 Threadpools

Real-time CORBA Threadpools are managed using the following IDL types and
operations of the Real-time CORBA RTORB interface:
January 2005 Real-time CORBA: Threadpools 2-19

2

//IDL
module RTCORBA {

// Threadpool types
typedef unsigned long ThreadpoolId;

struct ThreadpoolLane {
Priority lane_priority;
unsigned long static_threads;
unsigned long dynamic_threads;

};

typedef sequence <ThreadpoolLane> ThreadpoolLanes;

// Threadpool Policy
const CORBA::PolicyType THREADPOOL_POLICY_TYPE = 41;

local interface ThreadpoolPolicy : CORBA::Policy {
readonly attribute ThreadpoolId threadpool;

};

local interface RTORB {
...
ThreadpoolPolicy create_threadpool_policy (

in ThreadpoolId threadpool
);

exception InvalidThreadpool {};

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

ThreadpoolId create_threadpool_with_lanes (
in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool (in ThreadpoolId threadpool)
raises (InvalidThreadpool);

};
};
2-20 Real-time CORBA, v1.2 January 2005

2

The create_threadpool and create_threadpool_with_lanes operations allow two
different styles of threadpool to be created: with or without ‘lanes,’ or division into
sub-sets of threads at assigned different RTCORBA::Priority values. The two styles
require some different parameters to be configured, as described in the two following
sub-sections.

The configuration of stacksize and request buffering is common to both styles. The
stacksize parameter is used to specify the stack size, in bytes, that each thread must
have allocated. The configuration of request buffering is described in a sub-section
below.

When a threadpool is successfully created, using either operation, a ThreadpoolId
identifier is returned. This can later be passed to destroy_threadpool to destroy the
threadpool. If a threadpool cannot be created because the parameters passed in do not
specify a valid threadpool configuration, a BAD_PARAM system exception is raised.
If a threadpool cannot be created because there are insufficient operating system
resources, a NO_RESOURCES system exception is raised.

An instance of the ThreadpoolPolicy is created with the
create_threadpool_policy operation. The attribute of the policy is initialized with
the parameter of the same name.

The same threadpool may be associated with a number of different POAs, by using a
ThreadpoolPolicy containing the same ThreadpoolId in each POA_create.

2.10.1 Creation of Threadpool without Lanes

To create a threadpool without lanes the following parameters must be configured:

• static_threads - specifies the number of threads that will be pre-created and
assigned to that threadpool at the time of its creation. A NO_RESOURCES
exception is raised if this number of threads cannot be created, in which case no
threads are created and no threadpool is created.

• dynamic_threads - specifies the number of additional threads that may be created
dynamically (individually and upon demand) when the static threads are all in use
and an additional thread is required to service an invocation. Whether a dynamically
created thread is destroyed as soon as it is not in use, or is retained forever or until
some condition is met is an implementation issue.

If dynamic_threads is zero, no additional threads may be dynamically created,
and only the static threads are available. In either case, once the maximum number
of threads (static plus any dynamic) has been reached, no additional threads will be
added to the threadpool. Any additional invocations will wait for one of the existing
threads to become available.

• default_priority - specifies the CORBA priority that the static threads will be
created with. (Dynamic threads may be created directly at the priority they are
required to run at to handle the invocation they were created for.)
January 2005 Real-time CORBA: Threadpools 2-21

2

2.10.2 Creation of Threadpool with Lanes

To create a threadpool with lanes, a lanes parameter must be configured, instead of the
static_threads, dynamic_threads, and default_priority parameters. The lanes
specify a number of ThreadpoolLanes, each of which must have the following
parameters specified:

• lane_priority - specifies the CORBA Priority that all threads in this lane (both
static, and dynamically allocated ones) will run at.

• static_threads - specifies the number of threads that will be pre-created, but in
this case allocated to this specific lane, rather than the pool as a whole.

• dynamic_threads - specifies the number of dynamic threads that may be
allocated to this lane. The relationship between static and dynamic threads is the
same as in the case of threadpools without lanes: it determines whether and if so
how many additional threads may be dynamically created. But in this case the
dynamic threads are specific to this lane and are created with the CORBA Priority
specified by lane_priority.

Additionally, to create a threadpool with lanes, the allow_borrowing boolean
parameter must be configured to indicate whether the borrowing of threads by one lane
from a lower priority lane is permitted or not.

If thread borrowing is permitted, when a lane of a given priority exhausts its maximum
number of threads (both static and dynamic) and requires an additional thread to
service an additional invocation, it may “borrow” a thread from a lane with a lower
priority. The borrowed thread has its CORBA Priority raised to that of the lane that
requires it. When the thread is no longer required, its priority is lowered once again to
its previous value, and it is returned to the lower priority lane. The thread will be
borrowed from the highest priority lane with threads available. If no lower priority
lanes have threads available, the lane wishing to borrow a thread must wait until one
becomes free (which may be one of its own.)

More generally, for both threadpools with and without lanes, if the priority of a thread
is changed while dispatching an invocation, it is restored to its original priority before
returning it to the threadpool.

2.10.3 Request Buffering

A Threadpool can be configured to buffer requests. That is when all of the available
thread concurrency (static plus dynamic threads) is in use and when any capability to
borrow threads has been exhausted then additional requests received are buffered.

If request buffering by the Threadpool is not required, the boolean parameter
allow_request_buffering is set to FALSE, and the values of the
max_buffered_requests and max_request_buffer_size parameters are
disregarded. If request buffering is required, allow_request_buffering is set to
TRUE, and the max_buffered_requests and max_request_buffer_size
parameters are used as follows:
2-22 Real-time CORBA, v1.2 January 2005

2

max_buffered_requests indicates the maximum number of requests that will be
buffered by this Threadpool. max_request_buffer_size indicates the maximum
amount of memory, in bytes, that the buffered requests may use. Both properties of a
Threadpool are evaluated to determine the number of requests that will be buffered. An
incoming request is not buffered by the Threadpool if either the number of buffered
requests reaches max_buffered_requests or buffering the request would take the
total amount of buffer memory used past max_request_buffer_size.

Either parameter may be set to zero, to indicate that that property is to be taken as
unbounded. Hence, just the number of requests or just the maximum amount of buffer
memory can be used to limit the buffering.

If, at the time of Threadpool creation, the ORB can determine that it does not have the
resources to support the requested configuration, the Threadpool creation operation
will fail with a NO_RESOURCES system exception.

2.10.4 Scope of ThreadpoolPolicy

The ThreadpoolPolicy may be applied at the POA and ORB level. A POA may only
be associated with one threadpool, hence only one ThreadpoolPolicy should be
included in the PolicyList specified at POA creation.

A ThreadpoolPolicy may be applied at the ORB level, by using the
set_policy_overrides operation of the CORBA PolicyManager interface. When
the policy is applied at the ORB level, it assigns the indicated threadpool as the default
threadpool to use in the subsequent creation of POAs, until the default is again
changed. The default is used if a ThreadpoolPolicy is not specified in the policies
used at the time of POA creation.

2.11 Implicit and Explicit Binding

Real-time CORBA makes use of the CORBA::Object::validate_connection
operation to allow client applications to control when a binding is made on an object
reference.

Note – validate_connection and the definition of binding that it uses are defined in
the Common Object Request Broker Architecture (CORBA) specification, CORBA
Messaging chapter.

Using validate_connection on a currently unbound object reference causes binding
to occur. Real-time CORBA refers to the use of validate_connection to force a
binding to be made as ‘explicit binding.’ If an object reference is not explicitly bound,
binding will occur at an ORB specific time, which may be as late as the time of the
first invocation upon that object reference. This is referred to as ‘implicit binding,’ and
is the default CORBA behavior unless an explicit bind is performed.

Real-time applications may wish to use explicit binding to force any binding related
overhead (including the passing of messages between the client and server) to be
incurred ahead of the first invocation on an object reference. This can improve the
January 2005 Real-time CORBA: Implicit and Explicit Binding 2-23

2

performance and predictability of the first invocation, and hence the predictability of
the application as a whole. The explicit bind may, for example, be performed during
system initialization.

Once an explicit binding has been set up, via validate_connection, it is possible that
the underlying transport connection (or other associated resources) may fail or may be
reclaimed by the ORB. Rather than mandate that this shall not happen, it is left as a
Quality of Implementation issue as to what guarantees of enduring availability an
explicit binding provides.

The client-side applicable Real-time CORBA policies are applied to a binding in the
same way as any other client-side applicable CORBA policies: using the
set_policy_overrides operations at the ORB, Current, or Object scope (as defined in
the CORBA QoS Policy Framework.)

The client-side applicable Real-time CORBA policies have the same effect whether
they are applied to an implicit or explicit bind.

2.12 Priority Banded Connections

Priority banded connections are administered through the use of the Real-time CORBA
PriorityBandedConnectionsPolicy Policy type:

// IDL
module RTCORBA {

struct PriorityBand {
Priority low;
Priority high;

};

typedef sequence <PriorityBand> PriorityBands;

// PriorityBandedConnectionPolicy
const CORBA::PolicyType

PRIORITY_BANDED_CONNECTION_POLICY_TYPE = 45;

local interface PriorityBandedConnectionPolicy : CORBA::Policy {

readonly attribute PriorityBands priority_bands;

};
2-24 Real-time CORBA, v1.2 January 2005

2

local interface RTORB {
...
PriorityBandedConnectionPolicy

create_priority_banded_connection_policy (
in PriorityBands priority_bands

);
};

};

An instance of the PriorityBandedConnectionPolicy is created with the
create_priority_banded_connection_policy operation. The attribute of the policy
is initialized with the parameter of the same name.

The PriorityBands attribute of the policy may be assigned any number of
PriorityBands. PriorityBands that cover a single priority (by having the same
priority for their low and high values) may be mixed with those covering ranges of
priorities. No priority may be covered more than once. The complete set of priorities
covered by the bands do not have to form one contiguous range, nor do they have to
cover all CORBA Priorities. If no bands are provided, then a single connection will be
established.

Once the binding has been successfully made, an attempt to make an invocation with a
Real-time CORBA Priority, which is not covered by one of the bands will fail. The
ORB shall raise a NO_RESOURCES system exception (with a Standard Minor
Exception Code of 2). Hence, a policy specifying only one band can be used to restrict
a client’s invocations to a range of priorities.

Note that the origin of the Real-time CORBA Priority value that is used to select
which banded connection to use depends on the Priority Model of the target object.
When invoking on an Object that is using the Client Propagated Priority Model, the
client-set Real-time CORBA Priority is used to choose the band. Whereas, invoking on
an Object that is using the Server Declared Priority Model, the server priority is used,
as published in the IOR.

2.12.1 Scope of PriorityBandedConnectionPolicy

The PriorityBandedConnectionPolicy is applied on the client-side only, at the time
of binding to a CORBA Object. However, the policy may be set from the client or
server side. On the server, it may be applied at the time of POA creation, in which case
the policy is client-exposed and is propagated from the server to the client in
interoperable Object References. It is propagated in a PolicyValue in a
TAG_POLICIES Profile Component, as specified by the CORBA QoS Policy
Framework.

When an instance of PriorityBandedConnectionPolicy is propagated, the
PolicyValue’s ptype has the value
PRIORITY_BANDED_CONNECTION_POLICY_TYPE and the pvalue is a CDR
encapsulation containing an RTCORBA::PriorityBands type, which is a sequence of
January 2005 Real-time CORBA: Implicit and Explicit Binding 2-25

2

instances of RTCORBA::PriorityBand. Each RTCORBA::PriorityBand is in turn
represented by a pair of RTCORBA::Priority values, which represent the low and high
values for that band.

If the PriorityBandedConnectionPolicy is set on both the server and client-side, an
attempt to bind will fail with an INV_POLICY system exception. The client
application may use validate_connection to establish that this was the cause of
binding failure and may set the value of its copy of the policy to an empty
PriorityBands and attempt to rebind using just the configuration from the server-
provided copy of the policy.

2.12.2 Binding of Priority Banded Connection

Whether bands are configured from the client or server-side, the banded connection is
always initiated from the client-side.

In order to allow the server-side ORB to identify the priority band that each connection
is associated with, information on that connection’s band range is passed with first
request on each banded connection. This is done by means of an
RTCorbaPriorityRange service context:

// IDL
module IOP {

const ServiceId RTCorbaPriorityRange = 11;

};

The context_data contains the CDR encapsulation of two RTCORBA::Priority
values (two short types.) The first indicates the lowest priority and the second the
highest priority in the priority band handled by the connection.

Once a priority band has been associated with a connection it cannot be reconfigured
during the life-time of the connection. If an ORB receives a second, or subsequent,
RTCorbaPriorityRange service context containing a different priority band
definition, then it shall raise a BAD_INV_ORDER system exception (with a
Standard Minor Exception Code of 18). If the priority band is the same as the
connection’s configuration, then processing shall proceed.

In case of an explicit bind (via validate_connection), this service context is passed
on a request message for a ‘_bind_priority_band’ implicit operation. This implicit
operation is defined for Real-time CORBA only at this time. It is possible that non-
Real-time ORB might receive such a request message. If so it is anticipated (but not
prescribed) that it will reply with a BAD_OPERATION system exception with
standard minor code 2. A future version of IIOP should formalize Real-time CORBA’s
use of the ‘_bind_priority_band’ operation name in a GIOP Request message. Note
that there is no API exposed for this implicit operation (unlike, for example, ‘_is_a’).
2-26 Real-time CORBA, v1.2 January 2005

2

When sending a ‘_bind_priority_band’ request, a Real-time ORB shall marshall no
parameters and the object key of the object being bound to shall be used as the request
‘target.’ The request shall be handled by the ORB, no servant implementation of this
implicit operation will be invoked.

When a Real-time-ORB receives a _bind_priority_band Request it should allocate
resources to the connection and configure those resources appropriately to the priority
band indicated in the ServiceContext. Having done this the ORB shall send a
“SUCCESS” Reply message. If the priority band passed is not well-formed; that is, it
contains a negative number or the first value is higher than the second, then the ORB
shall raise a BAD_PARAM system exception. If either of the priorities cannot be
mapped onto native thread priorities; that is, to-native returns FALSE, then the ORB
shall raise a DATA_CONVERSION system exception (with a Standard Minor
Exception Code of 2). If the priority band is inconsistent with the ORB’s priority
configuration, then the ORB shall raise an INV_POLICY system exception. If the
server-side ORB cannot configure resources to support a well-formed band
specification, then a NO_RESOURCES exception shall be returned.

A _bind_priority_band request message is sent on the connection for each band and
must complete successfully; that is, yield a SUCCESS Reply message for all
connections, before validate_connection returns success. If any one
_bind_priority_band fails, then the entire banded connection binding fails. In this
way, validate_connection sets up all the banded connections at time of binding.

If the service context is omitted on a _bind_priority_band request message, then the
ORB shall raise a BAD_PARAM system exception.

A bind_priority_band is not performed in the case of an implicit bind, as it occurs at
a time when a request is about to be sent on the connection representing the priority
band that covers the current invocation priority. There is no point delaying the
application request. Instead, the ‘RTCorbaPriorityRange’ service context is passed
on this first invocation request.

Thus, the implicit binding of a banded connection has the behavior that each band
connection is only set up the first time an invocation is made from the client with an
invocation priority in that band. This behavior offers consistency: the first invocation
made on each band incurs any latency and predictability cost associated with binding.
If no invocations are ever made in the priority range of a given band, its connection
will never be established.

2.13 PrivateConnectionPolicy

This policy allows a client to obtain a private transport connection, which will not be
multiplexed (shared) with other client-server object connections.
January 2005 Real-time CORBA: PrivateConnectionPolicy 2-27

2

// IDL
module RTCORBA {

// Private Connection Policy

const CORBA::PolicyType
PRIVATE_CONNECTION_POLICY_TYPE = 44;

local interface PrivateConnectionPolicy : CORBA::Policy {};

local interface RTORB {
...
PrivateConnectionPolicy create_private_connection_policy (
);

};

};

An instance of the PrivateConnectionPolicy is created with the
create_private_connection_policy operation. The policy has no attributes.

Note that it is not possible to explicitly request a multiplexed connection. Whether
multiplexing is appropriate or not is a protocol specific issue, and hence an ORB
implementation issue. By not requesting a private connection the application indicates
to the ORB that a multiplexed connection would be acceptable. It is up to the ORB
implementation to make use of this indication.

2.14 Invocation Timeout

Real-time CORBA uses the existing CORBA timeout policy,
Messaging::RelativeRoundtripTimeoutPolicy, to allow a timeout to be set for the
receipt of a reply to an invocation. The policy is used where it is set, to set a timeout
in the client ORB. If a timeout expires, the server is not informed. Real-time CORBA
does not require the policy to be propagated with the invocation, which the
RelativeRoundtripTimeoutPolicy specification allows in support of message
routers.

Note – The RelativeRoundtripTimeoutPolicy is specified in the Common Object
Request Broker Architecture (CORBA) specification, CORBA Messaging chapter.

2.15 Protocol Configuration

Real-time CORBA uses two Policy types, based on a common protocol configuration
framework, to enable the selection and configuration of protocols on the server and
client side of the ORB.
2-28 Real-time CORBA, v1.2 January 2005

2

2.15.1 ServerProtocolPolicy

The ServerProtocolPolicy policy type is used to select and configure
communication protocols on the server-side of Real-time CORBA ORBs.

// IDL
module RTCORBA {

local interface ProtocolProperties {};

struct Protocol {
IOP::ProfileId protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};

typedef sequence <Protocol> ProtocolList;

// Server Protocol Policy
const CORBA::PolicyType SERVER_PROTOCOL_POLICY_TYPE = 42;

local interface ServerProtocolPolicy : CORBA::Policy {
readonly attribute ProtocolList protocols;

};

local interface RTORB {
...
ServerProtocolPolicy create_server_protocol_policy (

in ProtocolList protocols
);

};

};

An instance of the ServerProtocolPolicy is created with the
create_server_protocol_policy operation. The attribute of the policy is initialized
with the parameter of the same name.

A ServerProtocolPolicy allows any number of protocols to be specified and,
optionally, configured at the same time. The order of the Protocols in the
ProtocolList indicates the order of preference for the use of the different protocols.
Information regarding the protocols must be placed into IORs in that order, and the
client should take that order as the default order of preference for choice of protocol to
bind to the object via.

The type of protocol is indicated by an IOP::ProfileId (from the specification of the
IOR), which is an unsigned long. This means that a protocol is defined as a specific
pairing of an ORB protocol (such as GIOP) and a transport protocol (such as TCP.)
January 2005 Real-time CORBA: Protocol Configuration 2-29

2

Hence IIOP would be selected, rather than GIOP plus TCP being selected separately.
IIOP in particular is represented by the value TAG_INTERNET_IIOP (or the value 0,
that it is defined as.)

A Protocol type contains a ProfileId plus two ProtocolProperties, one each for the
ORB protocol and the transport protocol.

The properties are provided to allow the configuration of protocol specific
configurable parameters. Specific protocols have their own protocol configuration
interface that inherits from the RTCORBA::ProtocolProperties interface. A nil
reference for either ProtocolProperties indicates that the default configuration for
that protocol should be used. (Each protocol will have an implementation specific
default configuration, that may be overridden by applying the ServerProtocolPolicy
at ORB scope. See the Policy Scope sub-section, below.)

//IDL
module RTCORBA {

local interface TCPProtocolProperties : ProtocolProperties {
attribute long send_buffer_size;
attribute long recv_buffer_size;
attribute boolean keep_alive;
attribute boolean dont_route;
attribute boolean no_delay;

};
local interface RTORB {

...
TCPProtocolProperties create_tcp_protocol_properties (

in long send_buffer_size,
in long recv_buffer_size,
in boolean keep_alive,
in boolean dont_route,
in boolean no_delay);

};

};

TCP is the only protocol that RT CORBA specifies a ProtocolProperties interface
for. Instances of TCPProtocolProperties may be created by using the
create_tcp_protocol_properties of RTORB. A ProtocolProperties interface is
not specified for GIOP, as GIOP currently has no configurable properties. A
GIOPProtocolProperties type will be defined in the future, if any configurable
properties are added to GIOP.

ProtocolProperties should be defined for any other protocols usable with an RT
CORBA implementation, but unless they are standardized in an OMG specification
their name and contents will be implementation specific. ProtocolProperties for
other protocols may be standardized in the future, and a ProtocolProperties
interface should be specified in the standardization of any other protocol, if it is to be
usable in a portable way with RT CORBA.
2-30 Real-time CORBA, v1.2 January 2005

2

2.15.2 Scope of ServerProtocolPolicy

Applying a ServerProtocolPolicy to the creation of a POA controls the protocols
that references created by that POA will support (and their configuration if non- nil
ProtocolProperties are given.) If no ServerProtocolPolicy is given at POA
creation, the POA will support the default protocols associated with the ORB that
created it. (Note that supplying a ServerProtocolPolicy overrides, rather than
supplementing or sub-setting, the default selection of protocols associated with the
ORB.)

The ORB’s default protocols, and their order of preference, are implementation
specific. The default may be overridden by applying a ServerProtocolPolicy at the
ORB level. As a consequence, portable applications must override this Policy (and all
other defaults) to ensure the same behavior between ORB implementations.

Only one ServerProtocolPolicy should be included in a given PolicyList, and
including more than one will result in an INV_POLICY system exception being
raised.

2.15.3 ClientProtocolPolicy

The ClientProtocolPolicy policy type is used to configure the selection and
configuration of communication protocols on the client-side of Real-time CORBA
ORBs. It is defined in terms of the same RTCORBA::ProtocolProperties type as
the ServerProtocolPolicy:

// IDL
module RTCORBA {

// Client Protocol Policy
const CORBA::PolicyType CLIENT_PROTOCOL_POLICY_TYPE = 43;

local interface ClientProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;

};

local interface RTORB {
...
ClientProtocolPolicy create_client_protocol_policy (

in ProtocolList protocols
);

};

};

An instance of the ClientProtocolPolicy is created with the
create_client_protocol_policy operation. The attribute of the policy is initialized
with the parameter of the same name.
January 2005 Real-time CORBA: Protocol Configuration 2-31

2

When applied to a bind (implicit or explicit), the ClientProtocolPolicy indicates the
protocols that may be used to make a connection to the specified object, in order of
preference. If the ORB fails to make a connection because none of the protocols is
available on the client ORB, an INV_POLICY system exception is raised. If one or
more of the protocols is available but the ORB still fails to make a connection, a
COMM_FAILURE system exception is raised. In both cases no binding is made.

If it is necessary to know which protocol a binding was successfully made via, a single
protocol should be passed into each of a succession of explicit binds until one of them
is successful.

If no ClientProtocolPolicy is provided, then the protocol selection is made by the
ORB based on the target object’s available protocols, as described in its IOR, and the
protocols supported by the client ORB.

2.15.4 Scope of ClientProtocolPolicy

The ClientProtocolPolicy is applied on the client-side, at the time of binding to an
Object Reference. However, the policy may be set on either the client or server-side.
On the server-side, it may be applied at the time of POA creation, in which case the
policy is client-exposed and is propagated from the server to the client in interoperable
Object References. It is propagated in a PolicyValue in a TAG_POLICIES Profile
Component, as specified by the CORBA QoS Policy Framework.

When an instance of ClientProtocolPolicy is propagated, the PolicyValue’s ptype
has the value CLIENT_PROTOCOL_POLICY_TYPE and the pvalue is a CDR
encapsulation containing an RTCORBA::ProtocolList, which is a sequence of
instances of RTCORBA::Protocol. Each RTCORBA::Protocol is in turn represented
by an IOP::ProfileId and two RTCORBA::ProtocolProperties representing the
ORB and transport ProtocolProperties.

The on the wire representation of each ProtocolProperties type is protocol specific.
The representation of the TCPProtocolProperties type is the CDR encoding of two
longs followed by three booleans, to represent the send_buffer_size,
recv_buffer_size, keep_alive, dont_route, and no_delay attributes respectively.

If the ClientProtocolPolicy is set on both the server and client-side, an attempt to
bind will fail with an INV_POLICY system exception. The client application may
use validate_connection to establish that this was the cause of binding failure and
may set the value of its copy of the policy to an empty ProtocolList and attempt to
re-bind using just the configuration from the server-provided copy of the policy.

2.15.5 Protocol Configuration Semantics

Note that the above API only allows policies to be set at POA creation time on the
server-side, and object bind time on the client-side. No API is defined to allow
(re)configuration of any policy after these times.
2-32 Real-time CORBA, v1.2 January 2005

2

The protocol configuration selected at the time of POA creation is used to determine
the server-side configuration that is to be used by the protocol in question for all
connections from clients to objects that have references created by that POA.

However, as the configuration semantics of a protocol (such as whether a particular
property can be configured on a per-connection basis or only globally for that instance
of the protocol) are protocol specific, the exact semantics of protocol configuration via
ProtocolProperties are not specified by Real-time CORBA, and must be specified
on a per-protocol basis.

If a protocol offers a configurable property that can only be configured at some scope
wider than that of the individual POA (say at the scope of the ORB instance), it can
choose either to:

• Change that property at the wider scope when a different value is requested for the
creation of a new POA. This will ensure that the new POA gets the configuration
requested, but will also affect the configuration of new and possibly existing
connections made to other CORBA Objects via the same protocol. The exact scope
and semantics of the property change must be given as part of the documentation of
the ProtocolProperties interface for that protocol.

• Not change the property, but instead raise an INV_POLICY exception and fail to
create the new POA. In this way, the original value of the property is preserved for
the existing references that use it. Once again, this behavior must be covered in the
documentation of the ProtocolProperties interface for that protocol.

Which of the two strategies a protocol uses is an implementation issue.

2.16 Consolidated IDL

// IDL
module IOP {

const ServiceId RTCorbaPriority = 10;
const ServiceId RTCorbaPriorityRange = 11;

};

//File: RTCORBA.idl
#ifndef _RT_CORBA_IDL_
#define _RT_CORBA_IDL_
#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"

#include <orb.idl>
#include <iop.idl>
#include <TimeBase.idl>
#else
import ::CORBA;
import ::IOP;
import ::TimeBase;
#endif
January 2005 Real-time CORBA: Consolidated IDL 2-33

2

// IDL
module RTCORBA {

typedef short NativePriority;

typedef short Priority;

const Priority minPriority = 0;
const Priority maxPriority = 32767;

native PriorityMapping;
native PriorityTransform;

// Threadpool types
typedef unsigned long ThreadpoolId;

struct ThreadpoolLane {
Priority lane_priority;
unsigned long static_threads;
unsigned long dynamic_threads;

};

typedef sequence <ThreadpoolLane> ThreadpoolLanes;

// Priority Model Policy
const CORBA::PolicyType PRIORITY_MODEL_POLICY_TYPE = 40;

enum PriorityModel {
CLIENT_PROPAGATED,
SERVER_DECLARED

};

local interface PriorityModelPolicy : CORBA::Policy {

readonly attribute PriorityModel priority_model;
readonly attribute Priority server_priority;

};

// Threadpool Policy
const CORBA::PolicyType THREADPOOL_POLICY_TYPE = 41;

local interface ThreadpoolPolicy : CORBA::Policy {
readonly attribute ThreadpoolId threadpool;

};

local interface ProtocolProperties {};
2-34 Real-time CORBA, v1.2 January 2005

2

struct Protocol {
IOP::ProfileId protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};

typedef sequence <Protocol> ProtocolList;

// Server Protocol Policy
const CORBA::PolicyType SERVER_PROTOCOL_POLICY_TYPE = 42;

local interface ServerProtocolPolicy : CORBA::Policy {
readonly attribute ProtocolList protocols;

};

// Client Protocol Policy
const CORBA::PolicyType CLIENT_PROTOCOL_POLICY_TYPE = 43;

local interface ClientProtocolPolicy : CORBA::Policy {
readonly attribute ProtocolList protocols;

};

// Private Connection Policy
const CORBA::PolicyType PRIVATE_CONNECTION_POLICY_TYPE = 44;

local interface PrivateConnectionPolicy : CORBA::Policy {};

local interface TCPProtocolProperties : ProtocolProperties {
attribute long send_buffer_size;
attribute long recv_buffer_size;
attribute boolean keep_alive;
attribute boolean dont_route;
attribute boolean no_delay;

};

struct PriorityBand {
Priority low;
Priority high;

};

typedef sequence <PriorityBand> PriorityBands;

// PriorityBandedConnectionPolicy
const CORBA::PolicyType

PRIORITY_BANDED_CONNECTION_POLICY_TYPE = 45;

local interface PriorityBandedConnectionPolicy : CORBA::Policy {
readonly attribute PriorityBands priority_bands;

};
January 2005 Real-time CORBA: Consolidated IDL 2-35

2

local interface Current : CORBA::Current {
attribute Priority the_priority;

};

local interface Mutex {

void lock();
void unlock();
boolean try_lock (in TimeBase::TimeT max_wait);
// if max_wait = 0 then return immediately

};

local interface RTORB {

Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);

exception InvalidThreadpool {};

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

ThreadpoolId create_threadpool_with_lanes (
in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool (in ThreadpoolId threadpool)
raises (InvalidThreadpool);

PriorityModelPolicy create_priority_model_policy (
in PriorityModel priority_model,
in Priority server_priority

);
ThreadpoolPolicy create_threadpool_policy (

in ThreadpoolId threadpool
);
2-36 Real-time CORBA, v1.2 January 2005

2

PriorityBandedConnectionPolicy
create_priority_banded_connection_policy (

in PriorityBands priority_bands
);
ServerProtocolPolicy create_server_protocol_policy (

in ProtocolList protocols
);
ClientProtocolPolicy create_client_protocol_policy (

in ProtocolList protocols
);
PrivateConnectionPolicy create_private_connection_policy (
);

TCPProtocolProperties create_tcp_protocol_properties (
in long send_buffer_size,
in long recv_buffer_size,
in boolean keep_alive,
in boolean dont_route,
in boolean no_delay);

};

}; // End interface RTORB

}; // End module RTCORBA
#endif // _RT_CORBA_IDL_

//File: RTPortableServer.idl
#ifndef _RT_PORTABLE_SERVER_IDL_
#define _RT_PORTABLE_SERVER_IDL_
#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"

#include <PortableServer.idl>
#include <RTCORBA.idl>
#else
import ::PortableServer;
import ::RTCORBA;
#endif

// IDL
module RTPortableServer {

#ifndef _PRE_3_0_COMPILER_
typeprefix RTCORBA "omg.org";

#endif

local interface POA : PortableServer::POA {
January 2005 Real-time CORBA: Consolidated IDL 2-37

2

Object create_reference_with_priority (
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority)

raises (WrongPolicy);

Object create_reference_with_id_and_priority (
in PortableServer::ObjectId oid,
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority)

raises (WrongPolicy);

PortableServer::ObjectId activate_object_with_priority (
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority)

raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id_and_priority (
in PortableServer::ObjectId oid,
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority)

raises (ServantAlreadyActive,
ObjectAlreadyActive, WrongPolicy);

};

};
#endif // _RT_PORTABLE_SERVER_IDL_
2-38 Real-time CORBA, v1.2 January 2005

Dynamic Scheduling 3
Contents

This chapter contains the following topics.

Topic Page

Section I - Overview and Rationale

“Overview” 3-2

“Rationale” 3-3

“Notional Scheduling Service Architecture” 3-3

“Goals of this Specification” 3-4

“Scope” 3-4

Section II - Concepts

“Sequencing: Scheduling and Dispatching” 3-5

“Well Known Scheduling Disciplines” 3-7

“Distributed System Scheduling” 3-11

“Distributable Thread” 3-11

Section III - Overview of the Programming Model

“Scheduler” 3-14

Section IV - Scheduler Interoperability and Portability

“Scheduler Interoperability” 3-26

“Scheduler Portability” 3-27

“Dynamic Scheduling Interoperation” 3-27
January 2005 Real-time CORBA, v1.2 3-1

3

Section I - Overview and Rationale

3.1 Overview

3.1.1 Dynamic Scheduling

In real-time, we distinguish between two types of distributed systems based on how the
system is used, and its impact on the underlying infrastructure. There are static and
dynamic distributed systems.

Static distributed systems are those where the processing load on the system is within
known bounds such that a priori analysis can be performed. This means that the set of
applications that the system could be running is known in advance, and that the
workload that will be imposed on each application can be predicted within a known
bound. Such systems often have a limited number of application configurations that
can be executed, sometimes referred to as system modes. In these systems, a schedule
for the execution of applications can be worked out in advance for each system mode,
with a bounded amount of variation. As a result, the underlying infrastructure
(operating system and middleware) need only be able to support executing that
schedule.

One common approach to static systems is the use of operating system priorities to
manage deadlines. Offline analysis is performed to map different application temporal
requirements (such as frequency of execution) onto the available priorities. If the
underlying infrastructure always respects these priorities, including preempting low
priority threads when higher priority threads become eligible to run, and providing
priority inheritance, this is sufficient.

Dynamic distributed systems, on the other hand, do not have a sufficiently predictable
workload to allow this approach. It may be that the set of applications is either too
large or not known in advance, the processing requirements for an application is too
variable to be pre-planned, the arrival time of the inputs is too variable, or some other
source of variability. For these types of systems, the underlying infrastructure must be
able to satisfy real-time requirements in a dynamically changing environment.

Section V - Dynamic Scheduling Interfaces

“ThreadAction Interface” 3-27

“RTScheduling::Current Interface” 3-28

“RTScheduling::ResourceManager Interface” 3-35

“RTScheduling::DistributableThread Interface” 3-35

“RTScheduling::Scheduler Interface” 3-36

Topic Page
3-2 Real-time CORBA, v1.2 January 2005

3

This chapter is focused on systems in which the discipline for scheduling CORBA
ORB and application threads (e.g., highest priority first, or earliest deadline first, or
least laxity first) may be chosen by the application or system designers; and the
scheduling input values needed by a scheduler to control execution (called scheduling
parameter elements in this document) for that scheduling discipline (e.g., priority
deadline, expected execution time) may be changed by the application dynamically
(i.e., at any time). In contrast, Real-time CORBA 1.0 (ORBOS/99-02-12 with
ORBOS/99-03-29) is focused on fixed priority systems.

3.1.2 Distributable Thread

This specification replaces the term and concept of an activity that appeared as a
design and analysis suggestion in Real-time CORBA 1.0 with a specification for an
end-to-end schedulable entity termed distributable thread. Additionally, this
specification’s introduction of the entity termed scheduling segment completes the
replacement of the activity concept from Real-time CORBA 1.0.

3.2 Rationale

Dynamic scheduling is widely employed in real-time and distributed real-time
computing systems. This specification extends Real-time CORBA 1.0 to encompass
these dynamic systems as well as static systems.

In most real-time systems, especially distributed systems, cost-effectiveness demands
that the computing system employ as much application-specific knowledge about the
application and its execution environment as feasible. Much of this knowledge can be
best captured in the scheduling discipline. This specification allows such application-
specific scheduling disciplines to be implemented by a pluggable scheduler.

An end-to-end execution model is essential to achieving end-to-end predictability of
timeliness in a distributed real-time computing system. This is especially important in
dynamically scheduled systems. The end-to-end execution model may be provided
according to a formal standard specification (as herein), or as an ad hoc, custom-made
creation by multiple different application programmers.

3.3 Notional Scheduling Service Architecture

This specification is based on a scheduling service architecture for a hypothetical or
notional scheduling service plug-in. The specification does not require that scheduling
service implementations conform to this notional architecture. It is presented only to
provide an aid to understanding and describing the specification of a generic
scheduling service framework.

The application interacts with the scheduler, passing information about its (the
application’s) scheduling needs and its predicted use of system resources. The
scheduler is responsible for determining how best to meet the schedule given that
resource usage. The scheduler will use one or more scheduling disciplines, such as
Earliest Deadline First or Maximum Urgency First, to achieve this goal.
January 2005 Real-time CORBA: Rationale 3-3

3

The application must also interact with the scheduler whenever there is a significant
change in its scheduling needs or its predicted resource usage. In addition, the
application must ensure that the scheduler is able to run as often as it needs to in order
to maintain the schedule – the application should not, for example, disable interrupts or
pre-emption for long periods of time, or create high priority threads that the scheduler
does not know about. If there are insufficient naturally occurring interaction points,
the application must include some additional interactions with the scheduler just to
guarantee that overruns and other errors can be detected in a timely way.

In a CORBA environment, the application can take an action (for example, making a
CORBA request) that could impact the schedule. In the notional architecture, the ORB
is responsible for interacting with the scheduler at these points, so that the scheduler
can take into account the transitioning of control from one processing node to another.
Thus, a set of specific ORB-scheduler interfaces are defined.

3.4 Goals of this Specification

Dynamic Scheduling generalizes the Real-time CORBA Base Architecture to meet the
requirements of a much greater segment of the real-time computing field. There are
three major generalizations:

• Any scheduling discipline may be employed.

• The scheduling parameter elements associated with the chosen discipline may be
changed at any time during execution.

• The schedulable entity is a distributable thread that may span node boundaries,
carrying its scheduling context among scheduler instances on those nodes.

While the Real-time CORBA 1.0 Scheduling Service interfaces have been replaced,
this specification is backward compatible with the semantics of the Scheduling Service
defined in the Real-time CORBA 1.0 specification. Compatible implementations of
both specifications may be used in different ORB instances within the same system.
Not all features of this specification can be used in such mixed systems.

This specification imposes no requirements on base real-time operating systems, other
than the conventional ability to dispatch threads in a pre-emptive fashion. This
specification imposes no additional constraints on the real-time operating system
beyond those in Real-time CORBA 1.0.

3.5 Scope

This specification adds interfaces for a small set of well known scheduling disciplines
to CORBA as optional compliance points. This specification does not attempt to
provide all the interfaces necessary for interoperability of dynamically scheduled
applications and schedulers in heterogeneous systems. Rather, this specification
provides a framework upon which schedulers can be built and lays the foundation for
future full interoperability, and provides sufficient interfaces for applications to be
built using the set of included scheduler disciplines.
3-4 Real-time CORBA, v1.2 January 2005

3

This specification defines a set of ORB/scheduler interfaces that will allow the
development of portable (i.e., ORB implementation independent) schedulers. For the
defined disciplines, this specification also specifies interfaces that will allow the
development of portable (i.e., ORB and scheduler implementation independent)
applications. The specification of portable application interfaces for other scheduling
disciplines is left to future revisions.

Note that most scheduler implementations will extensively utilize features of the
underlying operating system, and in some cases the networking software. This aspect
of scheduler implementation is outside of the scope of this specification. Therefore,
this specification does not provide the portability of schedulers except with respect to
ORB interactions.

This specification does not provide interoperability between scheduling disciplines and
thus not between different scheduler implementations. A scheduling framework is
provided and the mechanism used for passing information between scheduler instances
is provided via GIOP service contexts. However, the format and content of the
information passed in the GIOP service contexts are not specified. On-the-wire
interoperability between scheduling disciplines and the corresponding scheduler
implementations is left to future specifications.

This specification provides an abstraction for distributed real-time programming (the
distributable thread). This specification does not attempt to address more advanced
issues such as fault tolerance, propagation of system information and control along the
path of a distributable thread, etc. These facilities may be provided in a subsequent
revision of this specification.

Section II - Concepts

3.6 Sequencing: Scheduling and Dispatching

Usually multiple execution entities (hereafter referred to as “threads”) contend for one
or more exclusively accessed resources – notably processor cycles, but also others,
both physical (e.g., communication paths) and logical (e.g., synchronizers). This
contention must be resolved into a sequence of resource accesses (e.g., thread
executions). In general, contention for all shared resources should be resolved in a
consistent manner, although this is not yet common practice. For example, processors
may be allocated by priority, networks by first come first served, locks by
serializability, disks by head movement distance, etc. All resource contention can be
resolved by one of two sequencing means: either scheduling or dispatching.

Thread scheduling is deciding in what order they all will execute. Each time thread
scheduling is performed, a sequence is established – a schedule – for all threads ready
at that time. Scheduling is performed statically (prior to execution time), by a person
or a program, or dynamically (at execution time) by a user or the system software.

Thread dispatching is granting resource access (e.g., running the currently most
eligible thread). When scheduling is employed, dispatching occurs in schedule order.
January 2005 Real-time CORBA: Sequencing: Scheduling and Dispatching 3-5

3

Thread scheduling is not always necessary nor computationally feasible – dispatching
alone may be sufficient.

Moreover, some actions are never threads and thus not schedulable – most commonly,
interrupt service routines and certain OS services, which execute either when invoked
or automatically as needed (other OS services are scheduled in concert with application
entities).

Dispatching, when scheduling is not employed, establishes a thread resource access –
e.g., execution sequence – one thread or non-schedulable action at a time.

The execution sequence may change at a sequencing point (either a scheduling point or
a dispatching point), such as when a thread becomes ready or blocked, or a thread
contends for a resource, or a thread time constraint is violated.

Contention for execution (and all other sequentially shared physical and logical
resources) generally should be resolved according to an application-specific
sequencing optimality criterion that seeks maximal usefulness to the system. In real-
time systems, that usefulness is based primarily on (but not limited to) timeliness and
predictability of timeliness. (Other factors, not related to real-time, commonly found in
sequencing criteria include relative importance, precedence constraints, resource
ownership, etc.).

Sequencing optimality criteria are what define timeliness for a given system or
application. Consequently, they also distinguish hard and soft real-time. Hard real-time
has a single timeliness factor in its sequencing optimality criterion: always meet all
hard deadlines. Soft real-time includes all other possible timeliness factors in
sequencing (usually scheduling) optimality criteria – very common examples are
“minimize mean weighted tardiness,” “minimize the number of missed deadlines
according to importance,” and “minimize maximum tardiness.”

Informally, a property is predictable to the degree that it is known in advance. One end
point of the predictability scale is determinism, in the sense that the property is known
exactly in advance. The other end point of the predictability scale can be characterized
as maximum entropy, in the sense that nothing at all is known in advance about the
property. In stochastic real-time systems (which include hard real-time systems as a
special case), one well-defined way to measure predictability is coefficient of variation
Cν, which is defined as variance/mean2. The deterministic distribution, Cν = 0, and the
extreme mixture of exponentials distribution is an example of a maximally non-
deterministic property whose Cν = ∞.

In every real-time system, timeliness of each application and system action is
somewhere on this predictability scale. Hard real-time systems have deterministic
timeliness in the sense that they always meet all of their hard deadlines. Soft real-time
systems have non-deterministic timeliness – e.g., characterized stochastically, such as
minimizing either mean or maximum tardiness.

Given a sequencing optimality criterion, a sequencing discipline is selected or devised
to satisfy it. There are a great many widely used sequencing disciplines; common
examples in real-time computing systems include highest priority first (or just
“priority”), earliest deadline first (EDF), and least laxity first (LLF). There may be
more than one discipline that satisfies a given criterion – e.g., the hard real-time
3-6 Real-time CORBA, v1.2 January 2005

3

criterion is satisfied by: the EDF and LLF disciplines (under specific conditions),
among others; or appropriate assignment and manipulation of priorities. Conversely, a
specific discipline may be suitable for different criteria: EDF satisfies the hard real-
time criterion, and also satisfies the soft real-time criterion “minimize maximum
tardiness” (among others); priorities can be used to satisfy either the hard or various
soft real-time criteria.

When scheduling is employed, the sequencing discipline is usually called a scheduling
discipline, and when only dispatching is employed, the discipline is usually called a
dispatching rule.

A sequencing algorithm implements a sequencing discipline. In general, a discipline
can be implemented by many different possible algorithms.

This specification uses the term scheduling to include the case when scheduling (and
thus dispatching in schedule order) is employed, and the case when only dispatching is
employed, because both of those cases involve selecting a sequencing optimality
criterion and a corresponding discipline and algorithm.

3.7 Well Known Scheduling Disciplines

There are many widely used scheduling disciplines, but real-time computing theory
and practice are focused on a small number of them, some of which are summarized
below. The constructs in the IDL will become clear later in this specification.

3.7.1 Fixed Priority Scheduling

The fixed priority scheduling discipline provides for pre-emptive scheduling or
dispatching of threads based on a simple numeric priority. When a higher priority
thread is created or becomes unblocked, it preempts a lower priority executing thread
and executes immediately.

module FP_Scheduling
{

struct SegmentSchedulingParameter
{

RTCORBA::Priority base_priority;
};

local interface SegmentSchedulingParameterPolicy
: CORBA::Policy

{
attribute SegmentSchedulingParameter value;

};

struct ResourceSchedulingParameter
{

RTCORBA::Priority resource_priority_ceiling;
};
January 2005 Real-time CORBA: Well Known Scheduling Disciplines 3-7

3

local interface ResourceSchedulingParameterPolicy
: CORBA::Policy

{
attribute ResourceSchedulingParameter value;

};

local interface Scheduler
: RTScheduling::Scheduler

{
SegmentSchedulingParameterPolicy

create_segment_scheduling_parameter
(in SegmentSchedulingParameter value);

ResourceSchedulingParameterPolicy
create_resource_scheduling_parameter

(in ResourceSchedulingParameter value);
};

};

Note that an analysis technique for scheduling fixed priority systems is Rate
Monotonic Analysis (RMA). The rate monotonic analysis assigns fixed priorities to
periodic threads based on their execution rates or periods – the thread having the
highest rate (shortest period) is assigned the highest priority. Normally, the
characteristics of all threads and their execution environment are known in advance,
and rate monotonic scheduling is statically performed off-line. In this case, the Real-
time CORBA 1.0 Fixed Priority discipline can be employed. Often thread behavior or
execution environment characteristics such as system loading vary with some dynamic
parameter, time or date, operational status of supporting systems, etc.

3.7.2 Earliest Deadline First (EDF)

The earliest deadline first discipline uses the execution completion deadline of the
threads as the basis for their execution eligibility – a thread that has a shorter (closer)
deadline is more eligible than one with a longer (later) deadline. In some cases, a
thread’s deadline is constant during the thread’s lifetime, and in other cases it changes
(for example, a thread’s deadlines may be nested). When EDF is used to meet
deadlines (i.e., for hard real-time), it requires that all deadlines can be met, in which
case it is most often employed statically. Other factors can be used in conjunction with
deadlines to create enhanced EDF-like disciplines that always meet all deadlines if
possible, and that shed or defer load when overloaded. When EDF is used to minimize
maximum tardiness (i.e., for soft real-time), it may be employed either statically or
dynamically. EDF can be employed either as a scheduling discipline or as a
dispatching rule.

module EDF_Scheduling
{

struct SchedulingParameter
{

TimeBase::TimeT deadline;
3-8 Real-time CORBA, v1.2 January 2005

3

long importance;
};

local interface SchedulingParameterPolicy
: CORBA::Policy

{
attribute SchedulingParameter value;

};

local interface Scheduler : RTScheduling::Scheduler
{

SchedulingParameterPolicy
create_scheduling_parameter

(in SchedulingParameter value);
};

};

3.7.3 Least Laxity First (LLF)

A least laxity (or “time to go”) first discipline assigns execution eligibility based on
laxity value, where

laxity = deadline - current time - estimated remaining computation time.

A thread with lower laxity is more eligible than one with higher laxity. An LLF
discipline is sometimes used for environments where thread execution time
requirements vary significantly. In such environments, a thread with a long execution
time may be released prior to threads with less laxity becoming ready-to-run. The
laxity estimate is updated as the thread execution duration estimate is updated at run
time. An LLF discipline may specify that a thread with negative laxity should not
(continue to) execute. Thus, LLF is primarily a dynamic discipline. LLF may be used
either to meet deadlines (i.e., for hard real-time) or to maximize minimum lateness (or
tardiness) (i.e., for soft real-time). LLF can be employed either as a scheduling
discipline or a dispatching rule.

module LLF_Scheduling
{

struct SchedulingParameter
{

TimeBase::TimeT deadline;
TimeBase::TimeT estimated_initial_execution_time;
long importance;

};
// laxity = deadline
// - {current time}
// - (estimated_initial_execution_time –
// {time executed thus far})

local interface SchedulingParameterPolicy
: CORBA::Policy
January 2005 Real-time CORBA: Well Known Scheduling Disciplines 3-9

3

{
attribute SchedulingParameter value;

};

local interface Scheduler : RTScheduling::Scheduler
{

SchedulingParameterPolicy
create_scheduling_parameter

(in SchedulingParameter value);
};

};

3.7.4 Maximize Accrued Utility (MAU)

A maximize accrued utility discipline uses a utility function associated with each
thread to establish a thread schedule; MAU cannot be used as a dispatching rule. Each
function provides a mapping from that thread’s completion time to a utility value. For
example, completing very close to but prior to the deadline may be most useful, while
completing much earlier than the deadline may have less utility, and completing after
the deadline may have zero or negative utility. Conventional deadlines are a special
case of utility functions. MAU disciplines seek schedules that result in maximal
accrued (e.g., summed) utility. Thus, MAU disciplines are intended for dynamic
systems.

module Max_Utility_Scheduling
{

struct SchedulingParameter
{

TimeBase::TimeT deadline;
long importance;

};

local interface SchedulingParameterPolicy
: CORBA::Policy

{
attribute SchedulingParameter value;

};

local interface Scheduler : RTScheduling::Scheduler
{

SchedulingParameterPolicy
create_scheduling_parameter

(in SchedulingParameter value);
};

};
3-10 Real-time CORBA, v1.2 January 2005

3

3.8 Distributed System Scheduling

Scheduling in a distributed system can be divided into four cases. Cases 1 through 3
are the single-level scheduling cases.

Case 1 is that scheduling occurs completely independently on each node, and
application behaviors that involve more than a single node do not have trans-node end-
to-end timeliness requirements that are used by the node schedulers. That is the
common non-real-time case.

Case 2 is that scheduling occurs independently on each node, but an application
behavior that involves more than one node propagates its end-to-end timeliness
context, which is then used by each node’s scheduler while the behavior is active at
that node. At each node, the distributable thread competes with the other threads at that
node, according to its end-to-end needs. System-wide scheduling is coherent but not
generally globally optimal. That is the distributed real-time case this specification
explicitly addresses.

Case 3 is that scheduling on each node is global in the sense that there is a logically
singular system-wide scheduling algorithm instantiated on all nodes, and node
instances of this algorithm interact to cooperatively schedule all nodes in a globally
optimal way. This specification does not explicitly support case 3 because such
scheduling is very difficult (intractable in general) from both the conceptual and
implementation standpoints, but desires not to preclude it.

Case 4 is all the multi-level scheduling cases: there is at least one level of “meta-
scheduling” above the case 1 or 2 node schedulers that seeks to improve global
optimality by adaptively adjusting some combination of scheduling parameter
elements, schedulable entity, scheduling contexts, scheduling algorithms, scheduling
disciplines, and node load balancing. Case 4 includes sub-cases corresponding to cases
2 and 3. This specification does not explicitly support case 4, but again, desires not to
preclude it.

3.9 Distributable Thread

The defining characteristic of any real-time distributed computing system, whatever its
programming model, is that the end-to-end timeliness (optimality and predictability of
optimality, as defined in Section 3.6, “Sequencing: Scheduling and Dispatching,” on
page 3-5) of trans-node application behaviors is acceptable to the application.

In most cases, the fundamental requirement for achieving acceptable end-to-end
timeliness is that a trans-node application behavior’s timeliness properties and
parameters – time constraints, expected execution time, execution time received thus
far, etc. – be explicitly employed for resource management (scheduling, etc.)
consistently on each node involved in that application trans-node behavior. As stated in
Section 3.8, “Distributed System Scheduling,” on page 3-11, “consistently” refers to
distributed scheduling case 3 in this specification.
January 2005 Real-time CORBA: Distributed System Scheduling 3-11

3

In some static real-time distributed systems, these properties and parameters can be
instantiated a priori; but in general, and in all dynamic real-time distributed systems,
these properties must be propagated among corresponding computing node resource
managers (e.g., in operating systems, Java virtual machines, and middleware).

In real-time distributed CORBA systems, a trans-node application behavior’s end-to-
end timeliness (and potentially other) properties and parameters must be acquired from
the client’s ORB, propagated with the invocation, and deposited in the servant’s ORB,
when operation invocations occur; and similarly for any associated returns.

For (at least) dynamic real-time CORBA systems, the fixed priority propagation
mechanism in the Real-time CORBA 1.0 specification is insufficient – a trans-node
application behavior abstraction is needed. A natural abstraction is suggested by
CORBA’s native control flow programming model – a thread that can execute
operations in objects without regard for physical node boundaries. In this specification,
that programming model abstraction is termed a distributable thread (see Figure 3-1).
In this figure, Objects A, B, and C may be running on either different processing nodes
or within the same address space.

Figure 3-1 Control Flow in a Distributed Processing System

The distributable thread is the schedulable entity. Each distributable thread has a
unique system-wide id. Each distributable thread may have one or more execution
scheduling parameter elements – e.g., priority, time constraints such as deadlines or
utility functions, importance – that specify the acceptable end-to-end timeliness for
completing the sequential execution of operations in object instances that may reside
on multiple physical nodes. The semantics of acceptability with respect to these end-
to-end timeliness parameters is defined by the application, in the context of the
scheduling discipline being used. Execution of the distributable thread is governed by
the scheduling parameter elements, on each node it visits (see Figure 3-2).

Control Flow

Object
A

Object
B

Object
C

3-12 Real-time CORBA, v1.2 January 2005

3

Figure 3-2 Distributed Threads

A distributable thread can extend and retract its locus of execution points among
operations in object instances across physical computing nodes by location-
independent invocations and (optionally) returns. Within each node, the flow of control
is equivalent to normal local thread execution.

The synchrony of a conventional two-way operation invocation (or RPC) programming
model is often cited as a concurrency limitation. But that criticism does not apply to
the distributable thread model. A distributable thread is a sequential abstraction, like a
local thread. A distributable thread is always executing somewhere, while it is the most
eligible there – it is not doing send/wait’s as with conventional operation invocations.

Remote invocations and returns are scheduling events at both client and servant nodes.
Each node’s processor is always executing the most eligible distributable thread while
the others wait.

A distributable thread always has exactly one execution point (head) in the whole
system. New distributable threads may be created, or sleeping ones awakened, when
needed. An application or system may have multiple distributable threads. Multiple
distributable threads execute concurrently and asynchronously, by default.
Distributable threads synchronize through operation execution; the writers of each
object control distributable thread concurrency in that object.

An exception that occurs anywhere along a distributable thread’s locus of execution
can be forwarded to and raised at the head of that distributable thread. Subsequently,
the exception propagates from the head back up the distributable thread to the nearest
enclosing exception handler.

Distributable thread-based programming models imply the need for a number of
supporting facilities; these programming models can be differentiated by the facilities
that they provide, and the approaches employed to provide them. Not all, or any, of
these facilities are included in this specification. These supporting facilities include
(but are not limited to) the following, which are not addressed in this specification:

DT1

Object
A

Object
B

Object
C

Object
D

DT2

DT3

1-way
Invocation
January 2005 Real-time CORBA: Distributable Thread 3-13

3

• Some asynchronous “happenings” (i.e., changes in system state) of interest to a
distributable thread may have to be coordinated with current distributable thread
execution. For example, a violated time constraint, or the failure of a node or
network path over which a distributable thread is extended, might require
notification of the distributable thread’s head – as soon as possible, if the
distributable thread is currently executing, and otherwise as soon as the
distributable thread becomes the most eligible to execute.

Certain other events that occur at the distributable thread’s head – e.g.,
synchronous exceptions (e.g., traps) and asynchronous exceptions (e.g., time
constraint expirations) – may require the distributable thread to execute a local
exception handler and then return back up the invocation chain to execute one or
more appropriate exception handlers at those places. After such an exception, the
programming model could allow the distributable thread to either continue
execution where the exception was initially delivered (a continuation model) or
terminate, or the model could require that the distributable thread always terminate
(a termination model).

• Distributable thread control actions (e.g., suspend, resume, abort, time constraint
change, etc.) may have to be propagated to, and carried out at, the distributed
thread’s head.

• Mechanisms may have to be provided to support maintaining correctness of
distributed execution, and consistency of distributed data – in both cases, as defined
by the application – for concurrent activities of one or more applications.

• The code that is responsible for detecting/suspecting failure for an appropriate set of
nodes may require visibility to failures locally perceived by a distributable thread.

All of these facilities generally would be required to be timely (e.g., subject to
completion time constraints).

Section III - Overview of the Programming Model
This section presents an overview of the application programming model that is being
provided. Since the specification defines a scheduling framework, as well as a limited
set of scheduling disciplines, this section deals with the concepts that apply across
schedulers and scheduling disciplines.

3.10 Scheduler

In this specification a scheduler is realized as an extension to Real-time CORBA that
utilizes the scheduling needs and resource requirements of one or more applications to
manage the order of execution of those applications on the distributed nodes of a
CORBA system. A scheduler provides operations for applications to announce their
requirements, which the scheduler takes into consideration when it affects the order in
which threads are dispatched by the operating system.
3-14 Real-time CORBA, v1.2 January 2005

3

A scheduler will be run in response to specific application requests, such as defining
new scheduling parameter elements, and in response to specific application actions,
such as CORBA invocations. The latter will be implemented using the CORBA
Portable Interceptor interfaces. The scheduler utilizes the information provided in these
interfaces to manipulate which threads are most eligible for execution by the
underlying operating system. This control is via whatever interfaces the operating
system provides, which are outside of the scope of CORBA. Thus, although scheduler
implementations could be independent of any particular ORB implementation, as long
as the ORB conforms to this specification, the scheduler will be closely tied to the
operating system.

The scheduler architecture is based on the premise that a distributed application can be
considered to be a set of distributable threads (see Section Distributable Thread),
which may interact in a number of ways, sharing resources via mutexes, sharing
transports, parent/offspring relationships, etc. The mechanisms of interaction are
irrelevant to this specification.

The scheduler architecture assumes that the problem of satisfying scheduling needs can
be addressed by managing the allocation of resources to distributable threads. The
distributable thread provides a vehicle for carrying scheduling information across the
distributed system.

Distributable threads interact with the scheduler at specific scheduling- points,
including application calls, locks and releases of resources, and at pre-defined
locations within CORBA invocations. The latter are required because CORBA
invocations are points at which the distributable thread may transition to another
processor, and the scheduling information must be reinterpreted on the new processor.

3.10.1 Scheduler Characteristics

This specification does not assume a single scheduling discipline for Real-time
CORBA. Schedulers are developed to implement a particular scheduling discipline or
disciplines. Both available products and technical literature abound with examples of
schedulers implementing various scheduling disciplines. This specification defines
only the interface between the ORB/application and the scheduler, and is intended to
foster the development of schedulers that are not dependent on any particular ORB
(although a particular scheduler implementation may choose to take advantage of the
features of a particular ORB). Note that schedulers will likely be dependent on the
underlying operating system, and this specification does not address these operating
system interfaces, since they are outside of the scope of CORBA.

This specification addresses schedulers that will optimize execution for the application
scheduling needs on a processor-by-processor basis (see Section 3.8, “Distributed
System Scheduling,” on page 3-11, case 2). That is, as the execution of an application
distributable thread moves from processor to processor, its scheduling needs are
carried along and honored by the scheduler on each processor. This does not preclude
the development of schedulers that perform global optimization, but this specification
does not specifically address that type of scheduler.
January 2005 Real-time CORBA: Scheduler 3-15

3

The schedulers considered in relation to this specification will have in common
processing stages where they acquire information about the demand for resources, an
optional processing stage where they plan the processing schedule (when scheduling,
as opposed to dispatching alone, is used), and a processing phase where they affect
how threads are dispatched by the operating system. This specification does not
impose any requirement on how the scheduler developer defines these processing
stages. The specification does define the minimum set of scheduling points (points in
time or code when the scheduler will execute).

This specification also provides the scheduler APIs for a small set of scheduling
disciplines, including fixed priority, as defined in Real-time CORBA 1.0. This supports
application portability for these disciplines.

The current specification does not address full interoperability across scheduler vendor
implementations. To achieve this, one would have to define the scheduling discipline,
the scheduling parameter elements, and the service context that is used to propagate
the scheduling characteristics of the application. The submitters believe that more
implementation experience is needed before full interoperability is possible.
Therefore, this specification only provides a complete API definition for a limited set
of well-understood scheduling disciplines and does not define a standard service
context for any scheduling disciplines. Future specifications will define standardized
service contexts and the APIs for additional disciplines.

3.10.2 Scheduling Parameter Elements

This specification defines a scheduling parameter as a container of potentially multiple
values called scheduling parameter elements. The scheduling parameter elements are
the values needed by a scheduling discipline in order to make scheduling decisions for
an application. A scheduling discipline may have no scheduling parameter elements,
only one, or several; the number and meaning of the scheduling parameter elements is
scheduling discipline specific. A single scheduling parameter, which may contain
several scheduling parameter elements, is associated with an executing thread via the
begin_scheduling_segment operation. A thread executing outside the context of a
scheduling segment has no scheduling parameter associated with it and is scheduled by
the native scheduling of the operating system, typically priority based.

Some scheduling disciplines will acquire the information about application resource
and scheduling requirements at system/application design time (static scheduling);
these schedulers typically would load the resulting scheduling information into a data
structure that is accessed at run time. Other schedulers are intended to react to dynamic
runtime system demands (dynamic scheduling). These cases represent different
scheduler “interaction styles.” The interaction style will depend on the scheduler
implementation and, possibly, on the particular scheduling discipline. This
specification provides a general scheduler interface that can be used by either style of
scheduler interactions.

This specification also allows various types of interactions for static scheduling. The
specific approach to be used will be discipline-specific. For example, the application
may provide its scheduling parameter elements, and the associated names, in advance
3-16 Real-time CORBA, v1.2 January 2005

3

so that the scheduler can store them internally; this could be done during some form of
application initialization. Alternatively, the application can provide scheduling
parameter elements each time it invokes scheduler operations.

The specific information needed by a scheduler will depend on which discipline(s) it
implements. For example, simple deadline scheduling may need only the thread’s
deadline and the amount of CPU time that the thread will consume. Another discipline
might utilize relative importance as one of its inputs. This specification has defined a
standard interface for passing a set of scheduling discipline-specific information to a
scheduler via the elements of a scheduling parameter. The definition of the structure,
types, and the handling of these scheduling parameter elements is scheduling
discipline-specific. The elements are only defined for the subset of scheduling
disciplines provided in this specification.

3.10.3 Pluggable Scheduler and Interoperability

This specification provides a “pluggable” scheduler. A particular ORB in the system
may have any scheduler installed, or may have no scheduler. If an ORB has a
scheduler installed, all applications run on that ORB are “under the purview” of that
scheduler.

Application components may interoperate, in the context of a particular scheduling
discipline, as long as their ORBs have compatible schedulers installed (meaning that
the schedulers implement the same discipline, and follow a CORBA standard for that
discipline) and the scheduler implementations use a compatible service context. As
noted above, the current specification does not define any standard service contexts for
scheduler interoperability, although future revisions are anticipated in this area.

A scheduler may choose to support multiple disciplines, but this specification does not
address how different scheduling disciplines might interact. This may also be
addressed in future revisions.

3.10.4 Distributable Threads

A distributable thread (see Section 3.9, “Distributable Thread,” on page 3-11) is the
fundamental abstraction of application execution in this specification. A distributable
thread incorporates the sequence of actions associated with a user-defined portion of
the application that may span multiple processing nodes, but that represents a single
logical thread of control. Distributed applications will typically be constructed as
several distributable threads that execute logically concurrently.

More precisely, a distributable thread is the locus of execution between points in the
application that are significant to the application developer, and it carries the
scheduling context of the application from node to node as control passes through the
system via CORBA requests and replies. It might encompass part of the execution of a
local (or native) thread or multiple threads executing in sequence on one or more
processors. If it encompasses multiple threads, then it also encompasses the various
phases; that is, “in-transit,” “static,” “active,” etc., which might occur as the locus of
execution moves among threads.
January 2005 Real-time CORBA: Scheduler 3-17

3

A distributable thread may have a scheduling parameter containing multiple element
values associated with it. These scheduling parameter elements become the scheduling
control factors for the distributable thread and are carried with the distributable thread
via CORBA requests and replies. Scheduling parameter elements can be associated
with a thread by the application invoking the begin_scheduling_segment or
update_scheduling_segment operations (see Section 3.10.6, “Scheduling
Segments, Parameter Elements, and Schedulable Entities,” on page 3-19). The
application may call the spawn operation to create a distributable thread and a
corresponding native thread in the current processor and associate scheduling
parameter elements with it.

A distributable thread has at most one head (execution point) at any moment in time.
If there is a branch of control, as occurs with a CORBA oneway invocation, the
originating distributable thread remains at the client and continues execution (as long
as it remains the most eligible). A new distributable thread is implicitly created to
process each oneway invocations.

Each distributable thread has a globally unique id within the system, which can be
accessed via the get_current_id operation. The distributable thread id can be used to
obtain a reference to a distributable thread, via the lookup operation. This reference
can then be used to cancel that distributable thread, via the cancel operation. The
cancel operation results in a CORBA::THREAD_CANCEL system exception
being raised in the cancelled distributable thread.

3.10.5 Implicit Forking and Joining

Typically, an intrinsic part of any concurrency model is the semantics for the creation
of new execution contexts, or forking, and the synchronization of multiple execution
contexts, or joining.

Explicit forking is provided for in this specification by the spawn operation. Due to
time constraints explicit joining was not provided by this specification. Future
finalizations and revision task forces are encouraged to provide for this capability.

Certain aspects of the core CORBA programming model and the programming model
of various CORBA services introduce the implicit forking of distributable threads.
One example in the core CORBA specification is oneway invocations if made with a
synchronization scope of SYNC_NONE or SYNC_WITH_TRANSPORT. This
occurs because the distributable thread making the invocation is unblocked before the
operation on the servant executes. Applications may optionally associate an “implicit
scheduling parameter” for a distributable thread that is associated with any implicitly
created distributable threads created from that distributable thread.

When a distributable thread executing a scheduling segment implicitly forks another
distributable thread, the forked distributable thread’s scheduling parameter is
determined as follows:

• If the implicit scheduling parameter is set for the innermost scheduling segment of
the forking distributable thread, then the ORB must use this value in implicitly
forking any distributable threads.
3-18 Real-time CORBA, v1.2 January 2005

3

• Otherwise, the ORB must use the operative scheduling parameter of the innermost
scheduling segment for the implicit forking of any distributable threads.

As with forking, there are certain aspects of the core CORBA programming model and
the programming model of various CORBA services that introduce the implicit joining
of distributable threads. An example of an implicit join is the polling mode introduced
by asynchronous messaging. This occurs because the distributable thread calling the
poll operation can wait to “join up with” the distributable thread that ran the operation
on the servant to get the results of the asynchronous invocation. Note that the initial
asynchronous invocation call is an implicit fork that results in the distributable thread
used to run the operation on the servant.

When a distributable thread executing a scheduling segment implicitly joins another
distributable thread, there is neither inheritance nor propagation of either distributable
thread’s scheduling parameter to the other distributable thread.

3.10.6 Scheduling Segments, Parameter Elements, and Schedulable Entities

In this specification, distributable threads consist of one or more (potentially nested)
scheduling segments. Within a distributable thread, scheduling segments can be
sequential and/or nested. Nesting creates scheduling scopes.

Each scheduling segment represents a sequence of control flow with which a particular
set of scheduling parameter elements is associated. A scheduling segment is delineated
by begin_scheduling_segment and end_scheduling_segment statements in the
code. The application may use the segment name on the end statement, as an error
check. The scheduling parameter associated with a distributable thread may be updated
with a call to update_scheduling_segment.

At runtime, a scheduling segment has a single starting point, and a single ending point
(although it could be coded with multiple possible ending points, during execution
only one ending point can be invoked). Segments may span processor boundaries.
This specification places no restrictions on the placement of
begin_scheduling_segment’s and end_scheduling_segment’s; an
end_scheduling_segment may occur on a different processor than the
begin_scheduling_segment, and may even occur somewhere up the chain of
CORBA requests.

As a distributable thread moves from object instance to object instance through
CORBA invocations, it may extend (and possibly retract) itself through one or more
processes or processors. When this happens, the distributable thread may be
contending with a new set of distributable threads for resources.
January 2005 Real-time CORBA: Scheduler 3-19

3

Figure 3-3 A Distributable Thread with Two Sequential Segments

Figure 3-3 illustrates a simple distributable thread which contains two sequential
segments. The distributable thread begins in object instance A, with segment W, and
traverses object instances B and C before returning to A, where the first segment ends
and a new segment (Z) begins. Portable interceptors are invoked each time the
distributable thread transitions to another object instance via a CORBA request (on
both the client and servant side) and again as the distributable thread returns. Note that
these object instances could be on different processors.

Suppose the scheduling discipline is Earliest Deadline First, which implies that the
illustrated distributed thread must (implicitly) carry its deadline along as it progresses
through the various processor environments. Further, assume that the scheduling
discipline calls for scheduling segments that have missed their deadline to be
terminated. This last condition implies that the scheduler must be maintaining a list of
deadlines. The begin_scheduling_segment, update_scheduling_segment, and
end_scheduling_segment operations serve to enter, update or remove deadlines,
but the scheduler must also address what happens when a set deadline expires.

Object A Object B Object C

BSS W

BSS Z
ESS W

BSS - begin_scheduling_segment

USS - update_scheduling_segment

ESS Z

ESS - end_scheduling_segment

Segment
W

Segment
Z

Segment
scopes

Application call

Portable Interceptor

Distributable Thread

Normal Thread

Distributable Thread Traversing CORBA Objects
3-20 Real-time CORBA, v1.2 January 2005

3

Figure 3-4 A Distributable Thread Created by a Spawn Operation

Figure 3-4 illustrates the use of a spawn to create a distributable thread. Note that the
spawn also serves as the beginning for the initial segment (W) of the distributable
thread.

Some scheduling disciplines may support the nesting of scheduling segments, which
permits independently developed software components to define their own scheduling
segments. The component would create an additional scheduling segment by
embedding one or more pair of calls to begin_scheduling_segment and
end_scheduling_segment. The handling of unspecified parameter elements
(defaulting) is discipline-specific. In some cases, unspecified elements will use the
values from the next outer segment (if any). In other cases, predefined or application
defined default values might be used.

Each begin_scheduling_segment provides a new set of scheduling parameter
elements for the distributable thread. If the distributable thread is already in a segment,
these new parameter elements will replace the current set until a matching
end_scheduling_segment occurs. An end_scheduling_segment statement

Object A Object B Object C

ESS W

Segment
W

Segment
scopes

Application call

Portable Interceptor

Distributable Thread

Normal Thread

Distributable Thread Traversing CORBA Objects

spawn W

BSS Z

ESS Z

Segment
Z

January 2005 Real-time CORBA: Scheduler 3-21

3

causes the distributable thread to return to the previous scheduling parameter (if any).
Thus, a distributable thread may contain multiple scheduling segments that are
executed sequentially, each of which may contain nested segments. This specification
does not place any limits on the level of nesting that a scheduling discipline will
support.

Figure 3-5 Distributable Thread with Nested Segments

Figure 3-5 illustrates segment nesting. In this case, segment X is nested within
segment W. At the point where segment X begins, the scheduling context of segment
W is logically pushed onto a stack, and segment W’s scheduling parameter elements
are used for the distributable thread. When segment X ends, the distributable thread
returns to the scheduling parameter elements for segment W.

In the case of EDF, all of these segments involve the requirement that they complete
by some deadline, but they would probably be different deadlines. In the case of nested
segments (W, X, and Y) the tightest deadline may come from any of the segments.

Object A Object B Object C

BSS W

BSS X

BSS Z
ESS W

BSS - begin_scheduling_segment

USS - update_scheduling_segment

ESS X

ESS Z

ESS - end_scheduling_segment

Segment
W

Segment
X

Segment
Z

Segment
scopes

Application call

Portable Interceptor

Distributable Thread

Normal Thread

Distributable Thread Traversing CORBA Objects
3-22 Real-time CORBA, v1.2 January 2005

3

A distributed thread executing in a single object instance may, at different times, have
different deadlines. Note that where the distributed thread first executes in object
instance B its deadline will be the deadline for segment W. However, as soon as
segment X begins, the deadline must be selected from the tighter of the outer (W) or
inner (X) scheduling segment.

It is expected that each instance of the scheduler must monitor the time constraints of
every distributed thread that is currently traversing its node.

A scheduling parameter element that is created in one object instance must be
considered in other object instances as the distributed thread passes through them. In
the illustration, the deadline established in object instance A must be considered with
respect to all other deadlines that exist in the domain of object B, and similarly as the
distributed thread extends to object C.

How a scheduler addresses distributed dynamic scheduling is implementation
dependent, but it is likely that the features of the portable interceptor will be required.
By requiring use of an interceptor that targets the scheduler for the outgoing and
incoming sides of the connection at both the client and server sides, the scheduler can
address these characteristics. A client-side outgoing interceptor can address moving the
deadline compliance monitoring while the associated server side incoming interceptor
can address the continuing deadline compliance monitoring and distributed thread
scheduling with respect to the server side workload.

The application may also invoke the scheduler within a segment, either to allow the
scheduler to notify the application if it has had a scheduling failure (such as a missed
deadline), or to modify the current segment’s scheduling parameter elements. This is
done via the update_scheduling_segment operation. The update operation allows
the application to occasionally check in with the scheduler, and can also be used to
change scheduling parameter elements dynamically, without creating a new segment.
January 2005 Real-time CORBA: Scheduler 3-23

3

Figure 3-6 Distributable Thread with Nested Segments

Figure 3-6 illustrates the remaining features of scheduling segments, namely the use of
multi-level nesting, updates, and the flexible placement of ends. Note that there are
two levels of nesting within segment W. In this example, an
update_scheduling_segment is called within segment Y. Any exceptions for the
distributable thread could be delivered at this point, rather than waiting for the next
portable interceptor call or the end_scheduling_segment. In addition, the
application could provide new scheduling parameter elements on the update, without
returning to the next upper scheduling scope. Note also, this in this example, segment
Y is begun in object instance C, but ended in object instance B, which was the invoker
of object instance C.

The application can obtain a list of the current scheduling segment names, innermost
scope first, via the current_scheduling_segment_names operation.

3.10.7 Scheduling Points

There are a number of scheduling points, which are points in time and/or code at which
the scheduler is run and may result in an alteration of the current schedule. These
include all begins and ends, access to shared resources, and points at which control

Object A Object B Object C

BSS W

BSS X

BSS Y

BSS Z

ESS Y

ESS W

BSS - begin_scheduling_segment

USS - update_scheduling_segment

ESS X

ESS Z

USS Y

ESS - end_scheduling_segment

Segment
W

Segment
X

Segment
Y

Segment
Z

Segment
scopes

Application call

Portable Interceptor

Distributable Thread

Normal Thread

Distributable Thread Traversing CORBA Objects
3-24 Real-time CORBA, v1.2 January 2005

3

transfers between processing nodes (i.e., CORBA requests). Because these scheduling
points may result in schedule changes, they may also be a point at which dispatching
occurs.

The following set of scheduling points is defined:

• Creation of a distributable thread (via begin_scheduling_segment or spawn).

• Termination or completion of a distributable thread.

• begin_scheduling_segment

• update_scheduling_segment

• end_scheduling_segment

• A CORBA operation invocation, specifically the request and reply interception
points provided in the Portable Interceptor specification.

• Creation of a resource manager.

• Blocking on a request for a resource via a call to
RTScheduling::ResourceManager::lock or
RTScheduling::ResourceManager::try_lock.

• Unblocking as a result of the release of a resource via a call to
RTScheduling::ResourceManager::unlock.

3.10.8 Schedule-Aware Resources

This specification permits the application to create a scheduler-aware resource locally
via the create_resource_manager operation in a ResourceManager; these
resources can have scheduling information associated with them via the
set_scheduling_parameter operation. For example, a servant thread could have a
priority ceiling if the application were using fixed priority scheduling. The scheduler
will run when these resources are locked or released, so that the scheduling discipline
is maintained.

Any scheduling information associated with these resources is scheduling discipline-
specific.

3.10.9 Exceptions

This specification defines the following exceptions related to scheduling:

• CORBA::SCHEDULER_FAULT – this indicates that the scheduler itself has
experienced an error.

• CORBA::SCHEDULE_FAILURE – this indicates that the distributable thread
has violated the constraints of its scheduling parameter. For example, this
exception could occur when a deadline has been missed or a segment has used more
than its allowed CPU time.
January 2005 Real-time CORBA: Scheduler 3-25

3

• CORBA::THREAD_CANCELLED – indicates that the distributable thread
receiving the exception has been cancelled. This may occur because a distributable
thread cancels another distributable thread thereby causing the
CORBA::THREAD_CANCELLED exception to get raised at the subsequent
head of the cancelled distributable thread.

• RTScheduling:: UNSUPPORTED_SCHEDULING_DISCIPLINE –
indicates that the scheduler was passed a scheduling parameter inappropriate for the
scheduling discipline(s) supported by the current scheduler.

3.10.10 Summary

An application consists of one or more distributable threads (as well as possibly local
processor threads that are not part of distributable threads). Each distributable thread
will execute through one or a series of (distributed) scheduling segments, including
some that may have nested segments. These segments represent regions of execution
that have their own scheduling parameter elements. Within these scheduling segments,
additional calls may be made to alter the scheduling parameter elements and/or to just
allow the scheduler to run.

Distributable threads may evolve from application threads, due to a
begin_scheduling_segment operation, a one-way operation, or be generated by
spawn operations. Distributable threads may be cancelled by another distributable
thread, and cancelled distributable threads will be notified of the cancellation via an
exception.

These distributable threads may share local resources utilizing resource manager lock,
try_lock, and unlock operations. These operations are schedule-respecting.

Section IV - Scheduler Interoperability and Portability

3.11 Scheduler Interoperability

A CORBA ORB supporting dynamic scheduling will interoperate with an ORB that
does not support this capability. The scheduling parameter for a distributable thread is
passed to the other ORB in the service context field and the other ORB can ignore
them.

An ORB conformant with Real-time CORBA 1.0 will interoperate with an ORB
compliant with this specification in the functional sense (i.e., without regard to
timeliness). An ORB compliant with this specification that has no scheduler installed is
fully interoperable in both terms of functionality and timeliness. If a scheduler is
installed, then timeliness characteristics of the resulting system will depend on the
installed scheduler and its backwards compatibility with the Real-time CORBA 1.0
fixed priority scheduling.
3-26 Real-time CORBA, v1.2 January 2005

3

3.12 Scheduler Portability

This specification addresses the issue of portability between the ORB and scheduler,
and between the application and the scheduler. This specification provides that
capability in that it makes the ORB/scheduler interfaces available to applications.

3.13 Dynamic Scheduling Interoperation

This specification does not address interoperation between different dynamic scheduler
implementations or between different scheduling disciplines.

Dynamic Scheduling is an extension of and modification to the RT CORBA
specification. Application functions that are scheduled using the fixed priority methods
will interoperate with dynamic scheduling tasks. This specification offers the
application developer several options with regard to mixed mode operations. For
example, a band of priorities can be reserved for dynamically scheduled activities.
That band may be located at the high or low end of the priority range or it may be
placed in the middle of the priority band. When activities have a priority higher than
the dynamic scheduling band then dynamic scheduled activities will only run during
what would otherwise be idle time. When dynamic scheduling is given top priority the
scheduler resources might be dedicated to some activities while the remainder of the
activities are dispatched during periods when the dynamically scheduled activities are
not ready to execute.

Schedulers may be constructed so that dynamic scheduling systems can provide
services to non-dynamically scheduled CORBA client applications. Requests from
such a client would be treated as any processing that occurs without a scheduling
parameter set. When dynamically scheduled clients make requests to non-dynamically
scheduled servants then the added information carried in the service contexts is
ignored. The request is valid but is not dynamically scheduled.

Section V - Dynamic Scheduling Interfaces

3.14 ThreadAction Interface

3.14.1 do Operation

3.14.1.1 IDL

module RTScheduling
{

…
local interface ThreadAction
{

void do(in CORBA::VoidData data);
January 2005 Real-time CORBA: Scheduler Portability 3-27

3

};
…
};

3.14.1.2 Semantics

The ThreadAction interface is used to provide an entry point for newly spawned
distributable threads. The ThreadAction interface serves as a parent type for user
implemented ThreadAction objects. The ThreadAction::do operation by default
does nothing. User written overrides of the do operation are expected execute the
application’s thread-specific actions.

3.15 RTScheduling::Current Interface

The RTScheduling::Current interface is derived from RTCORBA::Current. An
ORB that implements this specification returns a reference from a call to
CORBA::ORB::resolve_initial_references with the “RTCurrent” value passed
via the identifier parameter that can be narrowed to an RTScheduling::Current
reference.

3.15.1 spawn Operation

3.15.1.1 IDL

module RTScheduling
{

…
local interface Current

: RTCORBA::Current
{

…
DistributableThread

spawn
(in ThreadAction start,
 in unsigned long stack_size,

// zero means use the O/S default
 in RTCORBA::Priority base_priority);

…
};
…

};
3-28 Real-time CORBA, v1.2 January 2005

3

3.15.1.2 Semantics

The spawn operation creates a new O/S thread and makes that thread a distributable
thread with a stack size at least as large as the value passed in the stack_size
parameter. The initial CORBA base priority is the value passed by the base_priority
parameter. The new distributable thread calls the do operation on the ThreadAction
object passed via the start parameter.

3.15.2 UNSUPPORTED_SCHEDULING_DISCIPLINE Exception

3.15.2.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
exception UNSUPPORTED_SCHEDULING_DISCIPLINE {};
…

};
…

};

3.15.2.2 Semantics

The UNSUPPORTED_SCHEDULING_DISCIPLINE exception is raised when
a scheduling parameter argument isn’t appropriate for the installed scheduler instance.

3.15.3 begin_scheduling_segment Operation

3.15.3.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
void begin_scheduling_segment

(in string name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param)
January 2005 Real-time CORBA: RTScheduling::Current Interface 3-29

3

raises UNSUPPORTED_SCHEDULING_DISCIPLINE);
…

};
…

};

3.15.3.2 Semantics

The begin_scheduling_segment operation raises the
RTScheduling::UNSUPPORTED_SCHEDULING_DISCIPLINE exception
when the scheduling_parameter argument didn't have an appropriate value for the
active scheduling discipline.

The begin_scheduling_segment operation raises the
CORBA::SCHEDULE_FAILURE exception when the scheduling segment failed
its schedule.

The begin_scheduling_segment operation raises the
CORBA::SCHEDULER_FAULT exception when the scheduler has had internal
error.

The begin_scheduling_segment operation raises the
CORBA::THREAD_CANCELLED exception when the distributable thread was
cancelled.

The begin_scheduling_segment operation raises the CORBA::BAD_PARAM
exception when the scheduling_parameter, any elements of the scheduling
parameter, or the name parameter was invalid for the installed scheduler.

The begin_scheduling_segment operation begins a scheduling segment, and
converts the currently executing thread into a distributable thread, if it is not already
one. A scheduling segment is a window of execution where a distributable thread is
executing a particular region of code. The scheduler conditions execution of a
particular scheduling segment using the passed scheduling_parameter argument,
until a begin_scheduling_segment. update_scheduling_segment, or
end_scheduling_segment is encountered.

The name parameter provides identification for the region of code that comprises the
scheduling segment. Some schedulers may support nesting of scheduling segments. If
a scheduler does not support nesting of scheduling segments this operation raises
CORBA::SCHEDULE_FAILURE.

A scheduling_parameter contains elements that are a value or set of values
appropriate for the active scheduling discipline. The scheduling_parameter used by
the scheduler and set by the application.

The requirements for the “scheduling_parameter” and “name” parameters are
dependant on both the scheduling discipline defined, and on the interaction style
supported by the scheduler. It is expected that at least one these parameters
(“scheduling_parameter” or “name”) is a non-null argument.
3-30 Real-time CORBA, v1.2 January 2005

3

In addition, the begin_scheduling_segment operation provides a scheduling point
for the scheduler and gives the scheduler an opportunity to cancel a distributable
thread by raising the CORBA::THREAD_CANCELLED exception while is
executing in a scheduling segment.

3.15.4 update_scheduling_segment Operation

3.15.4.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
void update_scheduling_segment

(in string name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param)
raises (UNSUPPORTED_SCHEDULING_DISCIPLINE);
…

};
…

};

3.15.4.2 Semantics

The update_scheduling_segment operation raises the
RTScheduling::DistributableThread::UNSUPPORTED_SCHEDULING_
DISCIPLINE exception when the scheduling_parameter argument didn’t have an
appropriate value for the active scheduling discipline.

The update_scheduling_segment operation raises the
CORBA::SCHEDULE_FAILURE exception when the scheduling segment failed
its schedule.

The update_scheduling_segment operation raises the
CORBA::SCHEDULER_FAULT exception when the scheduler has had internal
error.

The update_scheduling_segment operation raises the
CORBA::THREAD_CANCELLED exception when the distributable thread was
cancelled.

The update_scheduling_segment operation raises the CORBA::BAD_PARAM
exception when the scheduling_parameter or any elements of the scheduling
parameter are invalid for the installed scheduler.
January 2005 Real-time CORBA: RTScheduling::Current Interface 3-31

3

The update_scheduling_segment operation provides the scheduler with a
scheduling point and provides an opportunity for the scheduler to check for a
scheduling failure. In addition, the update_scheduling_segment operation gives
the scheduler an opportunity to raise the CORBA::THREAD_CANCELLED
exception within a distributable thread while it is executing in a scheduling segment.

The update_scheduling_segment operation should only be called inside of a
scheduling segment. A call to the update_scheduling_segment operation outside
of a scheduling segment raises CORBA::SCHEDULE_FAILURE.

Any non-null value passed via the scheduling_parameter parameter allows an
application to request that a scheduler update the scheduling parameter or the implicit
scheduling parameter, or both, associated with enclosing scheduling segment. A null
value indicates to the scheduler that there it should not update scheduling parameter
associated with the enclosing scheduling segment.

3.15.5 end_scheduling_segment Operation

3.15.5.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
void end_scheduling_segment(in string name);
…

};
…

};

3.15.5.2 Semantics

The end_scheduling_segment operation raises the
CORBA::SCHEDULE_FAILURE exception when the scheduling segment failed
its schedule.

The end_scheduling_segment operation raises the
CORBA::SCHEDULER_FAULT exception when the scheduler has had internal
error.

The end_scheduling_segment operation raises the
CORBA::THREAD_CANCELLED exception when the distributable thread was
cancelled.

The end_scheduling_segment operation raises the CORBA::BAD_PARAM
exception when the name parameter was invalid for the installed scheduler.
3-32 Real-time CORBA, v1.2 January 2005

3

The end_scheduling_segment operation ends a scheduling segment. Each call to a
end_scheduling_segment operation should match a call to
begin_scheduling_segment made in the same distributable thread. If
end_scheduling_segment is called in a distributable thread that does not have a
matching call to begin_scheduling_segment raises
CORBA::SCHEDULE_FAILURE.

The end_scheduling_segment operation provides the scheduler with a scheduling
point and provides an opportunity for the scheduler to check for a scheduling failure.

If a non-null string is passed via the name parameter, then the scheduler can verify the
name with the name passed in the corresponding begin_scheduling_segment call.
If a null string is passed, then no verification takes place.

After an end_scheduling_segment operation, the distributable thread is either
operating with the scheduling parameter of the next outermost scheduling segment
scope. If this operation is performed at the outermost scope, the result is that the
processing for that thread reverts back to the fixed priority scheduling where the active
thread priority is the sole determinant of the threads eligibility for execution.

3.15.6 Id Related Operations

3.15.6.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…

IdType get_current_id();
// returns id of thread that is running

DistributableThread lookup(in IdType id);
// returns a null reference if
// the distributable thread is
// not known to the local scheduler

typedef sequence<octet> IdType;

readonly attribute IdType id;
// a globally unique id

…
};
…

};
January 2005 Real-time CORBA: RTScheduling::Current Interface 3-33

3

3.15.6.2 Semantics

Each distributable thread has a globally unique id within the system, which can be
accessed via the get_current_id operation. The distributable thread id can be used to
obtain a reference to a distributable thread, via the lookup operation. This reference
can then be used to cancel that distributable thread, via the
RTScheduling::DistributableThread::cancel operation. This cancel operation
results in a CORBA::THREAD_CANCEL system exception being raised at the
head of the cancelled distributable thread.

3.15.7 scheduling_parameter and implicit_scheduling_parameter Attributes

3.15.7.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
readonly attribute CORBA::Policy

scheduling_parameter;
readonly attribute CORBA::Policy

implicit_scheduling_parameter;
…

};
…

};

3.15.7.2 Semantics

Each distributable thread has a current scheduling policy if it is operating in a
scheduling segment (and a null scheduling policy otherwise). The
scheduling_parameter attribute returns the scheduling parameter for the innermost
segment name.

The implicit_scheduling_parameter attribute returns the implicit scheduling
parameter as last set by a begin_scheduling_segment or
update_scheduling_segment call for the current distributable thread.

If the distributable thread is executing outside the context of the scheduling segment,
then a null reference is returned from either of these attributes.
3-34 Real-time CORBA, v1.2 January 2005

3

3.15.8 current_scheduling_segment_names Attribute

3.15.8.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
typedef sequence<string> NameList;

readonly attribute NameList
current_scheduling_segment_names;

// Ordered from innermost segment name
// to outmost segment name

…
};
…

};

The current_scheduling_segment_names attribute returns a list of the current
scheduling segment names, innermost scope first.

3.16 RTScheduling::ResourceManager Interface

3.16.1 IDL

module RTScheduling
{

…
local interface ResourceManager : RTCORBA::Mutex
{
};
…

};

3.17 RTScheduling::DistributableThread Interface

3.17.1 IDL

module RTScheduling
{

…
local interface DistributableThread
{

January 2005 Real-time CORBA: RTScheduling::ResourceManager Interface 3-35

3

void cancel();
// raises CORBA::OBJECT_NOT_FOUND if
// the distributable thread is
// not known to the scheduler

};
…

};

3.17.2 cancel Operation

The cancel operation causes the CORBA::THREAD_CANCELLED exception to
be raised at the head of the distributable thread. Note that while the
DistributableThread is a local interface the head of the distributable thread may not
be executing within the same address space as thread calling cancel.

3.18 RTScheduling::Scheduler Interface

The scheduler interface is a local interface with the semantics of an abstract interface.
Its purpose is to delineate the core interface of a scheduler such that the Scheduler
interface is used as a parent interface of a scheduler plug-in.

An object reference to the currently installed scheduler is obtained by calling
CORBA::ORB::resolve_initial_references with the identifier parameter set to the
value “RTScheduler.” If no scheduler is installed, a null object reference is returned.

3.18.1 Scheduler:: INCOMPATIBLE_SCHEDULING_DISCIPLINES
Exception

3.18.1.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
exception INCOMPATIBLE_SCHEDULING_DISCIPLINES {};
…

};
…

};
3-36 Real-time CORBA, v1.2 January 2005

3

3.18.2 Scheduler::scheduling_policies Attribute

3.18.2.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
attribute CORBA::PolicyList

scheduling_policies;
…

};
…

};

3.18.3 Scheduler::poa_polices Attribute

3.18.3.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
readonly attribute CORBA::PolicyList poa_policies;
…

};
…

};

3.18.3.2 Semantics

The scheduling_policies attribute allows the ORB to request the list of POA
policies that the scheduler requires to be applied to all POA’s associated with this
ORB. A null list is an acceptable result value.

3.18.4 Scheduler::scheduling_discipline_name Attribute

3.18.4.1 IDL

module RTScheduling
{

…

January 2005 Real-time CORBA: RTScheduling::Scheduler Interface 3-37

3

local interface Scheduler
{

…
readonly attribute string

scheduling_discipline_name;
…

};
…

};

3.18.4.2 Semantics

A simple string containing the textual name of the scheduling discipline for use by
both the ORB and application.

3.18.5 Scheduler::create_resource_manager Operation

3.18.5.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
ResourceManager

create
(in string name,
 in CORBA::Policy scheduling_parameter);

…
};
…

};
// raises (CORBA::BAD_OPERATION, CORBA::BAD_PARAM,

CORBA::NO_RESOURCES);

3.18.5.2 Semantics

Used by application developers to create a scheduler aware resource protection
primitive, and associated a name with the resource.
3-38 Real-time CORBA, v1.2 January 2005

3

3.18.6 Scheduler::set_scheduling_parameter Operation

3.18.6.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
void set_scheduling_parameter

(inout PortableServer::Servant resource,
 in string name,
 in CORBA::Policy scheduling_parameter);

…
};
…

};

3.18.6.2 Semantics

The set_scheduling_parameter operation associates the supplied scheduling
parameter and name parameter with the supplied servant resource.

The "resource" parameter is a required parameter.

The requirements for the "scheduling_parameter" and "name" parameters are
scheduling discipline defined. It is expected that at least one these parameters
("scheduling_parameter" or "name") is a non-null argument.

This is useful for schedulers that associate some scheduling information with a shared
resource. An example of this type of scheduler would be a fixed priority scheduler that
uses some form of priority ceiling protocol.
January 2005 Real-time CORBA: RTScheduling::Scheduler Interface 3-39

3

3-40 Real-time CORBA, v1.2 January 2005

Compliance A
This appendix specifies the points that must be met for a compliant implementation of
Real-time CORBA Base Architecture, Dynamic Scheduling, and any one of the
schedulers listed in Chapter 3, “Dynamic Scheduling".

The Real-time CORBA Base Architecture is an extension of CORBA Core. Compliance
can only be claimed in conjunction with compliance to CORBA Core. Note that
compliance with the Real-time CORBA Base Architecture is not necessary for compliace
to CORBA Core.

An ORB implementation compliant with the Real-time CORBA Base Architecture
must implement all of Real-time CORBA, as defined in the Chapter 1, “Real-time
CORBA Base Architecture" and Chapter 2, “Real-time CORBA Extensions". Hence
there is a single mandatory compliance point.

Dynamic Scheduling, as defined in the Chapter 3, “Dynamic Scheduling", is a separate
and optional compliance point. An ORB implementation compliant with the Real-time
CORBA Base Architecture may or may not choose to offer an implementation of the
Dynamic Scheduling.

While, the implementation of Dynamic Scheduling is optional for implementations of
the Real-time CORBA Base Architecture the opposite is not true. For an ORB to
comply with Dynamic Scheduling the ORB must conform to the Real-time CORBA
Base Architecture specification. In particular, an ORB that conforms to Dynamic
Scheduling must implement the fixed priority scheduling of the Real-time CORBA
Base Architecture when no scheduler is installed.

The implementation of the basic Dynamic Scheduling infrastructure (i.e., the
implementation of all interfaces and associated semantics not associated with a
particular scheduler) is the most basic form of compliance with Dynamic Scheduling.

Implementing a scheduler that conforms to one of the scheduling disciplines in this
specification (i.e., the scheduler implements of all interfaces and associated semantics
for that scheduling discipline) is an optional and separate compliance point for a
January 2005 Real-time CORBA, v1.2 A-1

A

conforming implementation of the basic Dynamic Scheduling infrastructure. Nesting
of scheduling segments is not a required feature for the compliance of a scheduler that
implements any one of the specified scheduling disciplines in this specification.
A-2 Real-time CORBA, v1.2 January 2005

Index
A
activities 1-3
Ada Language binding for PriorityMapping 2-7
Ada Language binding for PriorityTransform 2-17
Algorithms 1-1
application object ii
Architectural overview 1-6

B
Binding 2-23
Bounding of thread usage 1-10
Buffering of additional requests 1-10

C
C Language binding for PriorityMapping 2-7
C Language Binding for PriorityTransform 2-16
C++ Language binding for PriorityMapping 2-7
C++ Language Binding for PriorityTransform 2-16
Client and server protocol configuration 1-10
Client Propagated Priority Model 2-12
Client propagated priority model 1-9
ClientProtocolPolicy 2-31
Common Facilities ii
Compatibility 1-5
compliance iii
CORBA

contributors iv
documentation set ii

CORBA - Real-Time CORBA Interworking 1-6
CORBA priority 2-5
CORBA priority mappings 2-6
Current 1-8

E
End-to-end predictability 1-4
Exceptions 2-3
Extending CORBA 1-2

H
hard real-time 1-1

I
IDL 2-33
Interoperability 1-5
Invocation Timeout 2-28
Invocation timeouts 1-10

J
Java Language binding for PriorityMapping 2-8
Java Language binding for PriorityTransform 2-17

M
Models 2-10
Modules 1-7
Mutex interface 1-9, 2-18

N
Native Priority 1-8
Native thread priorities 2-4
nature 1-2
Non-multiplexed connections 1-10

O
Object Management Group i
Object Request Broker ii
Object Services ii
ORB Initialization 2-2

P
Partitioning of threads 1-10
POA 2-3
Portability 1-6
POSIX Real-time extensions 1-2
Preallocation of threads 1-9
Priority 1-8, 2-5
Priority banded connections 1-10, 2-24
Priority inheritance 1-9
Priority mappings 2-6
Priority models 1-9
Priority Transforms 2-15
PriorityMappings 1-8
PriorityModelPolicy 2-10
PrivateConnectionPolicy 2-27
Protocol Configuration 2-28
Protocol Configuration Semantics 2-32
Protocols 1-1

R
Real-Time 1-2
Real-Time CORBA configuration 1-10
Real-Time CORBA Current 1-8
Real-Time CORBA Priority Models 2-10
Real-Time CORBA system exceptions 2-3
Real-Time Current 2-9
Real-Time ORB 1-7, 2-2
Real-Time ORB initialization 2-2
Real-Time POA 2-3
Real-Time requirements 1-3
reference model 1-ii
Request Buffering 2-22
Resources, management 1-5
rotocol 2-28

S
Semantics 2-8, 2-17
Server Declared Priority Model 2-13
Server declared priority model 1-9
Server priority 2-13
ServerProtocolPolicy 2-29
soft real-time 1-1
System exceptions 2-3

T
Thread scheduling 1-8
Threadpool 1-9
Threadpool with Lanes 2-22
Threadpool without Lanes 2-21
ThreadpoolPolicy 2-23
Threadpools 2-19
Transforms 2-15
January 2005 Real-time CORBA, v1.2 Index-1

Index
Index-2 Real-time CORBA, v1.2 January 2005

	1. Real-time CORBA Base Architecture
	1.1 Goals of the Specification
	1.2 Extending CORBA
	1.3 Approach to Real-time CORBA
	1.3.1 The Nature of Real-time
	1.3.2 Meeting Real-time Requirements
	1.3.3 Distributable Thread
	1.3.4 End-to-End Predictability
	1.3.5 Management of Resources

	1.4 Compatibility
	1.4.1 Interoperability
	1.4.2 Portability
	1.4.3 CORBA - Real-time CORBA Interworking

	1.5 Real-time CORBA Architectural Overview
	1.5.1 Real-time CORBA Modules
	1.5.2 Real-time ORB
	1.5.3 Thread Scheduling
	1.5.4 Real-time CORBA Priority
	1.5.5 Native Priority and PriorityMappings
	1.5.6 Real-time CORBA Current
	1.5.7 Priority Models
	1.5.8 Real-time CORBA Mutexes and Priority Inheritance
	1.5.9 Threadpools
	1.5.10 Priority Banded Connections
	1.5.11 Non-Multiplexed Connections
	1.5.12 Invocation Timeouts
	1.5.13 Client and Server Protocol Configuration
	1.5.14 Real-time CORBA Configuration

	2. Real-time CORBA Extensions
	2.1 Real-time ORB
	2.1.1 Real-time ORB Initialization
	2.1.2 Real-time CORBA System Exceptions

	2.2 Real-time POA
	2.3 Native Thread Priorities
	2.4 CORBA Priority
	2.5 CORBA Priority Mappings
	2.5.1 C Language binding for PriorityMapping
	2.5.2 C++ Language binding for PriorityMapping
	2.5.3 Ada Language binding for PriorityMapping
	2.5.4 Java Language binding for PriorityMapping
	2.5.5 Semantics

	2.6 Real-time Current
	2.7 Real-time CORBA Priority Models
	2.7.1 PriorityModelPolicy
	2.7.2 Scope of PriorityModelPolicy
	2.7.3 Client Propagated Priority Model
	2.7.4 Server Declared Priority Model
	2.7.5 Setting Server Priority on a per-Object Reference Basis

	2.8 Priority Transforms
	2.8.1 C Language Binding for PriorityTransform
	2.8.2 C++ Language Binding for PriorityTransform
	2.8.3 Ada Language binding for PriorityTransform
	2.8.4 Java Language binding for PriorityTransform
	2.8.5 Semantics

	2.9 Mutex Interface
	2.10 Threadpools
	2.10.1 Creation of Threadpool without Lanes
	2.10.2 Creation of Threadpool with Lanes
	2.10.3 Request Buffering
	2.10.4 Scope of ThreadpoolPolicy

	2.11 Implicit and Explicit Binding
	2.12 Priority Banded Connections
	2.12.1 Scope of PriorityBandedConnectionPolicy
	2.12.2 Binding of Priority Banded Connection

	2.13 PrivateConnectionPolicy
	2.14 Invocation Timeout
	2.15 Protocol Configuration
	2.15.1 ServerProtocolPolicy
	2.15.2 Scope of ServerProtocolPolicy
	2.15.3 ClientProtocolPolicy
	2.15.4 Scope of ClientProtocolPolicy
	2.15.5 Protocol Configuration Semantics

	2.16 Consolidated IDL

	3. Dynamic Scheduling
	3.1 Overview
	3.1.1 Dynamic Scheduling
	3.1.2 Distributable Thread

	3.2 Rationale
	3.3 Notional Scheduling Service Architecture
	3.4 Goals of this Specification
	3.5 Scope
	3.6 Sequencing: Scheduling and Dispatching
	3.7 Well Known Scheduling Disciplines
	3.7.1 Fixed Priority Scheduling
	3.7.2 Earliest Deadline First (EDF)
	3.7.3 Least Laxity First (LLF)
	3.7.4 Maximize Accrued Utility (MAU)

	3.8 Distributed System Scheduling
	3.9 Distributable Thread
	3.10 Scheduler
	3.10.1 Scheduler Characteristics
	3.10.2 Scheduling Parameter Elements
	3.10.3 Pluggable Scheduler and Interoperability
	3.10.4 Distributable Threads
	3.10.5 Implicit Forking and Joining
	3.10.6 Scheduling Segments, Parameter Elements, and Schedulable Entities
	3.10.7 Scheduling Points
	3.10.8 Schedule-Aware Resources
	3.10.9 Exceptions
	3.10.10 Summary

	3.11 Scheduler Interoperability
	3.12 Scheduler Portability
	3.13 Dynamic Scheduling Interoperation
	3.14 ThreadAction Interface
	3.14.1 do Operation

	3.15 RTScheduling::Current Interface
	3.15.1 spawn Operation
	3.15.2 UNSUPPORTED_SCHEDULING_DISCIPLINE Exception
	3.15.3 begin_scheduling_segment Operation
	3.15.4 update_scheduling_segment Operation
	3.15.5 end_scheduling_segment Operation
	3.15.6 Id Related Operations
	3.15.7 scheduling_parameter and implicit_scheduling_parameter Attributes
	3.15.8 current_scheduling_segment_names Attribute

	3.16 RTScheduling::ResourceManager Interface
	3.16.1 IDL

	3.17 RTScheduling::DistributableThread Interface
	3.17.1 IDL
	3.17.2 cancel Operation

	3.18 RTScheduling::Scheduler Interface
	3.18.1 Scheduler:: INCOMPATIBLE_SCHEDULING_DISCIPLINES Exception
	3.18.2 Scheduler::scheduling_policies Attribute
	3.18.3 Scheduler::poa_polices Attribute
	3.18.4 Scheduler::scheduling_discipline_name Attribute
	3.18.5 Scheduler::create_resource_manager Operation
	3.18.6 Scheduler::set_scheduling_parameter Operation

	A. Compliance

