
UNIVERSIDAD POLITÉCNICA DE MADRID

Departamento de Automática, Ingeniería Electrónica
e Informática Industrial

E.T.S. INGENIEROS INDUSTRIALES

Model-based Self-awareness
Patterns for Autonomy

PhD Dissertation

MSc. Carlos Hernández Corbato

Advisors: Dr. Ing. Ricardo Sanz Bravo
Dr. Ing. Ignacio López Paniagua

2013

Model-based Self-awareness Patterns for Autonomy

©Copyleft by Carlos Hernández Corbato 2013

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

A mi abuelo Gregorio,
que siempre trabajó y construyó

para los demás

Abstract

Technical systems are becoming more complex, they incorporate more advanced func-
tionalities, they are more integrated with other systems and they are deployed in less
controlled environments. All this supposes a more demanding and uncertain scenario
for control systems, which are also required to be more autonomous and dependable.
Autonomous adaptivity is a current challenge for extant control technologies. The
ASys research project proposes to address it by moving the responsibility for adaptiv-
ity from the engineers at design time to the system at run-time.

This thesis has intended to advance in the formulation and technical reification
of ASys principles of model-based self-cognition and having systems self-handle at
run-time for robust autonomy. For that it has focused on the biologically inspired
capability of self-awareness, and explored the possibilities to embed it into the very
architecture of control systems.

Besides self-awareness, other themes related to the envisioned solution have been
explored: functional modeling, software modeling, patterns technology, components
technology, fault tolerance. The state of the art in fields relevant for the issues of self-
awareness and adaptivity has been analysed: cognitive architectures, fault-tolerant
control, and software architectural reflection and autonomic computing. The extant
and evolving ASys Theoretical Framework for cognitive autonomous systems has
been adapted to provide a basement for this selfhood-centred analysis and to con-
ceptually support the subsequent development of our solution.

The thesis proposes a general design solution for building self-aware autonomous
systems. Its central idea is the integration of a metacontroller in the control archi-
tecture of the autonomous system, capable of perceiving the functional state of the
control system and reconfiguring it if necessary at run-time.

This metacontrol solution has been formalised into four design patterns: i) the
Metacontrol Pattern, which defines the integration of a metacontrol subsystem, con-
trolling the domain control system through an interface provided by its implemen-
tation component platform, ii) the Epistemic Control Loop pattern, which defines a
model-based cognitive control loop that can be applied to the design of such a meta-
controller, iii) the Deep Model Reflection pattern proposes a solution to produce the
online executable model used by the metacontroller by model-to-model transforma-
tion from the engineering model, and, finally, iv) the Functional Metacontrol pattern,

v

which proposes to structure the metacontroller in two loops, one for controlling the
configuration of components of the controller, and another one on top of the former,
controlling the functions being realised by that configuration; this way the functional
and structural concerns become decoupled.

A reference architecture and an associated metamodel are the core pieces of the
architectural framework developed to reify this patterned solution. The metamodel
has been developed for representing the structure and its relation to the functional
requirements of any autonomous system. The architecture is a blueprint for building a
metacontroller according to the patterns. This metacontroller can be integrated on top
of any component-based control architecture. At the core of its operation lies a model
of the control system that conforms to the metamodel.

An engineering process and accompanying assets have been constructed to com-
plete and exploit the architectural framework. The engineering process defines the
methodology to follow to develop the metacontrol subsystem from the functional
model of the controller of the autonomous system. The assets include software li-
braries that provide a domain and application-independent implementation of the meta-
controller. They can be used in the implementation phase of the methodology.

Finally, the complete solution has been validated in the development of an au-
tonomous mobile robot that incorporates an metacontroller. The functional self-awareness
and adaptivity properties achieved thanks to the metacontrol system have been vali-
dated in different scenarios. In these scenarios the robot was able to overcome failures
in the control system thanks to reconfigurations performed by the metacontroller.

vi

Resumen

Los sistemas técnicos son cada vez más complejos, incorporan funciones más avan-
zadas, están más integrados con otros sistemas y trabajan en entornos menos contro-
lados. Todo esto supone unas condiciones más exigentes y con mayor incertidumbre
para los sistemas de control, a los que además se demanda un comportamiento más
autónomo y fiable. La adaptabilidad de manera autónoma actualmente es un reto
para tecnologías de control. El proyecto de investigación ASys propone abordarlo
trasladando la responsabilidad de la capacidad de adaptación del sistema de los inge-
nieros en tiempo de diseño al propio sistema en operación.

Esta tesis pretende avanzar en la formulación y materialización técnica de los prin-
cipios de ASys de cognición y autoconsciencia basadas en modelos y autogestión de
los sistemas en tiempo de operación para una autonomía robusta. Para ello, el trabajo
se ha centrado en la capacidad de autoconsciencia, inspirada en los sistemas biológi-
cos, y se ha investigado la posibilidad de integrarla en la arquitectura de los sistemas
de control.

Además de la autoconsciencia, se han explorado otros temas relevantes: modelado
funcional, modelado de software, tecnología de los patrones, tecnología de compo-
nentes, tolerancia a fallos. Se ha analizado el estado de la técnica en los ámbitos
pertinentes para las cuestiones de la autoconsciencia y la adaptabilidad en sistemas
técnicos: arquitecturas cognitivas, control tolerante a fallos, y arquitecturas software
dinámicas y computación autonómica. El marco teórico de ASys existente de sistemas
autónomos cognitivos ha sido adaptado para servir de base para este análisis de auto-
consciencia y adaptación y para dar sustento conceptual al posterior desarrollo de la
solución.

La tesis propone una solución general de diseño para la construcción de sistemas
autónomos autoconscientes. La idea central es la integración de un meta-controlador
en la arquitectura de control del sistema autónomo, capaz de percibir el estado fun-
cional del sistema de control y, si es necesario, reconfigurarlo en tiempo de operación.

Esta solución de metacontrol se ha formalizado en cuatro patrones de diseño: i)
el Patrón Metacontrol, que define la integración de un subsistema de metacontrol,
responsable de controlar al propio sistema de control a través de la interfaz propor-
cionada por su plataforma de componentes, ii) el patrón Bucle de Control Epistémico,
que define un bucle de control cognitivo basado en el modelos y que se puede aplicar al

vii

diseño del metacontrol, iii) el patrón de Reflexión basada en Modelo Profundo propone
una solución para construir el modelo ejecutable utilizado por el meta-controlador me-
diante una transformación de modelo a modelo a partir del modelo de ingeniería del
sistema, y, finalmente, iv) el Patrón Metacontrol Funcional, que estructura el meta-
controlador en dos bucles, uno para el control de la configuración de los componentes
del sistema de control, y otro sobre éste, controlando las funciones que realiza dicha
configuración de componentes; de esta manera las consideraciones funcionales y es-
tructurales se desacoplan.

Una arquitectura de referencia y un metamodelo son las piezas centrales del marco
arquitectónico desarrollado para materializar la solución compuesta de los patrones
anteriores. El metamodelo ha sido desarrollado para la representación de la estructura
y su relación con los requisitos funcionales de cualquier sistema autónomo. La arqui-
tectura es un patrón de referencia para la construcción de una meta-controlador inte-
grando los patrones de diseño propuestos. Este meta-controlador se puede integrar en
la arquitectura de cualquier sistema control basado en componentes. El elemento clave
de su funcionamiento es un modelo del sistema de control, que el meta-controlador usa
para monitorizarlo y calcular las acciones de reconfiguración necesarias para adaptarlo
a las circunstancias en cada momento.

Un proceso de ingeniería, complementado con otros recursos, ha sido elaborado
para guiar la aplicación del marco arquitectónico. Dicho proceso define la metodología
a seguir para construir el subsistema de metacontrol para un sistema autónomo a partir
del modelo funcional del mismo. Los recursos asociados incluyen librerías software
que proporcionan una implementación del meta-controlador que se puede integrar en
el control de cualquier sistema autónomo, independientemente del dominio de la apli-
cación o de su tecnología de implementación.

Para concluir, la solución completa ha sido validada con el desarrollo de un robot
móvil autónomo que incorpora un meta-controlador. Las propiedades de autocon-
sciencia y adaptación proporcionadas por el meta-controlador han sido validadas en
diferentes escenarios de operación del robot, en los que el sistema era capaz de sobre-
ponerse a fallos en el sistema de control mediante reconfiguraciones orquestadas por
el metacontrolador.

viii

Agradecimientos

La sensación al escribir estas líneas es de liberación, de poner fin a un viaje que ha
durado siete años. Ha sido un camino largo y difícil, con momentos de frustración,
temporadas sin rumbo fijo en el océano inacabable del conocimiento; pero también
con pequeñas victorias, esos instantes de lucidez, de eureka, en los que se añade un
pequeño cabo al mapa y por un fugaz instante uno cree que ya puede cartografiar todo
el mar. Son muchas las personas que me han acompañado en este viaje, y a las que
tengo mucho que agradecer.

De entre todas esas personas, una ha sido especialmente importante, y forma parte
de esta tesis tanto como yo mismo: Ricardo, mi director de tesis. Recuerdo como si
fuera ayer el día que le conocí personalmente (ya me había deslumbrado antes en al-
gunas charlas y como profesor de una asignatura). Conversamos de un nuevo proyecto
que empezaba en el que iban a investigar el cerebro de las ratas y su aplicación a la con-
strucción de máquinas inteligentes, emocionales, ¡incluso conscientes! Representaba
todo aquello por lo que años atrás yo había decidido estudiar ingeniería. Lo que he
recibido de él desde entonces ha sido mucho más de lo que podía pensar. Ha sido
orientación y guía para realizar esta tesis, sí, pero también ha sido una introducción
completa al mundo de la ciencia y la investigación, dándome oportunidades para via-
jar y formarme, asistir a congresos, participar en proyectos, etc. Siempre trabajando
codo con codo, como compañeros.

Otro papel muy destacado ha sido también el de Ignacio, primero compañero y
luego co-director de tesis, siempre buen consejero y guía. Su rigor en el método, es-
píritu práctico y claridad de ideas han sido fundamentales para sacarme del atolladero
cuando encallaba. Son Ricardo e Ignacio dos personas extraordinarias. No son sola-
mente dos de las personas más inteligentes que he conocido, auténticos hombres de
ciencia y humanistas, cuya pasión y curiosidad científicas son contagiosas, sino que
además son personas maravillosas, generosas, cuya amistad atesoro como el mejor
resultado de esta tesis.

Tengo mucho que agradecer también a mis compañeros y amigos de doctorado,
con quienes he compartido estos años de pasión investigadora: José Emilio, Miguel,
Iñaki, Adolfo, Antonio, Alberto, Gonzalo, David, Marcos. Sin nuestras charlas de
café, y nuestros partidos de fútbol y pádel el camino habría sido mucho menos di-
vertido, y seguramente menos sano física y psíquicamente. Una mención especial se
merecen Paloma y Lupe, que no contentas con aguantarme todos estos años, ¡se han

ix

leído y revisado esta tesis en las últimas semanas! Ahora en serio, vuestra contribución
ha sido muy importante para mi.

Este trabajo no habría sido el mismo sin mis compañeros investigadores de ASLab:
Manuel, Jaime, José Luis y Juan. Nuestras discusiones sobre autonomía, función o
cognición han sido fundamentales para ir moldeando las ideas presentadas en esta
tesis. Julia, a ti te debo la luna, gracias por contar conmigo y por ayudarme siempre,
salvando mares y océanos, eres un ejemplo de tesón y dedicación. Tampoco me quiero
olvidar de los más jóvenes: José Alberto, Paco, Eusebio, Javi, Mikel y Alberto, con
quienes tantas horas de cacharreo y compilación he compartido, sufriendo a veces,
pero siempre disfrutando de su pasión por nuestras locuras.

Mi agradecimiento se extiende a toda la gente del laboratorio que me ha ayudado:
a Rosa, Tere y Carlos, siempre facilitándome los trámites y gestiones, a Ángel, con
quien tan buenos ratos de taller he pasado, y a todos los profesores. Y muy especial-
mente a Ramón, mentor y padre espiritual de todo alumno de doctorado que pasa por
allí: gracias por no dejar de empujarnos hacia adelante.

Fuera de la universidad son muchas las personas que han sufrido mi tesis, amigos
que han entendido y aguantado que siempre estuviese a tumbos con ella, poniendo
trabas para quedar y hacer planes. Muchas gracias a todos vosotros, que aún así me
habéis perseguido para salir y pasar un rato divertido con unas cañas, en el cine o en
alguna escapada de fin de semana. ¡Qué habría sido de mi sin vosotros! Así que qué
menos que citaros y agradecéroslo.

Santi, Jesús, Sergio, Alberto, Juan, Roberto, Pablo, cuántos exámenes y duras
pruebas superamos juntos en la carrera. ¡Y qué gratos recuerdos! Aunque casi son
incluso mejores los de nuestras tertulias alrededor de unas pizzas rememorando esas
anécdotas. Puede que el doctorado sólo lo haya cursado yo, pero de alguna forma lo
hemos seguido haciendo juntos.

Estos años los he compartido también con Lucía, Rober, Mercedes, Edu, Vaneza,
Marcos, Elena, Laura, y recientemente Pedro. Nunca dejará de maravillarme vuestra
altruista predisposición a aguantar de vez en cuando mis chapas sobre la autoconscien-
cia de las máquinas, ¡no se me ocurre un apoyo más incondicional! Y no me olvido
de Laura, Lalo, Ernesto y Fran, que aunque ahora nos veamos menos, han sido parte
importante de este maravilloso grupo.

Recuerdo también a Dani, Miguel e Iván, con quienes empecé la carrera allá en el
mes de septiembre de 2001. Desde entonces siempre os he tenido ahí, aunque la tesis
me recluyera. Y mis amigos más recientes, Alex y Maribel, gracias por aportarme
otro punto de vista a las ciencias de la mente, el cine y las hamburguesas, y por tantas
tardes de domingo entretenidas profundizando en éstos apasionantes y sabrosos temas.

Ahora recuerdo también todas esas veces en las que todos me habéis mostrado
vuestra absoluta confianza en que sería capaz de culminar con éxito este trabajo, y lo
importante que ha sido cuando me han asaltado las dudas.

No me quiero olvidar de mis nuevos compañeros en Global Incubator e Inner Vir-
tuoso, que han aparecido en éste último año del viaje, pero han tenido su racioncita

x

de mi tesis y me han ayudado a compaginarla con nuestro “tranquilo" y “aburrido"
trabajo sin que me volviera majareta.

Los últimos agradecimientos, pero los más importantes, son para las personas que
han estado a mi lado desde siempre, dándome su cariño y ayuda: mi familia. Mis
padres, mi hermano, mi abuela, mi tía, mis abuelos que ya no están, y el resto de la
familia. Ellos me han inculcado los valores del trabajo, la honradez y la bondad. Ante
todo el valor de ser una buena persona. Todo lo que he logrado se lo debo a ellos.
Gracias.

Decía al comenzar que tengo la sensación de poner fin a un viaje. En realidad
sé que ha sido sólo una etapa. Hacer esta tesis me ha enseñado mucho, por ejemplo
cuánto me queda por saber y descubrir, y me ha preparado bien para afrontar nuevos
proyectos. Pero lo más importante que he aprendido es que con la gente de la que
tengo la inmensa fortuna de estar rodeado no puedo estar mejor preparado para lo que
me depare el futuro.

Madrid, domingo 29 de septiembre de 2013.

International acknowledgements

I would like to thank Antonio Chella and Haris Dindo, who kindly accepted to review
this work and whose comments have been very helpful to improve its quality, and Radu
Calinescu, Igor Aleksander, José Luis Fernández and Vicente Matellán, who accepted
to be part of the defense committee and will probably be reviewing it by now.

During my PhD I have had the oportunity to meet and work with many other
brilliant people. I am very grateful with the Spanish and European communities of
cognitive systems: Retecog and Eucognition. They have given me the opportunity to
meet most of these people and present and discuss my work with them. I am specially
in debt with Toni Gomila, Xabier Barandiaran, Manuel Bedia and Raúl Arrabales,
their passion for science and tireless initiative is an inspiration for the upcoming new
generations of researchers.

There are some other scientists I have never met in person, but whose thinking is
very familiar to me: James Albus, Bernard Baars, Stan Franklin, Mogens Blanke and
George Klir amongst many others. They are the giants whose shoulders I have tried to
climb.

I am also grateful to my colleagues in the HUMANOBS European project, with
whom I’ve enjoyed some of my most exciting scientific and technical discussions in
front of a whiteboard, and some funny and deeply philosophical conversations about
life around our beers.

I would like to specially thank Kris, Eric and Helgi, who warmly welcomed me
the two summers I spent at Reykjavik University. They are first-class researchers from
whom I have learned a lot, and even better people.

xi

Some of my most appreciated memories are of these two summers in Iceland.
They have been an amazing experience, mainly because of the great friends I met:
Pradipta, Matteo, Stefanía, Claudio, María, Jenni, Rolanda, Paulo, Ágnes, and many
others that made me feel at home.

Madrid, September 2013.

xii

Contents

List of Figures xix

List of Tables xxiii

I The Context 1

1 Autonomous Systems 3
1.1 Control Technology . 3

1.1.1 Control Systems . 4
1.1.2 Control Engineering Life-cycle 7
1.1.3 Limits of Conventional Control 9

1.2 Autonomy . 12
Levels of Autonomy . 12

1.3 Intelligence for Autonomy . 14
Artificial Intelligence . 15

1.4 Present Challenges to Autonomous Control Systems 16
1.4.1 Robust autonomy: focus on non-functional requirements . . . 17
1.4.2 Run-time adaptation . 18

1.5 Structure of the Dissertation . 19
1.5.1 Notation . 20
1.5.2 Examples . 21

2 Approach and Objectives 23
2.1 Engineering Autonomy: the ASys Project 23

2.1.1 ASys Vision . 23
2.1.2 Model-based Autonomy . 24
2.1.3 Architectural Approach . 25
2.1.4 An integrated approach to engineering autonomy 26

2.2 Scope of this thesis . 28
2.2.1 Self-awareness for Run-time Adaptivity 28
2.2.2 Architecture for Self-aware Control Systems 29
2.2.3 Dimensions of generality . 31

2.3 Objectives . 33

xiii

2.4 Research methodology . 34
2.4.1 Mobile Robot Testbed . 35
2.4.2 Basic elements of this work 36

II Foundations and State of the Art 39

3 Core Themes 41
3.1 Biological Self-Awareness . 41

3.1.1 The Conscious Phenomena 42
3.1.2 Models of Biological Consciousness 43
3.1.3 Analysis of the functions of consciousness 45

3.2 Models . 46
3.2.1 Model-Driven Engineering 47
3.2.2 MDE and control applications 49
3.2.3 Models and metamodelling 49
3.2.4 Ontologies . 51
3.2.5 Ontologies vs Models & Metamodels 51

3.3 Functional Modelling . 52
3.3.1 Functional concepts . 54
3.3.2 Uses of functional modelling 54
3.3.3 Functional Modelling Techniques 55

3.4 Patterns . 56
3.4.1 Design Patterns . 57
3.4.2 Pattern Schemata . 57
3.4.3 Patterns for Control Systems 58
3.4.4 Pattern Examples . 60

3.5 Fault-tolerant systems . 62
3.5.1 Fault-tolerant software systems 63
3.5.2 Fault-tolerant control . 64

3.6 Components for Control Systems . 66
3.6.1 Rationale for Components 67
3.6.2 Advantages of Component Technology 67

4 Theoretical Framework 69
4.1 Introduction . 69
4.2 General Systems Theory . 70

4.2.1 Fundamental concepts . 70
4.2.2 System Behaviour and Organisation 72

4.3 Autonomous Systems . 74
4.3.1 Directiveness . 74
4.3.2 Objectives . 75
4.3.3 Functions . 77

4.4 Cognitive Autonomous Systems . 79
4.4.1 Conceptual Operation . 80

4.5 Analysing Cognitive Autonomous Systems 82
4.5.1 Autonomous operation: performance and adaptivity 83

xiv

4.5.2 Principles of Autonomy . 84
4.5.3 Cognitive operation . 86

5 State of the Art of Self-Aware Systems 89
5.1 Autonomous Supervisor for fault-tolerant control 89

5.1.1 Fault Diagnosis . 90
5.1.2 Controller re-design . 91
5.1.3 Analysis . 91

5.2 Self-adaptive software . 92
5.2.1 Dynamic architectures . 92
5.2.2 Autonomic Computing . 94
5.2.3 OMACS and adaptive multi-agents organisations 96

5.3 Cognitive Architectures . 98
5.3.1 Classification of cognitive architectures 99
5.3.2 RCS . 100
5.3.3 Soar . 101
5.3.4 Machine Consciousness Architectures 102
5.3.5 Analysis . 104

III The OM Architectural Framework 105

6 Model-based Self-Aware Cognitive Control 107
6.1 Guidelines for Developing Autonomous Systems 107

6.1.1 Self-engineering for autonomy 108
6.1.2 Model-based Cognitive Control 109
6.1.3 Baseline principles for the engineering of autonomous systems 111

6.2 Thesis . 111
6.3 Engineering Roadmap . 114

6.3.1 A Pattern-based Strategy . 114
6.3.2 Architectural Solution: a Reference Architecture 114
6.3.3 Engineering Solution . 115

7 Design Patterns for Self-Aware Autonomous Systems 117
7.1 Design Patterns for Self-Aware Autonomous Systems 117

7.1.1 Pattern Schema . 118
7.1.2 Context . 119

7.2 Epistemic Control Loop (ECL) . 120
7.2.1 Introduction . 120
7.2.2 Core . 121
7.2.3 Detailed Considerations . 124

7.3 MetaControl (MC) . 125
7.3.1 Introduction . 125
7.3.2 Core . 125
7.3.3 Detailed Considerations . 127

7.4 Deep Model Reflection (DMR) . 128
7.4.1 Introduction . 128

xv

7.4.2 Core . 129
7.4.3 Detailed Considerations . 129

7.5 Functional/Structural Metacontrol (FSM) 132
7.5.1 Introduction . 132
7.5.2 Core . 132
7.5.3 Detailed Considerations . 134

8 TOMASys Functional Metamodel 135
8.1 Rationale . 135

8.1.1 Requirements and Scope . 136
8.1.2 Relation to other functional models and specifications 137

8.2 Teleological and Ontological Model of an Autonomous System 138
8.2.1 Model of an autonomous system with TOMASys 139
8.2.2 Organisation of the Metamodel 141

8.3 Organisation Elements . 142
8.3.1 Components and connectors 142
8.3.2 Internal Structure of Components 146
8.3.3 Component Classes . 147

8.4 Function Elements . 150
8.4.1 Objectives and Functions . 150
8.4.2 Functional Hierarchy: instantaneous state of the system’s di-

rectiveness . 155
8.5 Overall analysis of TOMASys . 158

8.5.1 TOMASys and other functional metamodels 159

9 The Operative Mind Architecture 161
9.1 An Architecture for Metacontrol . 161

9.1.1 A Reference Architecture 162
9.1.2 Scope of the OM architecture 162
9.1.3 OM-based metacontrol overview 166
9.1.4 Integration of patterns for self-aware autonomous systems . . 167

9.2 Instrumenting the Domain Controller 170
9.2.1 Meta I/O Operation . 170
9.2.2 MetaInterface . 171
9.2.3 Component Action Vocabulary 172

9.3 OM Metacontroller . 174
9.3.1 Epistemic Control Loops for metacontrol 175
9.3.2 OM Model . 175

9.4 Components Loop . 182
9.4.1 Components Model . 182
9.4.2 Components Perception . 184
9.4.3 Component Evaluation . 187
9.4.4 Components Control . 189

9.5 Functions Loop . 191
9.5.1 Functions Knowledge . 192
9.5.2 Functions Perception . 192

xvi

9.5.3 Evaluation and Reconfiguration of the Functional Hierarchy . 196
9.6 Operation summary of the OM Metacontroller 201

9.6.1 S1: Recoverable component failure 203
9.6.2 S2: Non-recoverable component failure 204

9.7 OM Architecture overall assessment 206
9.7.1 Self-awareness and the OM Architecture 206

IV Implementation and Validation 209

10 OM Engineering 211
10.1 OM Engineering Process . 211

10.1.1 OMEP Control Development 212
10.1.2 OMEP Meta Development 214

10.2 MDA in the OMEP methodology . 215
10.2.1 OMJava library . 216
10.2.2 OMJava in OM Engineering Process 218

10.3 OM model transformation . 219
10.4 OM Architectural Framework in the ASys vision 219

11 Testbed System 221
11.1 The Autonomous Mobile Robot . 221

11.1.1 Mission and requirements 222
11.1.2 The mobile robotic platform 223

11.2 Control Development . 224
11.2.1 Overview of the Navigation System architecture 225
11.2.2 Functional analysis of the mobile robot 230
11.2.3 Design alternatives . 232

11.3 Metacontrol System Development 238
11.3.1 Metacontrol System Requirements Analysis 238
11.3.2 Metacontrol Design for the Testbed 242

11.4 ROS implementation of the OM Architecture 244
11.4.1 OM-based ROS Metacontroller 245
11.4.2 ROS Meta I/O module . 246
11.4.3 OM-TOMASys model of a ROS system 247

11.5 OM-TOMASys model of the testbed 249
11.5.1 Components . 249
11.5.2 Metacontrol goal for the testbed 250
11.5.3 Functions . 250

11.6 Testbed metacontrol operation and results 253
11.6.1 Scenario 1: Laser temporary failure 255
11.6.2 Scenario 2: Laser permanent failure 256

11.7 Analysis . 259

12 Conclusions and Future Work 261
12.1 A universal framework for self-awareness in autonomous systems . . 261

12.1.1 Review of the Objectives of the Work 263

xvii

12.1.2 The OM Architectural framework and the engineering of au-
tonomous systems . 264

12.1.3 Novelty and major Contributions of the Research 265
12.2 Future Work . 266
12.3 Concluding remarks . 267

V Reference 269

Bibliography 271

Acronyms 283

Glossary 285

Mobile robot testbed additional figures 291
12.4 TOMASys model of the complete mobile robot testbed 291

xviii

List of Figures

1.1 Technical systems render a certain functionality. 4
1.2 Desired and real behaviours of a system. 5
1.3 Controlled behaviour. 5
1.4 The control system. 6
1.5 A PID controller. 6
1.6 State space controller with observer. 7
1.7 Knowledge required to build a control system. 8
1.8 The disturbance signal in the control schema. 9
1.9 Example of how design decisions determine the run-time adaptivity. . 11
1.10 Dimensions of autonomy. 13
1.11 Software-intensive control systems. 16
1.12 Complexity and uncertainty in current control systems. 18
1.13 Conventions used in the figures of the thesis. 20
1.14 Control architecture of the mobile robot example. 22

2.1 ASys model-based approach. 25
2.2 The ASys vision. 27
2.3 Run-time reconfiguration. 31
2.4 Development process of the thesis. 34
2.5 Main elements in the engineering of the mobile robot testbed. 35
2.6 Structure of the thesis. 37

3.1 Model weaving process in MDA . 48
3.2 OMG’s metamodelling architecture: MOF. 50
3.3 Integration of ontologies and metamodels. 53
3.4 Architecture of fault-tolerant control. 65

4.1 Basic notions of General Systems Theory. 71
4.2 GST concepts applied to the autonomous mobile robot. 72
4.3 Objectives and system organisation. 77
4.4 Example: mobile robot’s hierarchy of objectives. 78
4.5 Grounded and cognitive systems and their quantities. 80
4.6 Example of cognitive operation. 82
4.7 Propagation of disturbances in the organisation of a system. 83

xix

4.8 Analysis of systems according to the principle of minimal structure. . 85
4.9 Example of conceptual quantities and autonomy. 88

5.1 Autonomous Supervisor architecture. 90
5.2 Garlan’s et al. Adaptation Framework. 93
5.3 Autonomic Computing. 95
5.4 Simplified version of the OMACS metamodel. 97
5.5 Organization-based Agent Architecture. 97
5.6 Example of a RCS hierarchy. 101
5.7 The RCS node. 102

6.1 Closing the loop in the engineering of autonomous systems. 113
6.2 Development and assets of the OM Architectural Framework. 116

7.1 The Epistemic Control Loop pattern. 122
7.2 The structure proposed by the MetaControl Pattern. 127
7.3 The Deep Model Reflection pattern. 130
7.4 The Functional Metacontrol Pattern. 133

8.1 The run-time model conforms to a metamodel. 136
8.2 Core elements in the TOMASys metamodel. 139
8.3 Example of the graphical representation used for TOMASys elements. 142
8.4 TOMASys elements that represent organisation. 143
8.5 Example: organisation of the localisation subsystem. 145
8.6 Example: TOMASys model of the laser component. 145
8.7 TOMASys elements that represent directiveness. 151
8.8 Functional hierarchy in TOMASys 152
8.9 Example: alternative function designs for localisation. 154
8.10 TOMASys elements for directiveness’ state. 155
8.11 The functional hierarchy of the localisation system. 157
8.12 Example of the TOMASys definition of a function design. 158

9.1 Example: reconfiguration of the localisation subsystem. 164
9.2 Functional requirements of a metacontroller. 165
9.3 General view of the OM architecture. 166
9.4 Application of the four patterns for self-awareness to a control system. 169
9.5 Connecting the metacontroller and the domain controller. 170
9.6 Internal structure of the OM Metacontroller. 174
9.7 Metamodelling approach to obtain the OM Model. 176
9.8 The entries in an ECL Knowledge Repository 177
9.9 The elements in the OM Model. 178
9.10 Metamodeling relations of the OM Model. 179
9.11 The OMComponentSpecification metamodel element. 180
9.12 The specifications in the Components Goal. 180
9.13 Example: OM Model of the localisation subsystem. 181
9.14 The Components Loop. 182
9.15 Example: the estimated state of the laser sensor. 183

xx

9.16 Example: Knowledge atom about the laser sensor. 184
9.17 The perceptive process. 185
9.18 The reconfiguration plan. 190
9.19 State chart of a reconfiguration action. 191
9.20 Activity diagram of the update of the Functional Hierarchy. 193
9.21 Example: state of the functional hierarchy upon a laser failure. 195
9.22 Example: objective’s relevance in the hierarchy. 197
9.23 Example: functional evaluation of the laser failure. 198
9.24 Activity diagram of the Control process in the Functional Loop. . . . 199
9.25 Example: long-term knowledge in the OM Model. 201
9.26 Example of goal for the Functional Loop. 202
9.27 Example of goal for the Components Loop. 202
9.28 Example: estimated state of the localisation subsystem. 202
9.29 OM Metacontroller activity upon recoverable component failure. . . . 203
9.30 New components goal for functional reconfiguration. 204
9.31 OM Metacontroller activity upon non-recoverable failure of the laser. 205

10.1 The OM Engineering Process. 212
10.2 Model weaving in the OM Engineering Process. 215
10.3 The OMJava library . 216
10.4 Examples of the classes in the OMJava library. 217
10.5 OMJava and the OMEP methodology. 218
10.6 The OM Architectural Framework and ASys. 220

11.1 Metacontrol overview of the autonomous mobile robot testbed. 222
11.2 The control architecture of the testbed. 225
11.3 Main logical components of the software of the testbed control system. 227
11.4 Performance of the navigation subsystem in a simple task. 229
11.5 Functional decomposition of the mobile robot testbed. 231
11.6 Dependencies between the subsystems in the mobile robot. 232
11.7 Alternative designs to obtain laser-like scan readings. 233
11.8 Alternative designs for localisation. 234
11.9 Alternative designs for navgation. 236
11.10 Alternative designs for the complete control architecture. 237
11.11 The OM Engineering Process applied to the mobile robot. 243
11.12 The model weaving applied to the robot testbed. 244
11.13 The OMROS stack and teh OMJava library. 245
11.14 The OMRos API. 246
11.15 ROS metacontrol system. 247
11.16 The OMROSnode class. 248
11.17 Example: the Laser class. 250
11.18 Goal of the testbed’s metacontroller. 250
11.19 TOMASys model of alternative localisation designs. 251
11.20 TOMASys model of the robot’s low level functions. 251
11.21 TOMASys model of alternative navigation designs. 252
11.22 The patrolling mission of the testbed mobile robot. 253

xxi

11.23 Initial state of the testbed’s functional hierarchy. 254
11.24 Relation between the functional and the organisational initial states. . 255
11.25 Laser failure’s impact on components goal. 256
11.26 Laser failure’s impact on the functional hierarchy. 257
11.27 New components goal for the testbed reconfiguration. 258
11.28 Robot navigation before and after a laser permanent failure. 259

12.1 TOMASys model of all the high level functions in the mobile robot. . 291
12.2 TOMASys model of the alternative designs for localisation. 292
12.3 TOMASys model of the low level functions in the mobile robot. . . . 292
12.4 TOMASys model of the alternative designs for navigation. 293

xxii

List of Tables

7.1 Four Design Patterns for Self-Aware Autonomous Systems. 118

10.1 The main phases of the OASys-Based Methodology. 214

11.1 Performance of the different designs for the mobile robot testbed. . . . 236
11.2 Regular operation of the patrolling system with no failures. 240
11.3 Laser transient failure scenario. 240
11.4 Laser permanent failure scenario. 241

xxiii

xxiv

Part I

The Context

1

Chapter 1

Autonomous Systems

Our society critically relies on technical systems, from electrical power grids to air
traffic control systems, passing by chemical plants. And the pace on the demand on
technology is doing but to augment. This technical growth is two-sided: technical
systems are spreading everywhere in our lives, and at the same time we depend more
on them. The result is also two-fold: technology is becoming more complex, and the
requirements on it regarding dependability are becoming more strict. This situation
presents important challenges to the engineering of autonomy in systems.

The work developed in this research project addresses the problem of providing
technical systems with enhanced robustness in their autonomous behaviour, in this
context of the infrastructure of modern society critically relying on them. The im-
plications of this scenario are analysed in this introductory chapter, discussing the
necessity for more robust autonomous systems and presenting the rationale behind the
cognitive approach to build them.

1.1 Control Technology

Control systems are subsystems designed to improve the operation of most technical
systems, or even to make their operation possible at all, constituting an integral part
of them. In such a technified society as ours control systems or controllers permeate
everywhere: they are in the heating of our homes, in the landing gear for planes, in
our smart phones, heart pacemakers, or, at larger scales, keeping the electrical network
stable. They drive the behaviour of systems to accomplish their function when a hu-
man operator is not desirable, for example because of safety or performance reasons,
or because it is simply not possible. Control technology is the engineering solution to
the automation of systems.

Departing from knowledge of the system and its processes, and the targeted be-
haviour, control engineers design a controller that makes it behave at runtime as re-

3

Chapter 1 Autonomous Systems

quired, even in the presence of some disturbances. However, conventional control
technology has limits. It is not possible to design a controller for any system to obtain
any specific behaviour.

And and even when it is theoretically feasible, there are unexpected situations at
run-time that controllers cannot handle.

Example Cruise control is a paradigmatic example of control engineering in everyday life.
These controllers are capable of maintaining a desired speed of the vehicle. They
use a very simple algorithm tuned according to the dynamical model of the car (not
a very complex one is required, anyway). This was a problem solved long time ago
by classic control. However, designing a control system to completely drive the
car, that is, targeting the specification of the car’s complete behaviour (not just
its linear velocity), has but recently been solved in Google driverless Car [57], and
with limitations.

1.1.1 Control Systems

This is the control engineering scenario: given a technical system (the electric network,
a mobile robot) immersed in an environment (the whole European electric grid, an
industrial facility), and some user needs that demand a certain functionality from the
system (electricity available at any time without interruptions, the robot patrolling
a certain area, etc.), also refered to as the system’s mission, specified into a set of
requirements, design the control system that makes the system fulfil the mission in the
presence of disturbances.

environmenttechnical
system

user command
ouput

Figure 1.1: Technical systems are engineered to provide a certain func-
tionality to their users: i.e. produce a certain output serviced according
to the user command.

Let us take a general systems perspective. From this viewpoint, the user’s require-
ments are but a certain desired behaviour for the system, that is a specific mapping
between the user command to the system and the resulting output from it (see Fig.
1.1). For example, the drivers’ command for the cruise control in a modern auto-
mobile is a desired speed, and the output is that the car maintains its velocity at that
value. But it could be a more complex mapping, such as setting a destination city as

4

1.1. Control Technology

command and getting with the car there after several hours, in the case of Google’s
car.

In most cases it is not possible to directly implement the desired behaviour in
a designed system’s structure. Perfect and complete knowledge of the environment
are never available, unmodelled dynamics and unexpected disturbances are always
present. But even if we considered the world as perfectly and completely modelled,
the formal resolution of the mapping function from the desired behaviour to a structure
that renders it could not be physically realisable, that even in the case it were theoreti-
cally possible to find that solution, which could be not. As a result, the real behaviour
at runtime of the engineered system would not fit the required one. Figure 1.2 shows
a graphical interpretation.

user command × output

real behaviour

desired behaviour

Figure 1.2: The desired and
real behaviours are subsets of
the set defined by all possible
user commands and output re-
sults.

This is where control technology comes into play. To overcome the previous is-
sues, a control subsystem is added to the system. Its objective is to drive the behaviour
of the engineered system so that it achieves the demanded functionality. This way, the
coupled behaviour of the control subsystem and the rest of the system plus its envi-
ronment fulfils the desired behaviour (see figure 1.3). The control system is designed
using the available knowledge about the technical system and its environment, e.g. in
the form of a differential equations model.

user command × output

complete system
behaviour

desired behaviour

Figure 1.3: The resulting be-
haviour of the controlled sys-
tem is to fall within the region
specified by the requirements.

Figure 1.4a shows the control view of the issues presented. The controller receives
sensing information from and actuates over the plant, to achieve a certain reference
value as output. The concept of plant encompasses the technical system (without the
controller) and its environment.

This control process is implemented by engineers in a control system, which senses
and actuates through devoted I/O components: sensors and actuators. The right part

5

Chapter 1 Autonomous Systems

of figure 1.4b schematizes the physical or implementation view.

Plant

Controller

actionsensing

reference

ouputdisturbance

(a) The cybernetic view of control.

Control System

Controlled System

actuatorssensors

(b) The basic elements in the architec-
ture of a control system.

Figure 1.4: The cybernetic view of control and the basic elements of the architecture of control
systems.

Plant

Controller

actionsensing

reference

ouput

_
+

Kp(e)

Ki (∫e)

Kd (de/dt)

Σe

Figure 1.5: A PID controller.

For very elementary cases (e.g. the PID controller in figure 1.5), the design of the
control system can be very simple, consisting of a basic component, i.e. a controller,
reading information through a sensor and actuating through an actuator. However,
most usually the control system design encompasses heterogeneous sensors and actu-
ators, operator interfaces, etc., which results in a complex physical design comprising
several components interconnected (e.g. state-space controller of figure 1.6).

Control engineers use knowledge about the mission requirements, the plant, but
also about control technology and engineering, to design control systems (see figure
1.7). This is discussed in the following section.

6

1.1. Control Technology

Controller

Observer

Plant

actionsensing

reference

ouput

-
+

Σ ∫

ki ∫
-
+

K

C^

A^

B^

F^

D^
+
+

Figure 1.6: A servo-controller with a minimum order observer, based on the
state space technique, with a matrix-based formulation (A,B,C,D) of the differ-
ential equations model of the system.

1.1.2 Control Engineering Life-cycle

The standard life-cycle of any engineered system consists of two basic stages:

1. Engineering: basically design and implementation.
2. Runtime: exploitation and maintenance.

Many systems undergo an interwoven sequence of stages that can be ascribed to
either one of these two types; e.g. in maintenance, when normal runtime operation is
halted to perform some change in the system’s structure, can be considered as engi-
neering when plant engineers perform actual process re-design on the fly. It can even
be the case that the phases overlap in time, e.g. when the system is kept operating
during maintenance. However, in the case of autonomous systems, where no human
intervention is desirable or even possible for the previous purposes, there is a clear gap
between engineering and runtime.

The engineering phase, which includes the design of the control system, is what
determines and fixes the traits and functional capabilities that an autonomous system
will exhibit during operation. Let us analyse why.

The engineering stage for the building a control system includes the following
activities:

• mission specification
• plant and controller analysis

7

Chapter 1 Autonomous Systems

knowledge

application specific

technical knowledge

plant
knowledge

control
knowledge

engineering
knowledge

mission
specification

Control System

control engineering

Plant

Controller

actuators

environment

sensors

rest of the system

Figure 1.7: Knowledge about the system and its mission, and
about engineering and control technology is used to build the
system during the engineering phase.

• controller design
• controller implementation
• integration, validation and deployment

A priori knowledge is used intensively in the process (see figure 1.7), and em-
bedded in the resultant control system. Plant knowledge in the form of mathematical
models is normally used to design the controller following control theory methodolo-
gies (root-locus method, State Space techniques, Frequency response analysis, etc.).
Evidently, these models are not perfect, and the real system’s behaviour may devi-
ate from the expected, due to inexactitudes, unmodelled dynamics, etc. In classical
control the effect of this uncertainty is modelled as a disturbance signal that quanti-
tatively affects the plant, deviating the evolution of the values of its magnitudes from
the modelled. We shall call this uncertainty about the plant intensive uncertainty [90].
There are other qualitative uncertainties, whose effect cannot be quantified, that will
be discussed later.

At the very core of control theory lies the feedback technique, which allows to
compensate for the intensive uncertainty. Thanks to the feedback loop the actuation
of the control over the plant is not fixed for each user command, but computed at
runtime, using information about the instantaneous state of the plant, i.e. the sensory
input. This allows the system to accommodate up to a certain point to the disturbances,
and maintain the desired behaviour. The control policy implemented in the controller,
however, is fixed at design time, based on the plant knowledge and the specific control
technique selected, e.g. PID, state feedback, etc. (see figures 1.5, 1.6). The capability
to adapt is therefore limited by it at run time.

8

1.1. Control Technology

Plant

Controller

actionsensing

reference

ouputdisturbance

Figure 1.8: The disturbance
signal in the control schema.
The effect of the modelling er-
rors and the unmodelled dy-
namics that affect the plant are
modelled as a disturbance sig-
nal. This assumes that the con-
tribution is quantitative, the rest
of the model being valid, which
sometimes is not the case.

Nevertheless, the previous is not the only assumption related to knowledge that
fixes the properties of the system at engineering time. In order to implement the con-
troller and integrate it with the rest of the system, engineering knowledge of the rest
of the subsystems with which it will interact at runtime is also used. All this knowl-
edge suppose assumptions on which control engineers rely for the developed system
to behave at runtime as required. This way, uncertainty has been traditionally re-
garded as affecting the environment, since the engineered system was considered as
perfectly defined in both static structure and dynamic operation by design. This was
so even when referring to not so well defined systems, such as large production plants
in which chemical processes were and remain not so well known. However, this is far
from true, specially as systems grow in complexity. This is one of the focal points of
this thesis.

1.1.3 Limits of Conventional Control

Control techniques allow to automate the desired functionality of technical systems
to some extent, by accounting for quantitative uncertainty. The most basic feedback
control techniques, such as the PID controller, can only account for a very limited
quantitative uncertainty. As soon as the behaviour of the plant departs from the model
used to design the controller, it fails. This is because the controller is completely fixed
at run-time, and thus limited by the boundaries of validity of the model of the plant
used to obtain it.

New intelligent control techniques allow to modify or change the controller at run-
time to some extent. Model reference based adaptive control [86] (MRAC) allows to
change the parameters of the controller during operation based on knowledge about
the plant and observation of its actual behaviour, so that it increases its adequacy to it.
Mode switching controllers follow a similar schema, but instead of tuning the parame-
ters of an otherwise fixed control strategy, they switch between a battery of alternative
controllers, so if the behaviour of the plant changes qualitatively, the control system
can switch to another different control strategy. Note that we cannot speak of the
controller accounting for qualitative uncertainty, since the existence of the predefined
strategy in the battery implies previous knowledge about the “unexpected” situation.

Notwithstanding the previous solutions and others that will be described later, hu-

9

Chapter 1 Autonomous Systems

mans still do play a critical role during operation of many “automated systems”. We
can see that in process plants, where operators and plant engineers supervise and con-
trol the daily operation. Or even in the most cutting-edge control technology for au-
tonomous systems: NASA Mars rovers are monitored 24 hours a day by a crew of
highly specialised engineers, who perform operational reconfigurations and make de-
cisions about the robot’s course of action, considering the mission and system status,
and also making intensive use of their scientific, technical and engineering knowledge.

The former techniques share the control “pattern” presented in figure 1.4a. From
a requirements standpoint, we can observe that this means that for each functionality
we want to automate in the system, e.g. maintain velocity, a control loop is designed.
This way during run-time the system behaviour is automatically driven to achieve that
requirement, even in the presence of disturbances, to the extent that the engineering
assumptions assumed in design hold. Roughly speaking, what the control engineering
process does is to convert functional requirements at design into target references for
control loops at run-time.

There are many requirements and environmental conditions for which no specific
knowledge suitable to design a closed loop controller is available. Systems are engi-
neered to fulfil them, though, considering how they will behave at runtime. However,
not every situation can be envisioned beforehand, and therefore human intervention is
required in the operation of technical systems.

In the following we explore the specific issues at hand regarding autonomous sys-
tems and their control.

10

1.1. Control Technology

ExampleSuppose we design a very basic controller for our robot to traverse corridor-like
environments. To achieve this requirement we envision a behaviour for the robot
that consists of advancing at a constant speed while maintaining a safe distance to
the left wall, measured with a range sensor. A PID controller can be used for that,
calculating the rotation velocity from the evolution of the distance to the wall. We
have converted the mission to traverse the corridor into a design consisting of:

• a constant command for the linear velocity (a cruise control can be used to
address this, using also a PID controller)

• a control architecture, i.e. PID feedback loop with a reference distance

Due to the closed loop induced dynamics, the robot will move oscillating towards
and away from the wall. The performance of the movement can be tuned with the
PID parameters; again fixed at design-time.

The system is thus only robust to uncertainty in the distance to the wall which
is the reference of the control loop. Uncertainty concerning other design decisions
can put the system’s operation severely at risk: right-side obstacles and left-side
doors would most probably invalidate the design solution to solve the mission by
moving forward following a wall on the left, too much movement oscillations could
lead to excessive battery consumption, etc.

Control System

Design

Plant

functional req.
PID

controller

ω

d

_
+

ωd

dref

move
forward

v

Vcte

traverse
corridors

movement
specifications

follow
left wall

non-functional req.

v = vcte

control engineering

dref

PID params.
K, Td, Ti

Figure 1.9: Example of how design decisions determine the run-time adaptivity of the system.
The functional requirement to traverse the corridor is implemented as a PID feedback control
loop at system design. This renders a system that is adaptable at run time to uncertainty in the
distance d to the wall, by regulating the robot turning velocity ω . The other design decisions
(PID parameters, constant forward speed vcte) fix the rest of the robot behaviour at design-time,
not being adaptable upon events unforeseen when they were taken, which could make the real
robot’s behaviour diverge from the requirements they addressed.

11

Chapter 1 Autonomous Systems

1.2 Autonomy

The term autonomous has a concrete meaning if we analyse its etymology: “having its
own laws", from the Greek autos ‘self’ + nomos ‘law’. Thus an autonomous system
is that which fixates its own laws. However, when applying the term to real systems
several interpretations may arise:

• A system is autonomous if it can fixate its own objectives.

• A system is autonomous if performs its function in absence of human interven-
tion.

These definitions separately do not capture well the concept of autonomy despite
the feeling that both address a part of it. We may give an engineering definition for
autonomy as:

The quality of a system of behaving independently while pursuing
the objectives it was commanded to.

There are still many open issues in the various fields of competence involved in
the different technical processes that subserve complex system engineering. The core
issue from the control engineering perspective, and which shall be considered transver-
sal as it potentially affects many of the systems of tomorrow, could be summarised in:

design the control to make the system work alone.

The search for autonomy has many reasons and implications but the concrete re-
search target of this field is not clear at all as demonstrated by the fact that even the
very term autonomy has many interpretations. But the search for autonomy is a major
thrust in systems innovation. This is generally true for two main reasons: economical
and technical.

Economical motivation is a major force because automated plants are less costly
from an operational point of view (human personnel cost reduction, improved operat-
ing conditions implying less failures, etc.). But technical reasons are, in some cases,
no less important: automated plants can be more productive, can operate fast processes
beyond human control capabilities, can be made safer, more available, etc.

Levels of Autonomy

When confronting the challenge to build an autonomous system, engineers are not
expected to build a system with full universal autonomy, that is, a system capable of
achieving and/or maintaining any state of itself and the environment in the desired time
without human intervention. That system would need unlimited resources and may not
even be physically realisable. What is looked for is a system that would perform as
autonomously as possible a certain task in a certain environment. This triad system-
task-environment is what defines the problem of engineering an autonomous system
[136].

12

1.2. Autonomy

The ALFUS working group [156] has proposed standardised metrics for autonomy
according to three axis: mission complexity, environment difficulty and operator in-
teraction or human interface (inversely proportional, the less the human intervention,
the more the autonomy), as shown in figure 1.10. The autonomy level of a particular
system is thus represented by the triangular surface determined by the values on the
three axes.

Mission
Complexity

Environmental
Difficulty

Human
Interface
(inverse)

Figure 1.10: The three dimensions that
determine the autonomy level for un-
manned systems according to [70].

ExampleLet us analyse how the ALFUS dimensions of autonomy apply to the previ-
ous exemplary case of an autonomous mobile robot, this time considering its full
functionality of autonomous navigation:

mission – if the robot is capable of performing a security surveillance task we
consider it as having a higher level of autonomy if it were only able to perform
a point-to-point driving task.

environment – we consider the mobile robot more autonomous if it can navi-
gate through a real-world dynamic office-like environment, where chairs may
change position, there are passers-by. . . than if it can only move in a toy-like,
fully controlled environment.

operator interaction – we could have a control system in the mobile robot so that
the operator only needs to define an area for patrolling and then check every
two hours if the robot is doing okay. Or it could be the case that the operator
has to keep constantly an eye on the robot to approve the local navigation
path selected for every corridor. In the later case we consider the robot to
be less autonomous.

In this thesis we are focused on completely autonomous systems regarding oper-
ator interaction. Assuming this targeted ideal autonomy in that dimension, our work
analyses and proposes an approach to maximise autonomy in the mission and the envi-
ronment dimensions. The relevance of another dimension, the system itself, concretely
its complexity, will be discussed later in section 1.4.

13

Chapter 1 Autonomous Systems

1.3 Intelligence for Autonomy

Control technology [81] has been addressing the problem of purveying systems with
improved levels of autonomy, so as they can be operated by setting them reference
target states instead of manually driving their actuators, and overcoming unforeseen
perturbations/disturbances from their environment.

Control strategies have been successfully dealing with intensive uncertainty, from
simple feedback controllers to complex robust control strategies, passing by state
space and Kalman filter techniques. However, as discussed in page 9 they are still
quite limited. These techniques rely on mathematical models of the plant that are
often not available and in many cases not suitable enough. Knowledge about the en-
vironment is incomplete and generally not representable as a set of linear differential
equations. The disturbance signal in such a mathematical model cannot account for
that, and we could talk of a different kind of uncertainty: qualitative uncertainty.

qualitative uncertainty refers to the occurrence of unexpected events
that qualitatively change the behaviour of the plant. They cannot be ac-
counted for in traditional control models as disturbances.

Qualitative uncertainty requires that the system interprets the unexpected situa-
tions and reacts to them appropriately, and it has to do so with incomplete and often
innaccurate knowledge. This is what lies at the core of what we call intelligent be-
haviour.

Example The PID controller we defined previously for our robot, based on maintaining a
close distance to an hypothetic left wall, can make it navigate through corridor-like
spaces, under very constrained conditions (no dynamic obstacles, no open doors
at the left side. . .). However, this controller will not work in more open-ended
environments, and does not allow for commanding the robot to go to a precise
destination.

In addition, we demand that systems be capable of addressing higher level com-
mands. That means that the control system must be able to manage information from
the simplest level of plant sensed and actuated variables, up to a human level repre-
sentation of the mission.

Example If our robot were to be employed in a real surveillance application, operated by
security staff, it would be most desirable to command it to “inspect sector A, C, D
and E, avoiding passing by corridors 5, 6 and 7”, so as not to interfere with some
maintenance activities, rather than having to specify the complete route in a 2D
map it shall follow.

14

1.3. Intelligence for Autonomy

Artificial Intelligence

From its earlier attempts, Artificial Intelligence has been concerned with making in-
telligent machines, in the words of John McCarthy, who coined the term [94]. The
problem of designing systems capable of producing appropriate behaviour departing
from incomplete, non-formal knowledge lies at its very core. Several approaches have
been explored.

Soft computing

Several of these methods have proved useful in many domains in the resolution of
specific problems, providing inexact but valuable solutions to computationally-hard
tasks in computer science. They are included in the field of soft computing, and their
advances have been nurturing the state of the art in software.

Symbolic approaches. Out there from the very beginning, symbolic approaches ex-
plored the representational nature of knowledge and intelligence as symbol manipu-
lation. Several formalisms to encode knowledge have been developed: logic-based,
semantic webs, rule-based for expert systems, or fuzzy logic. In relation and associ-
ated to them, different representations of actions and their results in the environment,
such as graphs or octrees, have been explored in planning.

Connectionism. The connectionist approach, the main example being artificial neu-
ral networks, proposes a model of interconnected networks of simple and often uni-
form units processing information signals. Instead of using a priori models of the
environment, biased by the engineers’ beliefs of how it should be, empirical data is
fed to the system to tune its configuration —i.e. learn— to produce the appropriate
responses. Learning methods are thus the central issue.

Back to cognition

Since the 80s the seek for creating intelligent autonomous behaviour has been put
back in the agenda, having been left to a side for the development of techniques for
specific problems. The coupling of the agent —i.e. the controller— with the world in
a loop through sensing and acting has moved the accent from information-processing
intelligence to cognitive behaviour.

Cognitive architectures represent a systemic approach to intelligence and cogni-
tion. They try to define the basic processes and structures that provide for intelligent
behaviour. Soar is a paradigmatic example [82]. However, in many cases they do not
try to improve control technology but to model human intelligence for its study, such
is the case of ACT-R [7].

15

Chapter 1 Autonomous Systems

Intelligent Control is the branch of control engineering, in the convergence point
with AI, that has been applying all these advanced techniques to the construction of
control systems. Expert systems and fuzzy controllers have been successfully applied
in process plants. Bayesian methods, such as the Kalman and particle filters are an
standard in controller for mobile robots, and neural networks.

Current control systems managing our high-tech technical infrastructures are com-
plex systems integrating several of this technologies in a variety of heterogeneous
software-intensive components.

1.4 Present Challenges to Autonomous Control Systems

In this quest for autonomy we demand more functionality and more robustness. Today
automobiles do not provide us just with mechanical locomotion, now they also help
us drive to avoid collisions, park, and even entertain the passengers with multimedia
systems. Modern thermostats do not only control the temperature of the room, they
are also able to learn our preferences through the day and the yearly seasons.

Control System

Plant
rest of the system

s1 a1

environment

Figure 1.11: Control systems
are now software-intensive, im-
plemented in a variety of inter-
connected components.

This increased demand for more functionality has conveyed an increase in the
control systems’ complexity, in order to address it. Controllers now include more
elements, with sophisticated functionality (for example, simulators, fault tolerance
mechanisms, real-time problem solving), interacting in more complex ways. Incorpo-
ration of artificial intelligence into the control engineer’s toolbox has also contributed
to produce new waves and ripples of complexity, making controllers to be software-
intensive systems where a great variety of heterogeneous components interact.Today’s
complex process control architecture is a mixture of all these things, running on tech-
nologically diverse computing platforms, with different implementation techniques
and methodologies.

The larger the number of components, the more things there are that could
be faulty. (...) Similarly, the more complex a component, the more chance
there are of it being faulty. [71]

16

1.4. Present Challenges to Autonomous Control Systems

This means more uncertainty, now on the control system itself, compromising the
assumptions engineers do at design time. Unexpected undesirable interactions be-
tween the system’s components threaten the runtime achievement of requirements.
However, our dependency on these new complex technical systems is rising the re-
quirements on availability, robustness and fault-tolerance.

1.4.1 Robust autonomy: focus on non-functional requirements

Dependability considerations have always been a matter of worries for real-world en-
gineers. They encompass some of the non-functional1 requirements that refer to the
system’s operation at runtime:

reliability is the ability of a system or component to perform its required functions
under stated conditions for a specified period of time,

availability can be simply defined as the proportion of time a system is in a function-
ing condition,

safety refers to the personal harm and equipment damage that can arise due to a sys-
tem failure,

and others that refer to the evolution of the system:

maintainability refers to the ease with which the system may undergo repairs and
changes during its life-time evolution,

scalability is the ability of a system to be enlarged, i.e. by incorporating new com-
ponents, to accommodate growth either quantitatively or qualitatively in perfor-
mance or in the functionality serviced.

Today, given the pervasiveness of technology and control systems in the very in-
frastructure of our world —telecoms, vetronics, energy production plants, distribution
networks, etc.—, dependability has evolved from a necessary issue just in a handful
of safety-critical systems to become an urgent priority.

Survivability [45] emerges as a critical property of autonomous systems. It is
the aspect of system dependability that focuses on preserving system core services,
even when systems are faulty or compromised. A key observation in survivability
engineering —or in dependability in general— is that no amount of technology —
clean process, replication, security, etc.— can guarantee that systems will survive (not
fail, not be penetrated, not be compromised). This is so because the introduction of
new assets into the system, while solving some problems, will add new failure modes
both intrinsic to the new assets or emergent from the integration.

Of special relevance in the case of complex autonomous control systems is the
issue of system-wide emerging dysfunctions, where the root cause of lack of depend-
ability is not a design or run-time fault, but the very behavior of the collection of in-
teracting subsystems. In this case we can even wonder to what degree an engineering-
phase approach can provide any amount of increased survivability or we should revert

1Functional requirements refer to the services we demand of the engineered system; non-functional
requirements are the desiderata about how the services will be provided, i.e. how well, how reliably, etc. . .

17

Chapter 1 Autonomous Systems

to the implementation of on-line survivability design patterns than could cope in oper-
ation time with the emerging dysfunctions.

1.4.2 Run-time adaptation

The augmented complexity of control systems is accompanied by increased risks of
malfunction, compromise, and cascaded failures. Systems do not only fail due to their
defects or their mismatches with reality, but also because their integration with other
systems that fail, or that may cause emergent systemic failures.

Control System

Plant
rest of the system

s1 a1

environment

?

?
?

other
systems?

Figure 1.12: The complexity of
control system increases the un-
certainty levels in its internals
and its interface to the environ-
ment. This is also aggravated
because of the connections with
other systems.

This situation results in a new functionality needed in control systems: they must
take care of themselves.

We have already discussed how current control engineering provides run time
adaptation for a limited environmental uncertainty, to address functional requirements,
by converting them into the references for feedback loops. AI and intelligent control
has helped engineers extend the capacity of control systems to adapt also to qualitative
uncertainty at run-time, to some extent.

However, system’s traits such as performance and dependability issues, linked to
non-functional requirements, are only accounted for during development, embedded
in the system’s design. They are fixed at engineering time, and the system has no
capability to adapt if unforeseen circumstances affect them.

More robust autonomous systems are needed. For that we need
control systems capable of adapting at run-time to unexpected
situations, either at the plant, the mission and the system (itself).

This run-time adaptivity involves a series of self-x properties [64, p. 64]: self-
monitoring, self-reflection, self-repairing, self-maintenance, self-reconfiguration. If
intelligent capabilities provided by AI techniques have endowed artificial systems with
the capacity to deal with qualitative uncertainty at both the mission and environment
levels, metacognitive properties seem a reasonable direction to explore to cope with
qualitative uncertainty at the self level and achieve any self-x property.

18

1.5. Structure of the Dissertation

1.5 Structure of the Dissertation

The complex fabric of this thesis, touching a manifold of themes, together with the
intricate and non-linear development process followed, makes it really difficult to find
a way to present the research realised in a comprehensive, rigorous and complete
written dissertation. Following we provide a guide to the document. The discourse is
organised around the three phases of the methodological path followed —i.e. analysis
of the problem and extant approaches, development of the solution and validation—
and the basic elements produced as results.

Part I is the introduction, and presents the problem this thesis confronts:

Chapter 1 has described the context of technological demand for more au-
tonomous control systems and engineering methods for them.

Chapter 2 introduces the departing motivation and ideas that have driven this
work, detailing the pursued objectives to finally outline here how the re-
sulting thesis is structured and reported in this document.

Part II is dedicated to the necessary foundation and background, together with a
framing formalisation for the issues at hand:

Chapter 3 presents the scientific and engineering themes that are relevant for
this thesis’ work.

Chapter 4 develops a unified conceptual framework for autonomous systems,
providing elements also to analyse their cognitive operation. This theoret-
ical basement will serve two purposes: i) a foundation for this thesis de-
velopments, ii) an analysis tool to evaluate and compare other approaches
to the problem as well as relevant state of the art work.

Chapter 5 offers an overview of the state of the art of extant approaches to
build systems with similar features to those pursued in this thesis.

Part III presents the core contribution of this thesis, that is an architectural frame-
work for self-aware autonomous systems:

Chapter 6 is dedicated the central ideas of this thesis, a set of postulates that
contain autonomous systems design ideas.

Chapter 7 describes the design patterns developed that reify the thesis postu-
lates.

Chapter 8 details the metamodel of components and functions developed to
account for the ontology and teleology of autonomous systems.

Chapter 9 describes the reference architecture for self-aware autonomous sys-
tems that has been developed.

Part IV develops the validation of the developed framework for self-aware control
systems:

19

Chapter 1 Autonomous Systems

Chapter 10 presents the engineering methodology developed to accompany
the architecture framework for its application.

Chapter 11 describes the application of the framework to the development of
the testbed application, and the results obtained.

Chapter 12 analyses the results reached in the research, and provides conclud-
ing remarks. Future lines of research are also discussed.

Part V includes reference material:

Bibliography that contains the list of references used in this dissertation and
considered in the research.

Glossary of the concepts of the theoretical framework for autonomous systems
and the specialised terms employed in this dissertation.

1.5.1 Notation

The discourse in this dissertation incorporates many terms common in engineering,
but that are used here in a specific sense within the realm of autonomous systems. In
addition, we have created new terms to refer to particular phenomena that was needed
to dintinguish. All this wording refers to concepts and ideas from different levels
of abstraction and prespectives, i.e. design, run-time operation, modelling, etc. To
facilitate the reading, different font styles have been used to ease disambiguating the
context of a term when it appears in the text:

• concepts in the theoretical framework for cognitive autonomous systems,

• elements in the metamodel for function and components structure,

• elements of the architecture for metacontrol of autonomous systems.

A consistent notation has also been applied to the figures used to illustrate the
control ideas and designs developed. To represent conceptual elements square boxes
have been used, whereas implementation elements have been depicted with round
boxes. Dotted arrow lines have been used for informational flows, and unbroken arrow
lines for actual connectivity between elements (see figure 1.13).

physical connection

informational connection

informational flowconceptual
block

implementation
block

Figure 1.13: Conventions used in the figures of the thesis.

20

1.5. Structure of the Dissertation

1.5.2 Examples

To aid in the explanation of the abstract ideas and generalisations presented in this
dissertation, example scenarios are provided all along the text. For the sake of com-
pleteness and consistency, all of them will refer to the same exemplary system, which
is a mobile robot.

The following text style in a gray box is used for all examples:

ExampleExemplary system: mobile robot

The exemplary system is a mobile robot with on-board computational resources
and sensors, and a remote control application running in a desktop for supervision
and operation. The robot consists of a four wheeled differential platform equipped
with odometry and a range laser of 180°. The robot will move in an indoor en-
vironment, made of walls, doors, corridors and pieces of furniture like tables and
chairs. The mission of the system is to go to the destination commanded from the
supervision remote application, given by a point in the 2D Cartesian space. Upon
initialisation the robot is provided with an occupancy map of the environment, as
well as its initial position.

Although a variety of controllers have been used to illustrate control issues in
this chapter, for the majority of the examples in this dissertation the same control
architecture has been considered. This architecture consists of interconnected mod-
ules with different responsibilities. The localisation module uses the laser scans,
the odometric information and the map to estimate the position of the robot with
a Monte-Carlo method. The navigation module maintains an occupancy-grid map
using the laser scans and the estimated position, plans the path to follow to reach
the targeted destination, and computes the robot velocities using a path-following
control algorithm that considers the robot inverse kinematics.

This control architecture is a simplified version of that of the testbed system
that has been developed in the research. The testbed is presented in the next
chapter, and fully detailed in chapter 11.

21

Chapter 1 Autonomous Systems

Example
Control System

laser

localization
module

navigation
module

odometry

map

motor
control

scans

(v, ω)

odom

goal position

Plant

ω
v

est_pos

Figure 1.14: Schema of the control architecture in the exemplary mobile robot application.

22

Chapter 2

Approach and Objectives

Once the context of this work has been described in the previous chapter, now the con-
crete problem it addresses is discussed. The opening section of this chapter presents
the engineering approach to autonomy in which the research is framed, the ASys
project. Then the discussion about the scope of this work motivates the need for
self-aware capabilities in control systems, in order to improve the robust autonomy
of technical systems. Finally the goal of this thesis, which is the analysis and design
of an engineering solution for this self-aware adaptive capabilities, is formulated into
a concrete list of objectives.

2.1 Engineering Autonomy: the ASys Project

This work is situated in the research line of the Autonomous System Laboratory
(ASLab) of the Universidad Politécnica de Madrid, which focuses on the development
of universal control technology for autonomy. The thesis builds on top of previous re-
search efforts in the group, from early attempts to apply intelligent control techniques
for autonomy [128], to recent theoretical achievements in the conceptualisation the
domain of autonomy and perception [90], or developments that formalise it into us-
able software assets, such as an ontology for the engineering of autonomous systems
[18]. All these works, including the present, are framed in ASLab’s ongoing long-term
research project: ASys [139].

2.1.1 ASys Vision

The ASys1 Project intends the creation of science and technology for universal au-
tonomy. In this context, "universal" means that the technology shall be effective in
augmenting the level of autonomy of any kind of artifact in any kind of mission [137].

1Autonomous Systems

23

Chapter 2 Approach and Objectives

This implies a wide range of (autonomous) systems to be considered in the research,
from robot-based applications to industrial plants for continuous processes. Addition-
ally, the ASys science may serve as a systems-centric substrate for theories of natural
autonomy [36].

As described in the previous chapter, dealing with runtime uncertainty is the prin-
cipal challenge in the pursuit of robust autonomy. Tools from the AI field have been
extensively explored for intelligent control in the past few decades, improving the
adaptivity and efficiency of systems. However, as it has been pointed out, they are usu-
ally valuable only for a restricted type of problems. Besides, a not negligible amount
of tuning for their application to the specific system is usually required. This means
that: i) an important part of the adaptivity is still determined at the design stage, and
ii) the achieved solution is only partially reusable for other systems, and hardly trans-
ferable to other domains.

The underlying ideas of the ASys approach are: i) to overcome the previous issues
by moving the responsibility for adaptation from design time to system’s run time, and
ii) provide the solution in an architectural form, rather than an algorithmic one, so as
to meet the non-functional requirements presented on page 17.

2.1.2 Model-based Autonomy

The strategy proposed to address adaptation at run-time is that of exploiting cognitive
control loops, which are control loops based on knowledge. This knowledge is realised
in the form of different models: of the system, of the environment, and of its mission.
This is the so called model-based view on cognition.

The pervasive model-based approach in ASys is two-folded: an ASys system will
be built using models of it (see figure 2.1), but an ASys system will also exploit models
of itself to drive its operation or behaviour. Model-based engineering and model-based
behaviour then merge into a single driving concept: model-based autonomy. The
main goal: the models the system will use to control its behaviour will eventually be
those very same models used by engineers to build it.

Models constitute thus the core for our autonomous systems research programme.
The type and use of models to be specifically developed for the autonomous system are
considered. User and designer requirements, and constraints imposed by the system
itself will guide the development of the models. ASys is deeply rooted in the Model-
Driven Engineering approach, making models the cornerstone for the development of
the autonomous systems, targeting the ultimate goal of automatic construction of the
system from this models. The next stage is to extract from the built models a particular
view of interest for the autonomous system. Unified functional and structural views are
considered critical for our research as they provide knowledge about both the intended
and the expectable behaviours of the system.

The obtained models will be exploited by means of commercial application en-
gines or customised model execution modules. Models will be exercise during run-
time to derive the most suitable actions to do. Note that models are the knowledge that

24

2.1. Engineering Autonomy: the ASys Project

Control Systemknowledge

...

Plant

run-time
models

....

Models

control engineering

requirem. design
model code

ANALYSIS DESIGN IMPLEMENT.

Figure 2.1: ASys model-based approach: the knowledge used to build the
system is converted into engineering models during its development. The au-
tonomous system also uses models for its operation.

the autonomous agent will use to act properly. This knowledge shall include knowl-
edge about the cognitive processes of the agent itself. Considering the metacognitive
needs of autonomous systems, metamodels are addressed in the research. Progressive
domain focalisation will be used to address the different levels of abstraction between
metamodels and models, following the ontological approach to metamodelling [11].

2.1.3 Architectural Approach

Focusing on the system’s architecture is focusing on the structural properties that con-
stitute the more pervasive and stable properties of the system [144]. Architectural
aspects are what critically determine the final capabilities of any information process-
ing technology, such as control systems.

ASys’ seek for an architectural solution derives from its intention to address all
the domain of autonomy, and therefore for the developed technology to be of general
applicability, so it be usable to develop control systems for any plant, e.g. continuous
process plants, air-traffic control or mobile robots; and to meet the critical demands
for dependability and survivavility exposed on page 17, because they critically depend
on the system’s architecture.

In addition, architecture-based development offers the following advantages:

• Systems can be built in a rapid, cost-effective manner by importing (or generat-
ing) externally developed components.

• It is possible to predict global qualities of the final system by analysing the
architecture.

• The development of product lines sharing the same architectural design is easier
and cheaper.

• Restrictions on design variability make the design process more productive and
less prone to faults.

25

Chapter 2 Approach and Objectives

ASys is thus interested in domain variations of architectural designs for their ap-
plication to different autonomous systems. A reference architecture is an architecture
where the structures and respective elements and relations provide templates to derive
concrete architectures in a particular domain or in a family of software systems, and
can be expressed in a reference architecture model [1, p. 9].

The ASys approach is strongly conceptual and architecture-centric. The suitabil-
ity of extant control and cognitive control architectures and how they match the ASys
research ideas and developed products (ontologies, models, views, engines) shall be
determined and possible adaptations and extensions shall also be considered. The
definition and the consolidation of architectural patterns that capture ways of organ-
ising components in functional subsystems is critical. As a generalisation strategy,
the different elements considered in the ASys research programme will be assessed in
different testbed systems: mobile robots, a chemical reactor, etc.

2.1.4 An integrated approach to engineering autonomy

The strategy to follow to materialise the ASys vision is the construction of a sys-
tems engineering framework [73] that can support the engineering processes associ-
ated with the construction of autonomous systems. Figure 2.2 summarily depicts the
entities, tooling and activities involved in this process. It integrates the previously
discussed ideas: an architecture-centric design approach, a methodology to engineer
autonomous systems based on models, and an asset base of modular elements to fill in
the roles specified in the architectural patterns.

The ASys engineering process covers from the initial capture of application re-
quirements and domain knowledge, so as to define the initial system specification, to
the implementation of the final product —i.e. the autonomous system.

The ASys vision suggests that the self-x competences [132] that are necessary
to increase system autonomy and resilience, can be based on the models used in the
engineering of the system. As depicted in figure 2.2, the autonomous system Model is
transformed, by synthesis, in 1) the Autonomous System and 2) the run-time Model of
itself that it uses during its operation.

The central part of figure 2.2 shows this process where the Model is transformed
into the Autonomous System. The Integrated Control Environment (ICe) toolset shall
be used to exploit an asset base to sustain this engineering process:

The asset base contains :

ASys Ontology: An ontology of the domain of general autonomous systems. This
serves as the core ontological substrate for all ASys elements.

Domain Ontologies: Domain ontologies focused in the different application domains
of ASys. The two domains that are the current focus of the work are process
control systems and mobile robotics —the domain of this thesis.

26

2.1. Engineering Autonomy: the ASys Project

Views

Model

Metamodel

ICe
Specification

ICe
Documentation

ICe
Design

ICe
Synthesis

ICe
Asset

Management

ICe
Deployment

Model

Metamodel

Engine Engine

Asset Base

OAsys
Ontology

PatternPattern

Pattern

Component

Component
Component

Domain
Ontology
Domain
OntologyDomain

Ontology

Requirements

Documentation

ICe
Operation

ASys-Vision-04

Autonomous
System

Figure 2.2: Tasks and products in the overall ASys vision (adapted from [139]).

27

Chapter 2 Approach and Objectives

Design Patterns: Reusable designs of subsystems of the autonomous agent. A big
part of this thesis deals with some of the core patterns for ASys.

Components: Reusable software implementations that can be used to play the roles
specified by the patterns.

The ICe tool supports several activities:

Specification: The specification of the ASys concerns the intended use and autonomy
properties for the agent.

Design: The design specifies the architectural organization of the agent using the
ASys pattern language as design vocabulary.

Synthesis: The synthesis produces both the agent implementation —obtaining com-
ponents for the pattern roles— and the run-time model —by means of model
transformation methods.

Documentation: The capture of all reference material that may remain somewhat
hidden due to the automated nature of some of the processes.

Deployment: Deployment of the ASys and run-time models in real operational con-
ditions.

Operation: Operation of the ASys through an RCP-based user interface.

Asset Management: Management of the asset base including incorporation of new
assets specifically developed for concrete applications.

2.2 Scope of this thesis

The motivation for this PhD work is the search for a technology capable of improving
current levels of autonomy in technical systems, addressing the demands on robust-
ness and dependability as presented in 1.4, by leveraging their capacity for a special
cognitive capability: functional self-awareness.

It addresses the ASys’ objective to achieve, eventually, any level of autonomy by
letting the control system handle itself [133], moving the responsibility of adaptation
from engineers at design time to the control system itself at run time. This would even-
tually allow systems to cope with all kinds of uncertainty either at the environment,
mission, or the system itself levels.

2.2.1 Self-awareness for Run-time Adaptivity

For this runtime adaptation we have explored the possibility of providing control sys-
tems with the key element that control engineers use to design the required system’s
behaviour: knowledge; and the capability to exploit it, as engineers do. Knowledge
about the requirements (the mission), knowledge of the system itself, and the mecha-
nisms to understand their relationship, as reified during design. To use it, the system

28

2.2. Scope of this thesis

must be able to relate it to the run-time circumstances. This implies that the system
must be able to observe its state in relation to its functionality, and from that also be
capable of reconfiguring its structure on the fly if needed.

It is in the point of observability where self-awareness comes into play. The control
system must be capable of deriving appropriate control actions (reconfiguration) from
the observed state. So it is not just an issue of monitoring certain internal variables,
the system needs an understanding of the functional implications of the observed situ-
ation. It has to analyse it in the view of the required behaviour, as stated in its mission.

There is a cognitive capability in some biological systems closely related to these
issues of understanding, meaning and self-representation: consciousness or self-awareness.
Recent research on this phenomena is showing the evolutionary value of self-awareness,
which could be related with the leverage of other cognitive traits. This has been the
motivation to explore the idea of introducing in the control systems self-aware mech-
anisms that exploit the models for enhanced run-time adaptivity.

Considering the context of ASys, this work has tried to advance in the realisation
of the model-based cognition view, with special focus on extending it to integrate the
self-awareness phenomena.

2.2.2 Architecture for Self-aware Control Systems

Exploiting knowledge about the mission and the system itself is not new. From the
very beginning of AI the issue of how to represent the system’s mission as goals
has been a main research theme. Artificial agents [72] are usually designed to main-
tain representations of themselves and their capabilities. However, these are typically
black-box representations: the agent knows nothing of the design intricacies of how
its structure renders those capabilities or functions that realise its goals. The represen-
tations are used in open-loop, added to the agents’ behaviour generation mechanisms,
without a dedicated feedback control mechanism with a reference.

There are other control approaches, such as fault-tolerant control, that dedicate
architectural mechanisms to use knowledge of the system, but it is usually limited to
faults, and tending to ad-hoc algorithms and predefined configurations.

Adhering to ASys focus on architecture, this thesis aimed to explore the incorpora-
tion of self-awareness into the control architecture. That is, have a control loop, based
on engineering knowledge of the control system, controlling the control system itself.
This is what we have defined as metacontrol. In summary:

this thesis has intended to advance in the formulation and tech-
nical reification of ASys principles of model-based cognition and
having systems self-handle at run time for robust autonomy. For
that it has focused on the biologically inspired capability of self-
awareness, and explored the possibilities to embed it into the very
architecture of control systems.

29

Chapter 2 Approach and Objectives

Example

Suppose we have developed a control system for our mobile robot that allows
for autonomous navigation in an office-like environment, so we can command it to
go to a certain destination. Such a controller typically consists of several compo-
nents: I/O drivers, localization module, obstacle mapper, planner, local navigator,
operator interface. . . adequately configured for the application, i.e. different cost
functions for mapping obstacles are advisable depending on the cluttering of the
environment.

During the system’s operation many things can go wrong. Let us imagine two
scenarios: that make the robot fail:

Scenario 1: the range sensor stops working due to an internal failure.

Scenario 2: the localization algorithm does not converge to a solution.

In both cases the result is a deviation from the desired navigation behaviour.
The self-localisation of the robot fails, that typically resulting in the planning algo-
rithm to execute a fail-safe action, such as stopping or turning around in the same
spot to obtain new sensory readings if possible.

To robustly preserve autonomy, adequate response targeting the source of the
problematic situation is needed. Fault-tolerant techniques could address scenario 1
to some extent. However, the more general solution, and the one is actually very
commonly employed, resigns autonomy. It consist of engineers2 take care of the
problem at runtime:

Firstly by diagnosing the situation, i.e. identify the failure and evaluate its impact
on the functions of the system, which are, in each scenario:

Scenario 1: laser internal failure, which compromises the functioning of localiza-
tion and navigation.

Scenario 2: localization algorithm not achieving a solution as expected, so no
estimation of the position is generate, which prevents global navigation.

30

2.2. Scope of this thesis

knowledge

Control System

Plant
environment

laser

loc.

nav.

odom

map

motor

goal p.

robot

?

Figure 2.3: To recover from unexpected situations, sometimes engineers have to re-configure
the system on the fly.

Then they would take appropriate reconfiguration actions, for example:

Scenario 1: halt movement, and reconfigure the localization and navigation to use
other available sensory source if possible, such as infrared sensors.

Scenario 2: reconfigure the localization algorithm parameters, and slow down mo-
tor velocities.

In this thesis we have explored architectural design solutions so that these
actions are not taken by engineers, but by the robot itself, being the result of
a single architectural mechanism embedded in the control system of the robot,
making it self-aware of its mission, itself and its environment, and eventually, the
relationship between both at the very engineering level, which is the cornerstone
here.

2.2.3 Dimensions of generality

This thesis intends generality in its developments. In this line, this thesis seeks the
definition of patterns and the implementation of components to address system self-
awareness needs of general applicability. As part of the ASys project, it stands in an
universality track; we seek unified general solutions instead of collections of specific
ones.

Take for example the case of achieving immunity against cyber-threats by self-x
mechanisms. In a conventional approach, a classic virus scanner is a self-x mecha-
nism that is automatically triggered to detect threats in the system. In a step towards

31

Chapter 2 Approach and Objectives

generality Musliner et al. [98] offer an implementation of a system that rather than
scanning a computer all night to see if it has been compromised by an exploit, it will
scan for vulnerable software and repair or shield it. It is not focused on detecting
specific viruses but on identifying vulnerabilities that would be exploited by any of
such viruses. The FUZZBUSTER system approaches generality by getting rid of the
virus specificities and focusing on the inherent physical and operational structure of
the attack (in strong relation with the structure of the "self" as system).

Generality means the system being not limited to one particular case. Generalisa-
tion can be thought-out as an inductive process, progressively addressing particulars
using a fundamentally simple metamodel. This is what virus scanners do: collect in-
formation about hundreds of viruses using simple binary signature metamodel. How-
ever, true generality is attained when a general but deep description of the many cases
—a deep model— is attained. Individuals match the features of the model, that are
applicable to the whole as well as to every one of the individuals.

However, in the context of systems engineering, the term "generality" needs a
conceptual clarification. This is needed because of the different aspects of generality
that the problem and its solution may imply [100], especially in the case of software
systems.

There are many directions to pursue, and generality can be sought in relation to:

• The different domain systems that are the final products of the ASys engineer-
ing process. A solution —a pattern, a component— is said to be general if it
can be applied to different domain systems [62]. For example, a GPS-based lo-
calization component can be used in different mobile robots without any major
change.

• The different subsystems in a specific domain system. A solution is said to be
general when it can be applied transparently to different elements that form part
of the domain system [148]. For example, a check-pointing pattern is said to be
general because it can be applied to different subsystems; e.g. it can be applied
both to to the mission constraints database and the localisation subsystem.

• The different platforms over which it can be deployed. A solution is said to be
general when it can be realised in different implementation platforms straight-
forwardly [89]. For example, when a design pattern can easily be realised as a
collection of distributed Java objects using RMI or as a DDS application.

• The different control levels of the ASys. A solution is said to be general when
it can be applied to tackling similar problems at different layers of a control
pyramid [109]. For example when a robust navigation algorithm can be used at
the level of local object avoidance and global mission path planning.

• The different meta levels of the system. A solution is said to be general when it
can be applied to a hierarchy of meta/domain pairs [112]. For example the same
kind of model-based perception algorithms can be used to perceive the state of
the world around the robot and the state of the components that constitute the
robot controller.

32

2.3. Objectives

The objective of generalisation is dual: a) on one side it contributes to a reduc-
tion of effort, as is the case of reusing software implementations of algorithms across
control layers [78]; and b) on the other side it contributes to usability, quality and
robustness in the sense of having designs that are cleaner, more understandable and
applicable[40]. Object-oriented technology is specially suitable for this effort [117]
and it is what has been used in this thesis in the form of a software framework [152].

2.3 Objectives

To condense the scope of this research, the question that it has tried to answer is:

How can we enhance control systems with self-aware capabilities so as
to robustly improve their autonomy?

Following the ASys’ architectural approach, the theoretical results of this work
should be developed in an architectural form. Concretely, a reference control archi-
tecture, providing an engineering guideline for the development of self-aware control
systems for any application domain.

The aim of this thesis, despite the deep theoretical research it addresses, has been to
be of practical engineering applicability. Software assets should be developed to reify
the reference architecture. To guide their implementation and validate the approach,
the architecture should be deployed in a real autonomous system application, simple
enough to be achievable in a small-scale project, but requiring of robust autonomy in
a context of challenging uncertainty.

All these intentions can be synthesized in the following list of specific objectives:

1. AnalysisAnalyse the functional value of the adaptive mechanisms related to biological
self-awareness for its applicability in cognitive artificial systems. Extant techni-
cal mechanisms rendering a similar functionality will also be studied.

2. Explore the relation between self-awareness and models. Given a conceptuali-
sation of cognition as the exploitation of explicit models to efficiently drive the
behaviour of systems, self-awareness is to be explained under this theoretical
framework.

3. DevelopmentElaborate control design principles to guide the development of control systems
with self-aware properties. These principles will be the result of the previous
studies.

4. Develop an architecture for self-aware control systems from the previous prin-
ciples. This architecture shall be of general applicability to the design of au-
tonomous systems, independently of the domain, the particular application and
the specific technical platform employed for its implementation.

5. ValidationBuild reusable software assets for the application of the developed architecture
to the building of control systems in different domains.

33

Chapter 2 Approach and Objectives

6. Demonstrate the validity of the approach by developing a testbed application
using the architecture and assets developed.

2.4 Research methodology

To address the previous objectives, a multidisciplinary work has been carried during
the last 5 years. During that time, apparently disparate themes from different dis-
ciplines —control, cognitive science, general systems theory, software development,
modelling, cognitive architectures, etc.— have been studied seeking for the appropri-
ate conceptualisations and tools to tackle the proposed problem.

Given the multidisciplinary character in this work and the generality sought, while
maintaining an ambition of immediate engineering applicability, a mixed methodology
in between the scientific method and the engineering process has been used. Firstly,
preliminary analysis phase was conducted to characterise the problem, identify the key
issues and the research areas and technologies of potential relevance, studying extant
approaches that tackle the problem, or variants of it. The results obtained from this
phase were used at the inception of the solution proposed, which was developed from
initial design principles into a complete architectural framework for the design of self-
aware control systems. A concrete implementation of the architecture for a testbed
application was finally realised to validate the approach and the work done.

Analysis

DevelopmentValidation

state of
the art

themes
objectives

theoretical
framework

design
principlesfinal

testbed

architectural
framework

patternsarchitecture
prototype

Figure 2.4: The phases of the iterative process followed
in this thesis, and the milestones achieved.

Due to the novelty of the approach and the mixture of themes touched and as-
pects addressed (biological models, engineering methodologies, control theories. . .),
there was no standard solid common ground to depart from, so, to guarantee a sound
progress, the development process of this work was iterative, somehow following the

34

2.4. Research methodology

spiral model from software development [23]. Figure 2.4 shows the three discussed
phases and the basic elements addressed and results.

2.4.1 Mobile Robot Testbed

A testbed system has been used to guide the work. The deeply theoretical and abstract
nature of the basement of this thesis put the results of the work at risk of loosing
connection with the current reality and practical applicability. The testbed has served
to purvey a bottom-up perspective to help clarifying the issues at hand, and keep the
deep theoretical developments deeply grounded in the needs of real systems.

Plant

knowledge

software
infrastructure

application specific

technical knowledge

robot
kinematics
environment
cluttering
sensor models

SLAM
EKF
Planning...

robotic
libraries

navigation
mission
spec.

Control System

control
engineering ?

differential
wheels

laser
kinect
odometry
compass

Figure 2.5: Relevant elements in the implementation view of the control for the testbed
application. Well established control techniques for the robotic domain such as SLAM
and Kalman filtering, as well as COTS software, such as driver libraries or middleware
infrastructure, have been used, and so knowledge about them implicitly and explicitly
used in the engineering of the control system.

To maintain the general validity of its outcomes, the selected testbed had to cover
most of the issues addressed by this thesis. It should also be broadly representative for
other systems, its nature and properties including as much a variety as possible so as
to cover the widest range of possibilities.

For these reasons an autonomous mobile robot application was chosen. Mobile
robot applications demand autonomous operation in open-ended and real-time envi-
ronments, thus encompassing both quantitative and qualitative environment uncer-
tainty. Their navigation-based missions require sophisticated functionality such as
localisation, planning and obstacle avoidance, while reliability and safety are criti-
cal. Control systems for mobile robots are software-intensive, including heteroge-
neous components integrating different techniques and complex algorithms. Besides,

35

Chapter 2 Approach and Objectives

the system encompasses continuous and discrete variables, physical and informational
components, etc.

The concrete testbed consists of developing the control system for patrolling an
indoor office-like area. The system consists of a mobile robot platform equipped with
range and odometry sensors and a depth camera, and on-board and remote computing
resources. Figure 2.5 depicts the basic elements in the testbed application, which are
described in detail in chapter 11.

2.4.2 Basic elements of this work

The result of the research done for this PhD thesis is a framework for the engineering
of autonomous systems: the OM Architectural Framework. It encompasses theoreti-
cal conceptualisations, guidelines and principles, together with design and implemen-
tation assets. They have been validated by the development of the testbed control
application.

Figure 2.6 sketches all these results into basic elements, showing their relations
according to the development process followed. The theoretical framework contains
the conceptualisations and vision of autonomous systems at the base of the research
developed. The elements in bold have been completely developed in this research.
The OM Architectural Framework, and its accompanying engineering process, are the
reification of the results of the work done, demonstrated by their application to the
development of the testbed mobile robotic system.

36

2.4. Research methodology

Testbed

control engineering

OM Architectural Framework

ASys Design Principles
for Autonomous Systems

Design Patterns

Thesis Postulates
for the design of self-aware
autonomous systems

State of the Art /
Relevant science and

technology

Ch 7

Ch 6

Ch 8

Ch 9

Ch 4, 5

Ch 3

Control System

Ch 11

OM Reference
Architecture

Metamodel for
Function and

Structure

Theoretical
Framework

mobile robot

A
N

A
LY

SI
S

D
EV

EL
O

PM
EN

T
VA

LI
D

AT
IO

N
Ch 1, 2

Problem analysis
and objectives

OM Engineering Process and assets Ch 10

Figure 2.6: The basic elements this thesis is structured around, and the chapters
that discuss them.

37

Chapter 2 Approach and Objectives

38

Part II

Foundations and State of the
Art

39

Chapter 3

Core Themes

This chapter presents the core themes that have been addressed during the develop-
ment of the research. They are from different disciplines, and may seem disconnected
and far apart in the scientific domain. However they converge in our exploration of
new engineering methods for autonomous systems. Biological self-awareness was the
initial triggering motivation, given its claimed evolutionary value for adaptation. Mod-
elling is a central and pervasive topic in our research, and it is discussed in section 3.3,
devoted to functional modelling, and section 3.2, which treats software modelling and
theoretical considerations about general modelling. Design patterns, to which section
3.4 is devoted, are a technique used to describe design solutions, which has been used
to shape the one developed in this work. Fault-tolerance is an are of maximal rel-
evance for our research regarding run-time adaptivity in technical systems. Finally,
component platforms currently seems the more appropriate technology for realising
complex control applications such as autonomous systems.

3.1 Biological Self-Awareness

Biological inspiration has usually guided research on autonomy and intelligence. The
brain and the rest of the central nervous system is regarded as a very adaptable con-
trol system, providing intelligent behaviour. The study of the biological mind and its
cognitive capabilities has thus inspired many useful AI techniques. Following this bio-
inspiration we have looked at the most advanced cognitive trait in biological systems:
consciousness or self-awareness, to investigate the possibilities that it may render in
our quest in the artificial realm.

Our ability as human beings to think it over what we are doing, reflecting about
our actions including the process of thought itself, goes beyond cognitive abilities that
make use of internal representations of our environment in order to optimise behaviour.
These are aspects involved in self-awareness, a phenomena associated to conscious-
ness. It is an attribute we humans have reserved for millennia to those of our kind, as

41

Chapter 3 Core Themes

a distinctive trait of our very nature, and that science has only started to demystify in
the past century.

Recent research on consciousness1 is showing its evolutionary value, which is
probably shared with other mammals, at least our relatives the big apes. It is argued
that it could provide for some core functionality enhancing the cognitive capabilities
of these species [6] and resulting in improved adaptability [41]. This has led us to
investigate on the possibility of developing a technology for control by exploiting
similar traits.

3.1.1 The Conscious Phenomena

We can find a profusion of terms for referring to consciousness in different disciplines:
vegetative state, coma, sleep or wakefulness in medicine, reportability, attention or
voluntary control in psychology or phenomenology and qualia in philosophy are a
few examples. Some refer to precise clinical states —i.e. medical terms—, others
cognitive functions —in psychology—, and sometimes they are overused and become
buzzwords —i.e. self, awareness—. A good part of the confusion around conscious-
ness is precisely due to the relaxed use of these concepts, which pertain to different
domains and levels of abstraction, with specific context-dependent meanings and con-
notations. Terms and concepts from different realms usually refer to similar parts of
the problem of consciousness, but their mapping is usually less than perfect so their
loose use results misleading. As Sloman puts it [146]:

“it (consciousness) is a cluster concept, in that it refers to a
collection of loosely-related and ill defined phenomena.”

What follows is a reasonable list of the referred phenomena related to conscious-
ness, synopsized from a cross-domain perspective:

Awareness of the world: It is usually explained as the access to some information
that is used to control/generate behaviour [32]. A theoretical approach already
formulated by Craik [39] considers that this information is actually an inter-
nalised model the agent has of the surrounding world.

Self(–awareness): As commonly understood, the problem of the self has two strands:
one involving the differentiation one’s own from the rest of the world with the
related sense of agency, and the other one comprising the identity of oneself
as a result of development, like the record of autobiographical memories which
render personality in humans[41].

Introspection: Our ability to observe our own mental and emotional processes is one
of the most puzzling aspects of consciousness, with many theories trying to ac-
count for mental states whose objects are other mental states while avoiding
the homunculus trap. It is related to inner speech and imagery, and is also re-

1Consciousness and self-awareness will be used indistinctly for the moment; more detail on the different
aspects of this phenomena will be given in the following

42

3.1. Biological Self-Awareness

ferred to as reflection, which can be considered a special kind of access to some
intellectual resources [22].

Attention: The term consciousness is often conflated with attention in the literature,
thus promoting confusion [14]. However some authors neatly distinguish them
while preserving their deep relation [150]: the psychological phenomenon of
attention is generally regarded as the selective process responsible for deciding
which contents in the mind become conscious. Other authors [147] consider that
attention is also a selective process not for deciding which enters consciousness,
but for focusing on the more relevant contents within those already conscious,
the rest forming a background.

Voluntary control: This volitional aspect is closely coupled with the already referred
sense of agency. There is a clear common sense distinction between involuntary
actions, like kicking when hit in the knee or an spontaneous smile, and voluntary
ones like rising an arm because of deciding so, the later “voluntary” control
being equivalent to “conscious” control [14] in the line of James’ ideomotor
theory of controlling action as a result of bringing to consciousness the desired
goal.

The reader familiar with the research on consciousness may miss phenomenolog-
ical aspects from the previous list. We have left at a side the problem of phenomenal
consciousness and qualia in this work, given that not only its value but its very nature
is still a subject of intense and philosophical debate. However, some daring and in-
teresting approaches have been done from the engineering realm [58, 9], including a
recent interpretation in the context of this thesis [131].

3.1.2 Models of Biological Consciousness

There is a pervasive debate in the scientific study of consciousness regarding its nature.
Some authors claim consciousness is a property of some mental contents. A living or-
ganism is thus considered conscious if its mental operation involves such contents.
Other authors hypothesize that consciousness is a mental process. As it usually hap-
pens, there are models of consciousness covering the whole spectrum from process to
property.

One of the more popular models of consciousness is Bernard Baars Global Workspace
Theory (GWT), which considers a dual nature, consciousness being both a property
of some mental contents and a process related to them. GWT is a theory of conscious-
ness in the approach to cognitive psychology that considers a computational view to
the mind, that is in terms of modules and processes that manipulate information. Its
central idea is the Global Access Hypothesis [15]:

Consciousness enables global access to multiple brain capaci-
ties, which otherwise function separately.

GW Theory can be explained using a theater metaphor: consciousness resembles
a bright spot on the theater stage of working memory, directed by the spotlight of
attention. The conscious processes are the actors competing for the spotlight, which

43

Chapter 3 Core Themes

allows them to broadcast their content to the audience, the unconscious processes. Be-
hind the scenes are contextual systems, such as intentions, expectations, which shape
conscious contents.

Most models of consciousness distinguish different levels. For example Sommer-
hoff identifies three dimensions:

awareness of the surrounding world: from sensory input an internal representation
or model of the surrounding is maintained,

awareness of the self: not only the body, e.g. posture and movement, but also a self-
image including aspects of personality, ultimately related to self-awareness,

awareness of one’s thoughts and feelings: this involves representations of the pro-
cesses of the mind.

Baars and Damasio consider similar dimensions of the conscious phenomena.

In relation to the perspective of consciousness as a property of mental contents,
the first scientific challenge is the definition of these mental contents. This is another
philosophical debate in cognitive science [25]. In the cognitivist [154] stance this
thesis takes, mental contents are representations, even if disputing about their nature
—e.g. symbolic vs connectionism.

An interesting theory relating representations in the mind and consciousness is
that of Sommerhoff [147], which considers mental representations as expectancies.
Otherwise there would be symbols, and that leads to the symbol grounding problem
[60]. This means that an object is represented in the mind in the form of the behaviour
related to it, rather than a symbolic mapping of its sensed featured. The sensory in-
put elicit or sustain these representations. Sommerhoff states that consciousness is
precisely an Integral Global Representation (IGR), a functional unit that integrates
representations of the fact that first-order representations of sensory inputs and stimuli
are part of the state of the organism.

Regarding the view of consciousness as a process, some models suggest that con-
sciousness provides an infrastructure of services to support high-level cognitive pro-
cesses [67]. This is the case of the models of François Anceau [6] and Johnson-Laird
[74], which pertain also to the computational and informational view of cognition.

Anceau hypothesizes that consciousness provides an environment or platform to
support high-level cognitive processes. Its sequential character is its key property.
According to him the function of consciousness seems to be but to sequentially trigger
actions and thoughts, its sequentiality guaranteeing the temporal coherence of their
operation.

Johnson-Laird’s theory is that of the operating system metaphor. He proposes
to consider consciousness as a central executive managing cognitive processes. This
executive receives messages that represent the world from the processors in lower
levels and would send messages to them to communicate its plans. That conscious
process is, according to him, ontologically different from the unconscious processes:

44

3.1. Biological Self-Awareness

The conscious process is the serial process of explicitly struc-
tured symbols, whereas the unconscious are parallel processing
of distributed symbolic representations.

[74]

3.1.3 Analysis of the functions of consciousness

Notwithstanding the previous discussion, the relations and couplings between the
above aspects of consciousness, and the interdisciplinar use of the terms used to talk
about them suggest that there are some common core principles underlying these phe-
nomena. Being engineers in the pursue of methods for building more autonomous
technology by applying useful principles underlying natural systems, and not com-
mitted to the mimicking of its material realisation in animals [129], we are interested
in the functional concepts, rather than in the specific physical substrate of conscious-
ness2.

Therefore we shall now make a summary of the more relevant functions, accord-
ing to our perspective, identified so far by the theories developed in the search for
explanation of the previous aspects of consciousness. We will try to present them as a
sound set of functional concepts as general as possible, by abstracting from the domain
specific details, and as far as possible clearly differentiated, separating intermingled
concepts, while preserving the terminology used in the literature.

Access: Many theories on consciousness assign it the role a blackboard has in the
so named architectures in artificial intelligence, which is that of allowing the
different processes running in the system—i.e. the mind—to put their content at
disposal of the rest by means of a broadcasting mechanism. This is, for example,
the main hypothesis underlying Baar’s Global Workspace Theory [15].

Sequentiality: The serial and limited character of consciousness could be a mecha-
nism for guaranteeing the consistency and unity in the mental contents [14]. The
sequential character of conscious contents could also be involved in our sense of
time, allowing for the temporal analysis of perceptions as Anceau [6] proposes.

Integration: An important function attributed to consciousness is that of integrating
multiple sensory input into a single unified experience [16].

Meta-representation: another one of the more common ideas about what conscious-
ness is (or how does it work) is that of structures in the mind/brain representing
other structures in the mind/brain, that is second order representations [22]. That
is Damasio’s idea of conscious creatures constructing images of a part of them-
selves forming images of something else [41], Singer’s meta-representations of
the brain’s own computational operations [145] or Sommerhoff’s representa-
tions in the IGR [147].

2The physical substrate in the brain for consciousness is usually referred to as the neural correlate in the
specialized literature.

45

Chapter 3 Core Themes

Metareasoning: This feature of consciousness is strongly related with the previous
one, and refers to the capacity of conscious brains to operate upon their own
operations, for example monitor and reason about them or evaluate their per-
formance, as Singer [145] proposes. Other authors separate high-level (meta-)
cognitive processes, such as reasoning or long term memory from conscious-
ness, but keep them related because, due to these processes being very resource
demanding, only conscious contents have access to them [15]. Anceau goes
further by proposing that the role consciousness is providing the underlying
mechanisms —i.e. the previously enumerated functions— that subserve the
functioning of those high level processes [6].

Evaluation: Some authors relate consciousness to value-assigning systems in the
brain, e.g. the mentioned view of Singer associating it to a certain monitoring at
a metalevel which provides the brain with the capability of comparing the per-
formance of its operations [145], or the evaluation of plans by affective states,
bringing up the close interconnection between emotion and consciousness [4].

Learning: while the learning process is itself unconscious, there is strong evidence
for learning of conscious events and no robust one so far for long-term learn-
ing of unconscious input [16]. There seems to be a relation between events or
entities entering consciousness and our capacity to learn them [15].

The previous list is not exhaustive, but it captures the functional hypothesis about
consciousness put forward in the literature that we judge more relevant for our ap-
proach to self-awareness.

As a line of research in the pursue of building more autonomous and robust sys-
tems, machine consciousness must not be over-restricted by its biological counterpart,
we do not want the self-aware control system of a chemical plant not allowing for the
production of more than a product at a time because of its limited attentional capacity,
for example. We propose that, despite providing a plausible explanation of human
consciousness in terms of mechanisms evolved for synchronization and adaptation
to a causal world [6], the sequential character of consciousness is not necessary for
self-awareness in artificial systems. Other techniques for assuring consistency and co-
hesion can be used, together with alternative mechanisms for dealing with time, while
maintaining a distributed and parallel processing paradigm.

3.2 Models

Models are central to this research, and they are at the core of the ASys vision of
cognition. Models are important as they are the way that everybody (humans and
systems) knows how to interact with the real world. A model is a construct to help in
a better understanding of real world systems.

Rosen [121] provides a definition of model in terms of a modelling relation that
fits the ASys perspective:

46

3.2. Models

A system A is in a modelling relation with another system B —i.e. is a
model of it— if the entailments in model A can be mapped to entailments
in model B.

In the case of cognitive systems, model A will be abstract and stored in the mind
or the body of the cognitive agent and system B will be part of its surrounding reality
[134].

Models may vary widely in terms of purpose, detail, completitude, implemen-
tation, etc. A model will represent only those object traits that are relevant for the
purpose of the model and this representation may be not only not explicit, but fully
fused with the model exploitation mechanism.

The focus of this work is the engineer of control systems for autonomous applica-
tions, which are software intensive. Therefore, we are specially interested in models
in software. This is not just software models, but the use of models in the life-cycle of
software systems. This section focuses on models from the software perspective.

3.2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) is a software development methodology centered
around the exploitation of models rather than algorithmic or computational issues. It
is not that these later aspects are neglected, but rather than the driving mechanism in
the progressive design of the solution by refinement are domain models: abstract rep-
resentations of the knowledge and activities that govern the domain of the application.

MDE tries to improve productivity by maximising re-usability of models and sim-
plifying the design process with the use of standard domain solutions captured in de-
sign patterns, also modelled.

Simplifying a bit, development consists of three phases:

1. Analysis: all aspects of the problem, that is from the client perspective, are
captured in analysis models.

2. Design: produces an architectural design specification of the system, in the form
of design models of the solution at different levels of detail.

3. Implementation: from the design models the final system is implemented.

According to MDE, models must be formally connected, so that it is possible to
trace the refinement of every design element, down to its implementation and up to the
more abstract analysis model and related requirements. Portions of the solution at any
level can be thus re-used for other applications. moreover, the ultimate objective is to
automate this model refinement through automatic transformations. Automatic code
generation in C++ or Java from UML models is an example of this.

Model re-use through transformation, serialisation and exchange is key. For all
this to be realisable, meta-modeling is required: the models must be formal, that is
conform to a certain set of rules, defined in metamodels [11].

47

Chapter 3 Core Themes

Model-Driven Architecture

MDE has gained popularity thanks to the OMG’s effort to build a foundation for it,
called Model-Driven Architecture (MDA). It is a software design approach that fo-
cuses on architecture, so that models incorporate progressively more detail in terms of
the implementing platform. The platform can be the component model middleware,
such as CORBA or DCOM, the programming language such as C++ or Java, or the
libraries or frameworks used in the implementation.

The development process departs from a computation-independent model (CIM),
which models the knowledge about the engineering problem, including a domain
model and requirements. From here, the designer defines the system functionality
in abstract terms, developing the Platform-independent Model (PIM), which describes
the engineering solution abstracting from any platform the system may run on. To
conclude, the Platform-specific Model (PSM) is produced by extending the PIM with
information of the specific platforms used to implement the system. Eventually all this
information is captured in models and incorporated through automatic transformations
from the PIM to the final PSM.

Platform-2 specific
model (PSM)

Platform independent
model (PIM)

Computation
independent model

(CIM)

Platform-2 specific
extension (PSE)

Model
weaving

Model
weaving

Platform-1 specific
extension (PSE)

Platform-1 specific
model (PSM)

Figure 3.1: Model weaving process in MDA to go from PIM to
PSM, adapted from [11].

48

3.2. Models

MDA tools: the OMG has produces a set of standards and specifications, rather than
implemented solutions, to support the MDA approach:

UML – Unified Modelling Language: the well known modelling language for soft-
ware systems. According to OMG meta-modelling, UML is the metamodel for
all models written in the UML language.

MOF – Meta-Object Facility: the metamodelling architecture for MDE, can be con-
sidered a standard for writing metamodels.

XMI – XML Metadata Interchange is the OMG’s standard for interchanging meta-
data (e.g. models) through XML. It can be used for any model expressed in
MOF, for example all UML models.

QVT – Query/View/Transformation is a standard set of languages for model trans-
formation.

3.2.2 MDE and control applications

Model-Driven Engineering and MDA are relevant to this work because it leverages
the use of explicit knowledge in the form of models in the development of systems, in
this case software systems.

Hastbacka et al. [61] propose an approach to use MDE and domain-specific mod-
eling to industrial process control applications. In these applications there are differ-
ent disciplines involved, and modeling concepts and methods are needed for control
patterns and algorithms, domain-specific concepts, or instrumentation (sensors, actu-
ators). For that purpose they have developed the UML Automation Profile (AP) based
on the first-class extension mechanism for UML, which constitutes a metamodel for
the domain of process control applications.

3.2.3 Models and metamodelling

In software engineering a model is an artifact constructed according to a certain a mod-
eling language, such as UML [105, 104], that describes the system, including usually
a graphical representations of it using different types of diagrams. These diagrams
allow an easier and faster understanding of the software system than the code level.

A model is an abstraction of a (real or language-based) system allowing
predictions or inferences to be made. [79]

Models adhere to the closed world assumption [11]: anything that is not speci-
fied by the model is implicitly disallowed (or allowed). Models in MDE specify the
implementation of systems, they are thus prescriptive.

The OMG MDA approach is based on the utilization of a language to write meta-
models called the Meta Object Facility (MOF). MOF is defined as a four-layer archi-
tecture for metamodelling, as depicted in figure 3.2. It provides a meta-meta model

49

Chapter 3 Core Themes

at the top layer, called the M3 layer. The M3 model is the language used by MOF
to build metamodels, called M2 models. The most prominent example of a model in
layer 2 is the UML metamodel. M2 models describe M1 models. These would be,
for example, models written in UML. The last layer is the M0-layer or data layer. It
is used to describe real-world objects. MOF is a closed metamodelling architecture; it
defines an M3 model, which conforms to itself.

MOF

user modelsUML models

UML, SysML...MOF metamodels

objects user data

M3
metametamodel level

M2
metamodel level

M1
model level

M0
object level

<<instance-of>>

<<instance-of>>

<<instance-of>>

Figure 3.2: OMG’s metamodelling architecture: MOF.

Metamodels

A metamodel is a model of models, [63] or a prescriptive model of a modelling lan-
guage.

“[A metamodel is a] model that defines the language for expressing a model.”[104]

A model is said to conform to its metamodel when each element in the model
maps to a definitional element in the metamodel [63]. Atkinson et al. discuss about
this, since strict conformance does not always hold, and when it does it leads to some
inconsistencies [13]:

Strict metamodeling: is based on the tenet that if a model A is an instance-of another
model B (its metamodel) then every element of A is an instance-of some element
in B.

Loose metamodeling: one model is an instance-of another model, but where the
strict requirements on the instance-of relationship between individual model el-
ements does not hold.

50

3.2. Models

3.2.4 Ontologies

A special flavour of models, ontologies, became relevant to the Knowledge Engineer-
ing community some years ago, mainly promoted by the Semantic Web. The term
ontology was borrowed by the software community from Philosophy as ontology was
understood a systematic account of Existence.

This notion of ontology developed from Artificial Intelligence research on how
to represent knowledge to support intelligent behaviour [12]. This is way they are
typically intended for exploitation of knowledge at run time, and must be “formal”
in the sense of being understandable by a computer —i.e. they support automated
reasoning.

One of the most agreed definition is that of Guarino [56]:

An ontology is an explicit specification of a conceptualization.

An ontology formally represents knowledge as a set of concepts within a domain,
and the relationships between those concepts. It can be used to reason about the enti-
ties within that domain.

An ontology consists of classes, instances, functions, relationships and axioms.
Classes correspond to entities in the domain. Instances are the actual objects which
are in the domain. Functions and relationships relate entities in the domain. Axioms
constrain the use of all the former elements [56].

Ontologies could be considered to be reusable building components when mod-
eling system at a knowledge level. They have been regarded as an extension to
knowledge–level modeling, by enabling knowledge sharing and reuse. Therefore, they
are key techniques to build knowledge–intensive systems [18].

Many authors ([11, 63]) agree on the distinction of two main categories of ontolo-
gies:

Domain ontologies: most works on ontologies refer to domain ontologies, which ex-
press conceptualisations of a certain domain in the world, e.g. medicine, defin-
ing a shared vocabulary in between the stakeholders of that domain.

Foundational or upper-level ontologies: provide a conceptualisation for other on-
tologies, making no claims about the world.

3.2.5 Ontologies vs Models & Metamodels

We have presented two main approaches to modeling in software systems that are
relevant for this thesis: the metamodelling approach in the MDE paradigm, and the
ontology approach used for knowledge based systems. In the following we present
their differences, but also their possible relations to complement and integrate in the
MDE approach.

Differences between models and ontologies have been summarised in [11]:

51

Chapter 3 Core Themes

• Sharedness: ontologies are meant to be reused and share among users, whereas
models are less so.

• Open–world assumption: it states that anything not clearly defined is unknown.
Ontologies rely on this assumption, as they regard the lack of knowledge as
unknown. It does not imply falsity of former knowledge when adding new in-
formation. As opposed, models usually consider a closed–world assumption,
i.e., anything not specified is considered to be false, to prevent unforeseen con-
sequences when extending the system.

• Descriptive properties: ontologies are usually descriptive, i.e., they describe the
reality (such as a domain), but reality (domain’s objects) is not built upon it.
Models, on the other hand, are prescriptive. They define the structure or be-
havior of reality (such as a system), which allows to construct reality (system’s
objects) as specified in the model. Therefore, prescriptive system models are
usually known as system specifications.

Ontologies are used to model domains in knowledge-based systems. Models, on
the other hand, are generally used for specification purposes for software systems.
They usually describe the expected behavior of the system.

Ontologies and Metamodeling

Notwithstanding the previous differences from models, ontologies can be understood
in the context of metamodeling. On the one hand, an ontology could be considered
as a metamodel, as it describes the constructs (entities) and rules (relationships and
axioms) of a domain of interest [18]. However, an ontology is descriptive describing
the domain of the problem whereas a metamodel is prescriptive describing the domain
of the solution. Ontologies do not describe systems, only domains. They should
therefore play the role of an analysis model [11]. Pidcock [114] argues that:

A valid metamodel is an ontology, but not all ontologies are modeled
explicitly as metamodels

Assman et al. [11] propose an integration of ontologies in the OMG’s standard
meta-modelling hierarchy as depicted in figure 3.3. Henderson-Sellers [63] continues
on this idea proposing to use foundation ontologies at the same abstraction level than
metamodels, and domain ontologies at the same level than (design) models.

3.3 Functional Modelling

This thesis explores the possibility of moving the engineers’ role to design/adapt a
system into the system itself at run-time. This role relies in a functional understanding
of the system (page 28). A merely ontological knowledge, capturing the structure and
behaviour of the system, is not sufficient.

52

3.3. Functional Modelling

Metamodels
(specification concepts)

ModelsDomain ontologies

Upper ontologies
(description concepts)

Metamodels
(languages, language

concepts)

Real-world objects Software objects

Analysis
Problem Domain

Descriptive

Design
Solution Domain

Prescriptive (Specifications)

M3
metametamodel level

M2
metamodel level

M1
model level

M0
object level

<<instance-of>> <<instance-of>>

<<is-a>> <<is-a>>

<<instance-of>>
<<described-by>>

<<described-by>>

Figure 3.3: Integration of ontologies in the OMG metamodelling hierarchy
proposed by Asmann et al. (adapted fom [11]).

For a deep understanding of the engineered system, knowledge of the mission and
the relation mission-system is crucial. It is necessary to include the intention of the
designer, the purpose for designing the system that way and not in a different manner.
Why use those components organised that way? How does that system organisation
or configuration addressed the requirements?

Functional modelling is an emerging discipline that focuses on representation for-
malisms and methods to incorporate teleological knowledge, about the intention and
purpose of designers, into the models of systems that are used in engineering activities.

According to Modarres [96]:

Functional Modeling is an approach used to model any man-made system
by identifying the designer defined overall goal it must achieve and the
designer/user defined functions it must perform.

Lind’s definition makes clear the engineering context of functional modelling:

Functional Modeling comprises concepts, methods and tools which for
representing the purposes and functional organization of complex dy-
namic systems [88].

The aim of functional modelling is to relate the ontology of the system, i.e. its
physical structure and behaviour, and its purpose or goals. Chittaro argues for this
relational character of the concept of function in [35].

53

Chapter 3 Core Themes

3.3.1 Functional concepts

As Chittaro [35] notes, the term function is usually associated to a component or part of
a system, and understood in an operational sense as the relation (e.g. a mathematical
function) between the input and output of the component, be them energy, mass or
information.

However, in functional modelling, and also in this thesis, the term function is used
in its teleological flavour, referring to the relation between the purpose of the com-
ponent and the behaviour rendered by its structure. This is conceptualised by the
means-ends dimension of functional modeling argued by Lind [87]. Lind elaborates
this conceptualization to differentiate the two views of an engineered system: causal-
ity (relating structure with derived behaviour) and intentionality (desired behaviour,
i.e. teleology).

Functional modelling is based on a simple set of fundamental causal and inten-
tional concepts:

Structure: system’s physical parts and their interconnections in the physical topology
[87].

Behaviour: physical mechanisms or phenomena responsible for the interactions [87].

Intentionality3 concepts:

Goal: states the outcome or objective toward which certain activities of a system or
its parts are directed.

Function: roles the designer intended a subsystem to have in the achievement of the
goals of the system of which it is a part [87].

3.3.2 Uses of functional modelling

In contrast with conventional methods for modelling systems in control systems engi-
neering —differential equations, frequency analysis, etc.— which support quantitative
reasoning, functional modelling is intended for qualitative reasoning.

The main areas of application of functional modelling are [87]:

Design: reasoning on the functional model of a system can help re-design it, and
functional modelling can help in the conceptual analysis and synthesis of control
systems, or in control re-configuration. [42].

Diagnosis: of disturbances and failures.

Operation: supervisory control of complex plants, planning of remedial actions.

3note that the term “intentionality” is not used here in the sense of of the philosophical analysis of
consciousness referred to in previous section 3.1, but in Lind’s sense, closer to the vernacular sense of our
common language

54

3.3. Functional Modelling

Functional models can be used by design engineers off-line, or automated reason-
ing can be performed on them by tools on-line to provide support for operators [87].

3.3.3 Functional Modelling Techniques

There are different techniques in functional modelling, three of the most relevant are
the Multilevel Flow Modeling by Lind et al.[87], the Goal Tree–Success Tree by
Modarres and Cheon [97], D-Higraphs by De la Mata and Rodríguez [42] and Blanke
et al. component model [21].

Multilevel Flow Modelling

Multilevel flow Modeling (MFM) is a modeling technique to produce graphical mod-
els of complex process plants. It is based on the means-ends concepts, to describe the
system in terms of components, functions, and the physical components that realise
them; and whole-part decomposition, to represent that functional structure at different
levels of abstraction in a hierarchical way. Flows —of mass, energy or information—
are the core representation elements for functions in MFM because they are responsi-
ble of the main interactions in a process plant.

Goal Tree – Success Tree

The Goal Tree – Success Tree (GTST) is a functional modeling technique for complex
physical systems. A GTST is a functional hierarchy of the system organised in levels
starting with “functional objective” at the top, which describes the main purpose of
the system. The functional decomposition proceeds downwards so that sub-functions
must explain how a function is achieved. At the bottom, the role or purpose of actual
pieces of equipment must become explicit and unambiguously defined. The success
tree (ST) in the GST describes the topology or structure of the system related to the
physical, i.e. bottom level, functions of the GT part. Modarres proposes to use the
Master Logic Diagram (MLD) to present the success logic of complex systems.

D-Higraphs

D-higraphs [42] is a formalism that includes in a single model the functional as well
as the structural (ontological) components of any given system. It is a functional
modeling technique for process plants based on Higraphs, which are an extension and
combination of conventional graphs and Venn diagrams. However, it is also rooted in
MFM and GTST.

In D-Higraphs, structural and functional views are merged in its basic element:
the blob, which represents a function and the device that performs it. Blobs are con-
nected by edges, which represents flows like in MFM. Blobs can be nested, the parent

55

Chapter 3 Core Themes

function requiring its nested to perform. This captures the hierarchy of functions.
But blobs can also be partitioned, each partition representing a different possible re-
alisation of the function of the blob. Blobs can also intersect, that meaning that the
actors/functions can be shared.

Component models in fault-tolerant control

While the previous modelling techniques have been developed in the process indus-
try, there are other modeling techniques that can be considered functional modeling,
such is the case of the use of component models in fault-tolerant control. Generic
component models [21] describe the system architecture formally, as a set of compo-
nents and their interconnections, in order to perform analysis for fault-diagnosis and
fault-tolerant-control design. Components can be considered at any level in the system
hierarchy.

The focus of the generic component model are the services that the component
provides. A service is a transformation of some consumed variables into some pro-
duced variables according to a certain procedure and using some resources. Some
components have built-in tolerance, so that is some resources needed to offer a ser-
vice are faulty, they can still provide it through a different version of the service, that
employs different resources and/or inputs. Moreover, the component usually renders
different services during different operating modes of the system, e.g. initialisation,
safe modes. The component model captures the structure of services in different use-
modes, and the possible transitions between them.

3.4 Patterns

The plasticity of software makes it ideal for the construction of most information pro-
cessing functions, the very essence of any controller [127]. It has thus come to play
an increasingly important role in control systems, making them not only hardware
but also software-intensive. This variety makes more complex their design and im-
plementation, because the knowledge required spans several disciplines: electronics,
software engineering, automatic control, and domain specific knowledge —such as
the differential equation models used to capture system dynamics. There are no per-
fectly established methods to manage this heterogeneous knowledge and facilitate its
use in the design of control systems. Adequate engineering techniques and proce-
dures are needed bridging in-between software developers and control experts in the
engineering teams.

A methodological tool of extreme importance is the possibility of capturing partial
designs that can be composed to generate complete systems. This is well known in
the domain of control engineering, where textbooks are full of controller structures
that capture just some of the essential parts of control systems. This is also well
known in software engineering, where design patterns have become the standard way
of capturing design solutions to common problems.

56

3.4. Patterns

As presented in [138] and Figure 2.2, the ASys approach to building autonomous
systems is strongly based on the use of design patterns to document, transfer and
exploit autonomous systems design knowledge.

3.4.1 Design Patterns

The pattern concept that we use in this work is the concept originally evolved in the
domain of object-oriented software engineering [51]. A design pattern is a reusable
solution to a recurring problem of general nature in a specific context of use. The
software pattern idea was inspired by the work of an architect, Christopher Alexander,
and his colleagues, who first described a pattern (in the architecture of buildings), as
a three-part rule expressing a relation between a certain context, a problem, and a
solution [5].

During the 1990s, the design pattern methodology was successfully adapted for
use by the software community, as forms that describe recurring programming lan-
guage idioms, architectural designs or how-to methods in software engineering. While
patterns can address system-wide design issues, they are usually not complete designs
for whole systems but descriptions of partial aspects of the whole design. In many
cases they are immediately translatable into portions of code, offering a solution tem-
plate of problem solving strategies that may be instantiated for concrete problems. In
principle, patterns are used to capture good practices and the anti-patterns are used
for capturing bad practices: things to do versus things to avoid when designing or
implementing specific applications [113].

They have been amply used in the development of object-oriented software appli-
cations, constituting basic building blocks specially at the level of the detailed design
of software mechanisms. The work by Gamma et al. has become such a reference in
this area that both the patterns described in that work and the authors themselves have
become nicknamed as the Gang Of Four. They have defined a new language to talk
about object-oriented designs, where the names of the patterns become new domain
terms to be used in the communication between systems design stakeholders. Well
known examples are the Observer Pattern the Façade Pattern or the Singleton Pattern.
Such a collection of new terms constitute what has been called a pattern language: it
is used to talk about a system design. The ASys project intends such a feat: the devel-
opment of a generative pattern language for the systematic design-driven construction
of model-based autonomous systems.

3.4.2 Pattern Schemata

To make patterns truly reusable, standardised descriptions of them should be available.
Standardization easies the communication of the content of the patterns among all
stakeholders. It offers a scaffolding to organise pattern descriptions so they can be used
systematically for their intended use. For that purpose authors capture and document
patterns following a stereotyped form or template i.e. a pattern schema.

57

Chapter 3 Core Themes

A pattern description using a pattern schema usually consists of plain text organ-
ised in sections according to the different aspects of the pattern, complemented by
appropriate figures, such as block diagrams, state machines, etc.

A well-known schema was proposed by Dough Lea in the Patterns FAQ. This
schema is based on Alexander’s original work in architectural patterns [5]. The essence
of the pattern description is the communication of what is the solution to a problem
and what are the factors to take into account. Summarily it could be read as:

IF you find yourself in CONTEXT
for example in EXAMPLE
with a PROBLEM
entailing some FORCES

THEN for some REASONS
apply a DESIGN RULE
to construct a SOLUTION
leading you to a NEW CONTEX
and OTHER PATTERNS

There are other schema alternatives, such as the one used by the Gang of Four,
the schema used by Buschmann et al. in their architectural patterns book [30] or the
pattern schema proposed by [125] in the domain of software-intensive controllers. The
pattern examples showed along this section adheres to a simple template based on this,
reducing it to the more relevant sections for the explanation in each case.

3.4.3 Patterns for Control Systems

Control engineering can greatly benefit form the use of design patterns [127]. Today’s
complex control systems involve sophisticated functionality and a myriad of elements
with heterogeneous implementation technologies (fault-tolerance mechanisms, simu-
lators using differential equations, expert systems using fuzzy-logic rules. . .). This is
especially true in cognitive control systems, where sophisticated system architectures
and multidisciplinarity are common trade.

In this context, pattern technology is crucial because patterns are capable of ex-
pressing design knowledge across disciplines and design layers. This way they facili-
tate the share of knowledge between the different stakeholders, because they provide
a common, abstract vocabulary to talk about design and implementation.

Patterns can be very useful at the architectural design level of such systems, be-
cause they can be used to express details of the controller architecture that are not
amenable to more formal and technology-specific descriptors (like the ordinary differ-
ential equation approach or classic control engineering or the Petri net approach of the
discrete systems communities).

In its most common form, an architectural design pattern specifies roles and inter-
actions between the entities performing those roles. For example, in the more basic

58

3.4. Patterns

control pattern, a controller4 receives sensing information from the plants thanks to
the sensors, and actuates over it by commanding the actuators, to have a certain goal
value yre f in a variable y of the plant.

Patterns for Architecture Generation

To properly manage patterns, they must be organised. Common practice is to gather
them into collections or frameworks, according to a certain classification criteria: de-
sign level, application domain, life-cycle phase, etc. For example, Gamma et al. [51]
categorize software patterns in three groups according to the function they perform in
a system: creational patterns, structural patterns, and behavioural patterns.

When patterns in such a collection are closely interrelated so that they can be used
to describe or design a whole system, they form a generative pattern language [38].

Patterns capture the very essence of each design, and the central piece in the de-
sign of a system is its architecture. Patterns simplify the process of designing the
architecture of a new system: they abstract from the application-specific details the
fundamental traits of the architecture that will define the most general system proper-
ties —e.g. performance or resilience.

Good patterns are composable so that they can be used to define new architec-
tures for other domains and applications —other requirement collections— reusing
the principles captured in them.

Pattern Collections for Control and ASys

There are many catalogs of patterns for different application domains. For example,
[140] offers a collection of patterns for the construction of concurrent and distributed
systems using object-oriented software technology.

The same can be said for the control systems domain. Apart of the classic ap-
proach used in control engineering, there is also documented experience of the use
of software patterns in control systems. One of these examples is the Patterns for
Time-Triggered Systems (PTTES) Collection [116]. The PPTES collection addresses
the implementation level, capturing detailed design aspects for embedded control sys-
tems: programming language constructs, real-time kernels, etc.

At a higher level, [95] offers a collection of design patterns for constructing cog-
nitive systems systems (from autonomous robots to intelligent information retrieval
agents). These patterns have been obtained by detailed examination of over twenty
research-oriented cognitive systems. As Miller says "Rather than reinventing the
wheel, these design patterns can be reused for architecting future cognitive systems".

Given the architecture-centric basis of ASys, it has focused on architectural pat-
terns. Part of the ongoing work directly targets the use of pattern technology to provide

4role names will be written in italics

59

Chapter 3 Core Themes

an extensible framework to express control application designs, mostly architecture in
the domain of complex controllers. The ultimate goal within the ASys context is the
creation of a generative pattern language to support the construction of intelligent in-
tegrated controllers for any class of autonomous system in any class of mission.

3.4.4 Pattern Examples

Lots of pattern examples can be found in any of the pattern catalogs mentioned so far
(e.g. Gamma et al. or Buschman et al.). Some more specific patterns in the domain of
control systems can be found in the work of Sanz et al. [127, 125].

Feedback

The feedback pattern lies at the very core of control theory.

Pattern: Feedback

Related Patterns: Feedforward, proportional control, PI control,
PID

Context
The system has a measureable output and a controllable input. A
system model may not be available. A desired reference signal exists.

Problem
Make the output follow the reference. Unmodelled plant dynamics
and the disturbances make open-loop control impossible. The sys-
tem, output does not behave as desired: the response may be too
slow, to oscillatory, unstable. . .

Forces: a) plant behaviour is affected by disturbances, b) knowledge
about the plant is not always accurate

Solution
The plant input (u) is determined from the difference between the
reference signal (yre f) and the plant output (y) by a feedback con-
troller.

Plant
uyref y

_
+

Controller

Variants
State feedback

References
Pattern adapted from [127]

60

3.4. Patterns

TMR

Pattern: Triple Modular Redundancy

Related Patterns: Hot replica, Redundancy.

Context
The system has a modularised function.

Problem
The module that implements the function can fail and this is not
tolerable for the mission of the system.

Forces: a) redundancy is costly, b) safety is mandatory, c) not all
faults can be tolerated.

Solution
The system output —the function— is provided by a voting system
that uses three realization of the module that implements the func-
tion. The value that is output is the result of the majority voting
among the three modules.

Function (1)

Function (2)

Function (3)

Voting
Input Output

Variants
5-modular redundancy.

References
Invensys’ Tricon is a state-of -the-art fault tolerant controller based
on a Triple-Modular Redundant (TMR) architecture. It uses two-
out-of-three voting to provide high integrity, error-free, uninter-
rupted process operation.

61

Chapter 3 Core Themes

Fuzzy control

Pattern: Fuzzy control

Related Patterns: Stochastic control, expert control.

Context
We have some control knowledge extracted from humans in vague
terms.

Problem
The plant is so ill defined and unidentifiable that there is no formal
mathematical model of it to be used in the design of the controller.

Forces: a) precision is desirable, b) robustness is necessary, c) hu-
mans cannot introspect easily.

Solution
Extract the human control knowledge in the form of fuzzy IF-THEN
rules. The controller is implemented as a rule-based fuzzy inference
engine with a fuzzyfication and a defuzzyfication processes before
and after the fuzzy engine.

Variants
Bayesian control.

References
[135]

3.5 Fault-tolerant systems

Dependability issues have become a crucial challenge for control systems (section
1.4), specially in autonomous applications, where there are no operators included in
the run-time loop to detect and help recover from failures. A fault is something that
changes the behaviour of a system such that the system no longer satisfies its purpose
[21]. Fault-tolerance is an engineering field that develops methodologies to prevent,
mitigate the effect and recover from faults.

According to [71] we shall distinguish three concepts in relation with reliability:
a failure is a deviation of the system behavior from the specification. An error is the
part of the system which leads to that failure. Finally, a fault is the cause of an error. A
fault can be an internal event in the system, a change in the environmental conditions
or it can even be a wrong control action given by a human operator or an error in the
design of the system.

We can distinguish two main approaches to improve the reliability of a system:
fault prevention and fault tolerance. It can be assumed that prevention technique will
not solve the problem, since in real-time systems new or unforeseen faults are prone

62

3.5. Fault-tolerant systems

to happen that engineering could not have accounted for specifically at design time.
Fault tolerance, on the other hand, faces the problem once a fault occurs in the running
system.

A system is said to be fault tolerant if it maintains its functionality, or and allowed
degraded version of it, in the presence of faults. When the system suffers a failure,
nothing can be done, its behaviour does not comply with the specifications. But when
a component of the system fails something can be done so as the overall system does
not do so: this is the goal of fault tolerance.

Different approaches to fault-tolerance have been developed in different disci-
plines: software, control, process industry, etc. In the following we present the two of
them more relevant for this thesis.

3.5.1 Fault-tolerant software systems

Fault-tolerance has been deeply investigated in computer-based systems. Jalote [71]
identifies the following phases in the operation of a fault-tolerant system in the pres-
ence of a failure:

1. Error detection: the presence of a fault is deduced by detecting an error in the
state of the subsystem.

2. Damage confinement and assessment: the damage caused by a fault is evaluated
and delimited (affected parts are identified and effect on objectives estimated).

3. Error recovery: correction of the error to avoid its propagation.

4. Fault treatment and continued service: faulty parts of the system are deactivated
or reconfigured and the system continues operation.

Fault tolerance can be, and is applied at various levels in a computer system.
Therefore, it distinguishes between hardware and software. Hardware fault tolerance
is based on fault and error models, which permit identifying faults by the appearance
of their effects at higher layers in the system (software layers). Hardware fault toler-
ance can be implemented by several techniques, being the most known:

TMR (Triple Modular Redundancy): three hardware clones operate in parallel and
vote for a solution.

Dynamic redundancy: spare, redundant components to be used if the normal one
fails.

Coding: addition of check bits to the information bits such that errors in some bits
can be detected and, if possible, corrected.

Research on fault-tolerance in computing systems has been very important to the
establishment of a general conceptualisation and theory about faults. However, its
specific techniques are not as relevant to this thesis as those developed in the control
field, which we present next.

63

Chapter 3 Core Themes

3.5.2 Fault-tolerant control

There is a control-based approach to the design of fault-tolerant systems: fault-tolerant
control. It concerns with the interaction between a given system (the plant), that may
eventually be subject to some fault, and its control system, understood in its broadest
sense presented in chapter 1, i.e. not limited to the feedback control law, but including
the complete system, from low level I/O to higher levels involving decision making.

In classical control the controller is designed considering a faultless plant, so that
the closed loop achieves the desired objective or function. Notwithstanding, there are
well known techniques that allow the accommodation of faults to some extent:

Robust control: in this control technique [44] the controller is designed to tolerate
changes in the plant dynamics, while it keeps fixed, so it can be considered as
passive fault tolerance, with no run-time reconfiguration. However, robust con-
trollers exist only for a restricted kind of changes, and they works sub-optimaly
for the nominal conditions, since their parameters are determined from a trade-
off between performance and robustness.

Adaptive control: the controller parameters are effectively modified according to
changes in the plant model parameters. In the case that the plant changes are
due to some fault, this technique may provide adaptive fault tolerance. Unfor-
tunately, adaptive control is efficient only for linear systems whose parameters
have slow variations, conditions not usually met by faulty systems, a fault typi-
cally causing non-linear behaviours with abrupt changes.

A fault-tolerant controller, on the contrary, is capable to react to the occurrence of
a fault of any magnitude in principle, changing the control law so as to maintain the
behaviour of the closed-loop system in a region of acceptable performance.

Faults are usually classified into:

• Plant faults, that change the dynamical I/O properties of the system.

• Sensor faults, when there are errors in the sensor readings, probably rendering
the system unobservable.

• Actuator faults, that causes the controller not be able to properly actuate on the
plant, rendering the system uncontrolable.

There are generally two main phases in the behavior of a fault-tolerant controller[21]:

1. Fault diagnosis: The existence of faults is detected and they are identified. This
corresponds to the error detection and fault assessment in software systems.

2. Control re-design: the controller is adapted to the faulty situation so the overall
system achieves its objectives. This corresponds to the error recovery and fault
treatment in software. It is the system reconfiguration or adaptation.

The basic elements in the architecture of a fault-tolerant control system are shown
in 3.4. The Supervisor level gathers all the elements that are built on top of the tradi-
tional control system to provide for fault-tolerance as schematised in figure 3.4. They

64

3.5. Fault-tolerant systems

can be differentiated in two main blocks addressing the principal phases previously
described (3.5.2):

Diagnosis block analyses the consistency of the actual I/O from the plant with the
model, so as to identify the existence of any possible fault.

Controller re-design uses fault information to adapt the controller to the current
faulty situation.

The traditional control system forms the execution level, assuring set-point fol-
lowing. The supervisor forms an additional loop on top of that, actuating when a fault
occurs by changing the controller.

PlantController
action

sensing

ref.
ouput

disturb.

DiagnosisController
re-design

fault

fault assessment

Supervision
level

Execution
level

Figure 3.4: Architecture of fault-tolerant control, adapted from [21].

To accomplish this behaviour we can distinguish two main approaches:

• The traditional methods for fault tolerance include limit-checking and spectral
analysis of certain signals for fault diagnosis, and when specific faults are de-
tected the controller re-design consist of the switching to a redundant compo-
nent. This is the case of software dynamic redundancy. This approach present
some disadvantages: it requires ad-hoc engineering based on experience and
process knowledge, for example to identify the possible faults with measurable
signals in the system, and it relies on physical redundancy, which is expensive
for requiring duplication of components —TMR is another example—. This is
thus only affordable for safety-critical systems.

• Fault tolerant control follows the principle of analytical redundancy. An ex-
plicit mathematical model is used for both phases. The diagnosis of the fault
is performed using information from the model and from measurement signals.
Then the model is adapted to the new scenario and the controller re-designed
accordingly, so the system with the faulty plant continues to achieve the objec-
tives. Redundancies are still needed for reconfiguration, but that does not imply

65

Chapter 3 Core Themes

duplication of many components: one extra sensor can provide enough ana-
lytical redundancy, and re-configuration can be achieved by controller changes
rather than substitution for another one.

For all the reasons above explained, fault-tolerant control is a most promising field
for providing for more realiable systems. It can address a broader span of faults than
classical control techniques, while being more efficient, and is cheaper than ad-hoc
traditional methods for fault-tolerance. In this respect, it presents the great advantage
of providing a systematic methodology with an architectural approach that will be
described in the following section.

3.6 Components for Control Systems

Sophisticated controllers —esp. for high autonomy applications— are software-intensive
systems that benefit from the use of component-based approaches. Component tech-
nology [149] is a well-established engineering approach to the construction of com-
plex software systems. Apart of the inherent modularity that it provides there are
several other reasons that justify this approach and that will be described later (see
Section 3.6.2).

Component-based construction emphasizes reuse by composition of pre-built ele-
ments that are organized in software frameworks [28, 111]. The construction of soft-
ware systems using reusable components shifts the effort from design + programming
to component selection + composition. This reduces the development effort and time,
potentially increasing quality and somewhat decreasing the flexibility of the design.
In the context of this thesis, the component frameworks can be classified into two
categories:

General component frameworks: These are software platforms that enable the con-
struction and reuse of componentized software. While they are specified and
built with some requirements in mind —requirements coming from some do-
mains of use— they are not application-finalistic.

Domain specific frameworks: These are frameworks that offer concrete functional
components that offer specific services for an application domain.

In the case of the development of control systems, both kinds of frameworks are
common trade [27, 26]. General component frameworks like RT-CORBA/CCM or
Ptolemy offer the possibility of building any kind of autonomous control application.
on the other side, examples of domain-specific component frameworks for control
abound. Apart of the well established ROS [52] —the one selected for this work—
there are many others that have been built as part of different research programmes that
recognized the possibility that software reusability gives to control architecture exper-
imentation [120]. In our opinion, the most intelligent strategy is to build a domain-
specific, control framework atop a general component frameworks (e.g. in the robot
control ORCA [142], BRICS [77] or OpenRTM [8]). Recent attempts at standardiza-
tion are also worth considering [102].

66

3.6. Components for Control Systems

3.6.1 Rationale for Components

The component-based approach to software development is a pervasive strategy that is
now fully mainstream in the domain of embedded control systems. This is somewhat
surprising given that the traditional strategy for embedded systems has been driven by
the primary goals of maximizing performance whilst using minimum computational
resources —esp. memory footprint and power consumption. Assembly language pro-
gramming still remains as a development practice in those systems. However, even
for the most stringent class of embedded applications —those deployed over Digi-
tal Signal Processors (DSP)— the development tools now provide component models
for software that are tailored to such devices. The component approach is nowadays
the standard development strategy in mobile appliances —e.g. on Android or iOS
devices— but in the case of control systems the road is still being paved. In the case
of software-intensive controllers, the principal themes are the treatment of real-time
and resilience requirements for embedded applications (RT/E) through the use of a
standardized component model.

The evolution towards component-based control middleware is the need of soft-
ware reusability. Reuse allows fast development of systems by composing previously
developed building blocks that provide specific functionalities. Components are build-
ing blocks that provide application-level services to other components or external sys-
tems through clearly defined component interfaces. Components typically execute
inside a component container provided by the framework, that is tailored to a specific
target platform, and provides system-level and management services to the compo-
nents it hosts.

Robot control research needs the flexibility offered by these systems to explore al-
ternative designs and efficiently synthesize the controller. From the functional design
standpoint, the controller is composed of interconnected components; from a config-
uration and deployment (non-functional) standpoint, the platform containers manage
components’ life-cycles. The component-container model allows the use of software
modules that are defined and managed at a higher level of abstraction than allowed by
conventional imperative or object-oriented programming models. The separation of
interface, implementation, and life-cycle is very well adapted to autonomous systems
research circumstances where an application requires software units to be distributed
across multiple devices and be dynamic in their deployment and interaction.

3.6.2 Advantages of Component Technology

There are many advantages of using component-based technology in the robotics do-
main, fully rooted in the core architecture of the component-container model.

Portability: Control applications are developed for a wide diversity of operating sys-
tems and computing platforms. The core abstractions in the component model
enable the development of specialized (fit-for-purpose) containers, that replace
the hardware abstraction layers of conventional software portability methods.

67

Chapter 3 Core Themes

This allows the re-deployment of components from one RT/E device to another
without the need for source-code modification.

Reusability: In a component platform there are formal definitions that express the
component dependencies and therefore enhance visibility and enforcement of
rules for application assembly. This has the overall effect of minimizing ambi-
guity when choosing components for re-use, reducing development costs, and
reducing time-to-operation that is the objective in robotic research software con-
struction.

Separation of Concerns: In conventional software control systems, there is often an
unavoidable need of understanding system-wide issues —e.g. non-functional
properties, enabling technologies, software integration, global system architec-
ture etc. The separation of concerns evident in the component approach pro-
vides the opportunity for domain experts to focus exclusively on the design
development of functional elements, resulting in a more cost-effective use of
development resources.

Visibility: In a standards-based component model (e.g. CCM), organization coding
styles/patterns can be formally specified and even offered in the public domain.
This fosters more open business models, dynamic practices, cleaner integration
and encourages closer partnerships between collaborating parties.

Quality in Development: Conventional programming leads to monolithic systems
that hampers testing and validation efforts. The re-composition using component-
based architectures, allows software units to be naturally isolated for testing and
validation. Component-level testing becomes the central functional assurance
process. Component quality creates a true opportunity of using an evolutionary
approach to control system development and test.

Quality in Production: Strategies for self-management that ensure high system avail-
ability —a core objective of this thesis— can be applied more systematically
using components deployed over standardized containers than with other more
conventional systems.

68

Chapter 4

Theoretical Framework

In this chapter a theoretical framework for autonomous cognitive systems is presented.
This conceptualisation has been elaborated to provide the scientific basement for the
work developed. It also allows to analyse in a common frame the different approaches
in the state of the art that address the problem at hand of self-awareness and run-
time adaptivity. To address the goal of generality, the conceptualisation is rooted in
the general systems theory and a previous theoretical foundation by López [90] that
applied it to autonomous systems.

4.1 Introduction

Provided the aim of this thesis to seek for a universal —or universalizable— solu-
tion for autonomy engineering, applicable to any kind system, a general theoretical
basement to analyse the problem was required.

ASys modelling approach to autonomy claims that the system shall exploit its
engineering models to optimise and adapt its behaviour at runtime. Therefore, this
basement conceptualisation should be able to support the analysis of the system from
the engineers perspective, and also to account for the representations the system will
use about itself to drive its action. It is the exploitation of these very explicit models
that we identify with cognition. Therefore the framework should also account for this
view of the cognitive phenomenon.

In his Foundation for Perception in Autonomous Systems [90] Lopez develops fun-
damental concepts of cognitive autonomous systems. This conceptualisation provides
a completely general analysis of autonomous systems, since it is based on general sys-
tems theory, and provides a well integrated and solid account for cognition. These are
the reasons why it was selected as the appropriate foundation for this research, which
could be considered as an engineering reification of it.

69

Chapter 4 Theoretical Framework

In the following sections of the chapter the concepts that form this theoretical back-
bone are discussed, from the more general systems theory concepts to our particular
formulation of the functional/structural perspectives of engineered systems, passing
by the ideas about autonomy and cognitive systems.

4.2 General Systems Theory

Lopez’s theoretical framework for autonomous systems is based on the general sys-
tems theory, specifically on the formulation by George J. Klir [76], which is a precise
one that was found found desirable for its application in an engineering domain.

General Systems Theory (GST) is an interdisciplinary field of science and the
study of the nature of complex systems in nature, society, and science. More specifi-
cally, it is a framework by which a system is understood as a set of elements, each with
its own properties, and a set of relations between them that causes the system to present
properties that can not be inferred by only analysing its elements separately. The sys-
tem could be a single organism, any organisation or society, or any electro-mechanical
or informational artifact. Ideas in this direction have been pointed out back to person-
alities such as Leonardo or Descartes. However, Ludwing Von Bertalanffy with his
works on General Systems Theory [155] in the middle of the 20th century is regarded
as the pioneer formulating the concept as it is understood nowadays.

In the following we present the basic concepts of Klir’s GST that are relevant for
our theoretical framework of cognitive autonomous systems.

4.2.1 Fundamental concepts

Let us think about what we understand by system, by considering it in relation to what
surrounds it. If all possible entities form the universe1, a system can be regarded as
a part of it, which is considered isolated from the rest for its investigation. All which
is not system is called environment. The different disciplines of science share this
general understanding in particular ways, usually differentiated from each other in the
criteria for separating the system from the universe.

The observer selects a system according to a set of main features which we shall
call trait. They will be characterised by the observer through the values of a set of
quantities. Sometimes, these values may be measured, and we talk of physical quan-
tities, such as length or mass. Other times quantities are abstract, and they cannot be
measured. The instants of time and the locations in space where quantities are ob-
served constitute the space-time resolution level. The values of the quantities over a
period of time constitutes the activity of the system.

1concepts that will be explicitly incorporated to the theoretical framework will be identified by typeset-
ting them this way

70

4.2. General Systems Theory

ENVIRONMENT

SYSTEM

quantities
coupling
system-environment

elements

coupling

time-invariant
relations

Figure 4.1: Basic notions of General Systems Theory.

The main task of the observer is to explain the activity of a system. This will be
accomplished by identifying patterns in the activity of the system. The quantities of the
system may satisfy time–invariant relations, by which the values of some quantities
may be expressed as function of others. The set of all time-invariant relations is the
formal notion of behaviour of the system.

We may realise that the behaviour is due to the properties of the system. In other
words, a system with different properties would exhibit a different behaviour. The set
of all properties is be called the organisation of the system.

The study of a whole system can be really complex. To address it the quantities
of the system can be divided into groups, and then each of them analysed as a system
on its own. This groups of quantities are the subsystems or elements of the system.
Elements may share a set of quantities, which are thus the coupling of the elements.
Since we are interested in systems that interact with the world, there would always be
a coupling system–environment too. The system’s elements and their coupling form
the universe of discourse and couplings or UC-structure of the system, which define
the structural aspects of the system.

The dynamics of the system are given by its state-transition structure or ST-
structure, which defines all the possible states of the system according to the values of
its quantities, and the possible transitions between those states.

ExampleGST analysis of the mobile robot
We could analyse our mobile robot from a GST perspective. The system object
of interest is the control system, the rest, that is the world and the robot body
and accessories not directly involved in the control functions, correspond to the
environment. The elements of the system are the different components of the
controller: the localisation and navigation components, the sensors, etc.

The coupling system-environment consists of the sensed and actuated variables,
or quantities: the measured distances to obstacles, the robot position and velocity,

71

Chapter 4 Theoretical Framework

etc. The position of an obstacle is quantity of the environment. However, it
maintains a time-invariant input relation with the readings produced by the robot
sensors, which are quantities of the coupling system-environment. The other way
around occurs for the velocity command issued by the control system, which is a
system output quantity in a time-invariant relation with the robot actual velocity.

All this corresponds to a simple analysis of the system with a low space-time
resolution level. For example, the quantities in the coupling could be further decom-
posed to consider the motor voltage and current, and their time-invariant relations
to the robot velocity and torque at the wheels.

 S Y S T E M = Control System

laser

localization
module

navigation
module

odometry

map

motor
control

scans velocity
commandodom

goal position

E N V I R O N M E N T = Plant

ω
v

est_pos

elements

quantities

coupling
system-environment

Figure 4.2: GST concepts applied to the autonomous mobile robot.

4.2.2 System Behaviour and Organisation

If we consider a particular system during a particular activity, we may observe that
some of the time-invariant relations between its quantities may hold for a certain in-
terval but eventually change. We shall say that these relations correspond to the local
scope. Observing the same system during a different activity, we may observe that
some of the time-invariant relations hold. If we again observe the system during a
third activity, we could find that some of these relations would have changed. We
would say they are of relatively permanent, for they hold for only some of the activi-
ties of the system. If we were to observe the system during an infinitely large number

72

4.2. General Systems Theory

of activities, we would find that a particular set of relations would always hold be-
tween its quantities. They would be permanent. Accordingly, we can distinguish three
kinds of behaviour [76]:

• Permanent behaviour.

• Relatively permanent behaviour.

• Temporary behaviour.

The first may also be called real behaviour. The second, known behaviour. Tem-
porary behaviour refers to the local scope, for it holds only for brief intervals within a
particular activity.

We may observe that permanent and relatively permanent behaviour may not be
clearly distinguished from each other when analysing systems. This is due to the
impossibility to test the temporal persistence of relations beyond a restricted range of
activities.

Let us return to the organisation of the system. We may realise that the different
behaviours derive from different kinds of properties. We may distinguish two main
kinds, which we shall call program and structure. The temporary behaviour of a sys-
tem derives from its program, which is the set of properties of local scope. Permanent
and relatively permanent behaviours derive from the structure of the system, which we
may in turn classify in real structure and hypothetic structure, [76], so that the causal
relations are as follows:

organisation −→ behaviour

real structure −→ permanent behaviour
hypothetic structure −→ relatively permanent behaviour

program −→ temporary behaviour

ExampleMobile robot organisation
Let us analyse the organisation of the state of the art controller for the mobile
robot we have presented in 21. The components and their invariant algorithms
and parameters form the real structure of the system. Those mechanisms that
allow the activation and deactivation of routines during operation, such as fail-
safe turning to remap obstacles for re-planning when no route can be calculated,
correspond to the hypothetic structure. The instantaneous state of the memory
containing the running computer program that instantiates the control components
corresponds to the system’s program.

73

Chapter 4 Theoretical Framework

4.3 Autonomous Systems

Once we have presented the basics concepts about systems that we will be using,
we shall focus on the particular systems that are the focus of this work: autonomous
systems. While systems are primarily defined in the universe as a pair <system, envi-
ronment>, autonomous systems require a triplet for their definition:

<system, environment, mission>

Intuitively a system in a given environment is autonomous if it capable of achieving
its objective(s) —the mission— there.

Our theoretical backbone thus will center around the concept of objective and its
relationship to system’s structure and behaviour in order to address the domain of
autonomy, making use of the ideas developed in by López [90, pp. 103-150].

4.3.1 Directiveness

The behaviour of an efficient autonomous system is directed towards its objective,
this being an specification of the state of the system, its environment or both. This
directiveness or finality is the distinct trait of this kind of systems. According to [90]
we can distinguish two kind of directiveness:

Structural directiveness stands for the fact that a particular organisation of the sys-
tem results in a behaviour convergent to its current objective. This convergence
may hold for small variations in the conditions of the environments, in the case
the system presents some robustness to perturbations, but it will generally not
hold for greater variations, for which the system must alter its organization to
compensate. Structural directiveness depends on the system and its environ-
ment, the objective being implicit in the system (organization).

Purposive directiveness corresponds of the reconfiguration of the system organiza-
tion that are dependent on the objective, so that the resulting behaviour shall
be convergent to it. Since this reconfiguration is dependent on the particular
objective, the processes in the system that produce it must to so operating with
explicit representations of the objective of the system.

This a formulation of the sense of autonomy related to pursuing its own objectives
commented in 1.2. Reformulating the challenges about coping with uncertainty from
the environment and the system itself, and guaranteeing survivavility and dependabil-
ity presented in 1.4, we can summarise them in three fundamental aspects of autonomy
[90]:

1. System directiveness.

2. Minimum dependence of the system from its environment.

3. System cohesion.

74

4.3. Autonomous Systems

4.3.2 Objectives

As previously mentioned, objectives are the central concept for characterising au-
tonomous systems. Following [90], in close agreement to most of the literature on
the subject, we may understand an objective as a

state of the system, of the environment or of both, to which the
system tends as a result of its behaviour.

It can be complete if it specifies all the aspects of the system and the environment,
or partial if it refers only to some aspects, leaving the rest unspecified. A partial
objective thus refers to a region of the state space rather than to a point.

According to our framework, the state of the system in a certain instant of time is
given by the values of all its quantities at that time. The objective is always relative to
the system2, so if it refers to the environment it must do so according to the properties
that are observable from the system, which in general corresponds to the quantities of
the coupling.3

We shall distinguish two classes of objectives according to their morphology [90,
pp. 117-119]:

explicit objective: there is typically a variable in the system representing that objec-
tive. It is a variable, so it can change. It is addressed by the program of the
system.

implicit objective: there is no representation of it in the system, but the system direc-
tiveness makes it put pursue that objective. It is addressed usually by the system
real structure, but we are building our system so that its hypothetical structure
addresses it.

ExampleMobile robot objectives
In the control architecture of our mobile robot we can easily find explicit and
implicit objectives. For example, the goal position which is the target reference
for the navigation is an explicit objective. It can change depending on the goal
commanded to the robot. Implicit in the architecture of the control system is the
objective of obtaining scan reading with distance to obstacles in the environment.
This is a permanent objective that is required for the operation of the system.

It is important to note here that in the case of an artificial system, all the objectives
are explicit (or at least shall be) from its designer’s perspective, being her choice to

2We could also consider, in the case of artificial systems, the designer objective, but for the moment we
consider the objective from the perspective of the operating system.

3There is a particular case in which the objective can include specifications on the environment outside
of the coupling, which is in the case that system can build conceptual representations of it, but we will
discuss that later in section 4.4.

75

Chapter 4 Theoretical Framework

implement them in the system as explicit or implicit. This later decision is very related
to the possibility of adaptivity regarding the achievement of the objectives.

Objectives can differ in other aspects, which can be classified in two main cate-
gories: time-scope, regarding the time necessary for the system to realise them, and
level of abstraction. Both categories are related: high-level of abstraction objectives
are usually associated to longer time-scopes.

Systems of a certain degree of complexity may operate concurrently at different
levels of abstraction, showing a collection of objectives at each level. Usually, abstract
objectives cannot be realized directly, and must be decomposed into a collection of
more particular ones, and these into new ones in turn. This decomposition gives rise
to a hierarchy of objectives. The objectives in the lower levels of the hierarchy have a
lower level of abstraction than those upwards the hierarchy. The objectives that are at
the top of the hierarchy are the root objective. They do not contribute to realise higher
objectives. They represent the reification during operation of the top level functional-
requirements for the autonomous system.

Objectives and Organisation

Objectives drive the composition of the system’s properties, which leads to a corre-
sponding behaviour. It can therefore be established the following relation of causality
for autonomous systems:

objective→ organisation→ behaviour

We may realize that root objectives constitute a part of the definition of the sys-
tem itself. In artificial systems they stand for the primary objectives of the designer.
They underlie the longest time-scope of operation in the system and they establish
the highest level of abstraction. They are a constitutional part of the system, as other
fundamental properties, all of which form its real structure:

root objectives→ real structure→ permanent behaviour

As the root objectives, real structure and permanent behaviour are constant in time
by definition; we may deduce that the adaptivity of the system relies on the rest of
objectives, the hypothetic structure, the program, and correspondingly, the relatively
permanent and temporary behaviours. We shall call these objectives intermediate ob-
jectives. Local objectives are the intermediate objectives of shortest scope. Intermedi-
ate and local objectives correspond to the hypothetic structure and to the program of
the system respectively, as the root objectives correspond to the real structure:

intermediate objectives→ hypothetic structure→ relatively p. behaviour
local objectives→ program→ temporary behaviour

It must be remarked that, whereas Lopez’s ontology of objectives in [90] accounts
for the structure and dynamics of objectives, we restrain ourselves here to the static
objectives of the autonomous system.

76

4.3. Autonomous Systems

System organization

PROGRAM

HYPOTHETIC
STRUCTURE

REAL
STRUCTURE

Objectives hierarchy

root
objectives

local
objectives

intermediate
objectives

Figure 4.3: Correspondence between the hierarchy of objectives and system organisation.

In the next section we will address the problem of how system’s directiveness is
is realised in the system’s organisation, by presenting our foundational concept of
function.

4.3.3 Functions

The relation between an engineered system’s purpose and its designed structure has
been deeply discussed in functional modelling, as it has been presented in section 3.3.
In this section we conceptualise that relationship according to our framework, relating
it to the autonomous system’s run-time operation.

We have already presented the concept of objective to refer to the purpose(s) of a
system. In our framework, the concept of function can be attributed to the conceptual-
isation of how the system’s directiveness is implemented in the system’s organisation.

Lopez [90] argues that a first notion of function is a succession of states associated
to a particular objective. A set of states and their transitions is a subprogram, and
following that subprogram will move the system to the objective. This view considers
the function from a behavioural standpoint. Let us analyse how the notion of function
fits in the organisation of a system.

It can be the case, the subprogram corresponding to a function may not be followed
at a certain time, but stored in the system knowledge. The function is then in concep-
tual form, or as an algorithm. There can be several algorithm to address the same
objective. The process of assigning a function/algorithm to an objective is functional
decomposition. The result, the instantiation of the algorithm in the real quantities of
the system, is the grounded function. According to [90]:

77

Chapter 4 Theoretical Framework

Functional decomposition involves three aspects: objectives, re-
sources and algorithms. An algorithm in the system knowledge
is selected in order to realize a particular objective with specific
system resources.

When taking an operational/implementational view of functions, Lopez considers
a function definition a conceptual entity that represents a complete specification of a
functional decomposition in the current scenario of the running system.

The previous functional decomposition corresponds to the grounding of a single
function capable of addressing an objective. However, it is usually the case that the
function defined by the algorithm relies on other objectives to be also fulfiled, which
are usually referred to as sub-objectives. Different function decompositions can re-
quire the same sub-objective. This allows for the reuse of the resources associated to
the function that address this sub-objective.

This is how the system’s operation can be decomposed from the root objectives
into a hierarchy of objectives-functions, since it is the functions decompositions what
accounts for the relationships between the objectives in the hierarchy.

Example Functions and objectives in the mobile robot
We can consider the hierarchy of objectives in figure 4.4 for our mobile robot. The
localisation function, whichis grounded in the localisation module, requires the sub-
objective to obtain scan readings of obstacles. This sub-objective is also required
by the trajectory planning function that addresses the objective to plan a trajectory.

root objective
- navigation

objective - self-
localisation

objective - plan
trajectory

objective -
obtain scan
reading of
obstacles

objective -
estimate
velocity

objective -
move

according to
velocity

localisation function

Figure 4.4: Example: mobile robot’s hierarchy of objectives.

78

4.4. Cognitive Autonomous Systems

Abstract Functions and Function Versions

We could have different triplets <objective, algorithm, configuration> that share a
common objective: we shall call these function versions of an abstract function de-
fined by the objective. These versions can differ between themselves either in the
algorithm, in the components configurations, or in both. This conceptualisation is
similar to that proposed by Blanke et al. with the concept of versions of services[21,
p. 77]. Two function decompositions that differ only in the resources correspond to
physical redundancy: there are two different instances of the same function instanti-
ated for the same objective. Two function decomposition that differ in the algorithm
correspond to analytical redundancy: it means that there are two alternative function
designs capable of addressing the same objective.

4.4 Cognitive Autonomous Systems

Once presented the concepts that explain from the GST perspective the issues at hand
in autonomy, now it is time to move further to account for the cognitive phenomena
in such systems. In this section we describe the relevant concepts of the theoreti-
cal framework that analyse cognitive aspects. They were gathered by Lopez in the
Cognitive-Grounded System Model (CGSM) from [90], which is an ontology that ex-
plain global aspects of the cognitive operation in autonomous systems. These ideas
have been further developed in the inception of the present research, and the results
presented as the General Cognitive System conceptualisation in [64]. The basic idea
of the CGS Model is to consider the system as a duality of a grounded system (GS),
and a cognitive system (CS). Let us explain this.

We may assume that, in the most general case, a cognitive autonomous system
operation can be analysed at two levels. The first one, which we may call physical,
answers to physical laws: gravity, magnetism, etc. Indeed, an important part of the
system’s operation is its physical action on the environment; for example a robot pick-
ing up objects, or a mobile robot exploring new territory. This kind of operation can
be observed by measuring a certain amount of quantities, representing speed, temper-
ature, force, etc. These are the physical quantities we referred in section 4.2.1. The
grounded system is formed by the physical quantities and their dynamics.

The other kind of operation in a general autonomous system is conceptual. A
conceptual quantity is a specific resource of the system whose state represents the
state of a different part of the universe [76]. For example, the area of memory used for
an integer may represent the speed of a robotic mobile system, encoded in the state of
its own bits. The part of the system that performs conceptual operation is called the
cognitive system. The cognitive subsystem has the capacity to operate with conceptual
quantities, using them for representing objects in their environment, for simulating the
effect of its own action over them, or for inferring new objects among other examples.

We shall differentiate the abstract quantities from other conceptual quantities. Ab-
stract quantities are not measurable and cannot relate to actual physical quantities.

79

Chapter 4 Theoretical Framework

E N V I R O N M E N T

S Y S T E M

C O G N I T I V E S U B S Y S T E M
conceptual
quantities

physical
quantities

cognitive
elements

Figure 4.5: Grounded and cognitive systems and their quantities.

Between the rest of conceptual quantities there will be some that relate to real current
physical quantities, we shall say they are instantiated quantities, and those that are
not, but could eventually be: they are potentially instantiated quantities.

A model can be conceived as a set of conceptual quantities closely related, that is
in a representation relationship to an entity (i.e. an element) in the world. Therefore,
models or representations are elements in the cognitive subsystem. Those models that
represent actual quantities in the environment or the grounded system are composed
of instanted quantities, whereas those that represent hypothetic, predicted or simulated
entities, consist of potentially instantiable quantities.

4.4.1 Conceptual Operation

Once we have introduced the organizational particularities of cognitive systems, we
will now explain how are they involved in the operation of CS and GS. The processes
of purposive directiveness are intrinsically part of CS operation, as they involve sym-
bolic representations of system, environment, objectives, and conceptual processes.
The result is a conceptual representation, which is then grounded into GS.

The relation between a conceptual quantity and its physical counterpart directly re-
lates to the symbol grounding problem as analysed by [60]. Leaving out of the discus-
sion the hard problem of meaning, we shall define the relation between the conceptual
quantity (the virtual landscape) and the physical one it refers to (the actual landscape
in the world) as the grounding. A conceptual quantity may refer to a physical quantity
of the environment or a physical quantity of the system.

The bidirectional nature of the relation is represented by the sensing-perception

80

4.4. Cognitive Autonomous Systems

and grounding-action cycle. Sensing relates a physical quantity in the environment
with a physical quantity in the system. Perception relates the physical quantity with a
conceptual quantity in the cognitive subsystem. The physical quantity may be in the
environment, in which case we shall talk about exteroception, or in the own system,
then we shall talk about proprioception. We represent perception as a link between a
physical quantity in the physical subsystem and a quantity in the cognitive subsystem
because in any case the initial quantity must be mapped to one in the same substrate
–embodiment– that the cognitive subsystem, that is the physical part of the system.
This mapping is the sensing.

Grounding*4 is the process of making physical quantities correspond to their con-
ceptual counterparts. The other way round grounding* relates a conceptual quantity
in the cognitive subsystem with a physical quantity in the system, while action relates
the quantity in the system with the sensed physical quantity in the environment.

We call embodiment of a conceptual quantity to its physicalisation, that is to say
the relation between the conceptual quantity and the physical quantity that supports it
[84], in which it is embodied, i.e. in our example the relation between the robot speed
and the memory bits used to represent it.

ExampleCognitive Operation related to velocity control
Let’s take the example from a mobile robotics application. The speed of the
robot (physical quantity of the coupling system-environment) is sensed in the signal
from the encoder (physical quantity in the system) and through perception it is
conceptualised in the conceptual quantity speed of the cognitive subsystem. This
conceptual quantity may be manipulated in cognitive processes, such as planning,
that result in an increase of the value of the quantity. The conceptual quantity is
grounded through the quantity voltage applied to the motors, whose action finally
results in an increase of the initial physical quantity speed. Only instantiated
conceptual quantities can be updated through perception and/or grounded.

The conceptual quantity is embodied in the state of the RAM memory position
that stores the variable of the control program in the robots on-board computer.

4This grounding is intimately related to the previous grounding, but we use them with a slight difference.
Grounding refers to the whole relation between conceptual and physical quantity, whereas grounding* refers
to it in the direction from conceptual to physical

81

Chapter 4 Theoretical Framework

ENVIRONMENT

S Y S T E M

C O G N I T I V E S U B S Y S T E M

sensing

perception

action

grounding

Vmotor

int speed

encoder

embodiment

RAM
position

v

Figure 4.6: Schematic representation of the quantities involved in the cognitive operation re-
lated to the robot’s speed.

As we described in 4.3.2, systems that present purposive directiveness operate with
an explicit representation of their objectives. Hence they present conceptual operation
that can be described with the aforementioned concepts. However, we will keep the
adjective cognitive to define those systems in which conceptual operation involves
representations not just of objectives, but of the two other elements in the triplet: the
environment and the system itself.

The organisation of the knowledge of the system is key to determine the proper-
ties of its cognitive operation. The instantiated quantities correspond to the program
of the cognitive subsystem: they account for the instantaneous representation of the
current situation. The potentially instantiated quantities correspond to the hypothetic
structure: when the activity in the cognitive system changes, new quantities can be
instantiated, to represent the new situation. Finally, the abstract quantities correspond
to the real structure: they determine which models the cognitive system operates with,
and the algorithms it uses.

4.5 Analysing Cognitive Autonomous Systems

This theoretical conceptualisation is aimed at providing a common analysis framework
for autonomous systems. In this last section we provide guidelines for the application

82

4.5. Analysing Cognitive Autonomous Systems

of the presented concepts to the analysis of autonomous systems, considering its or-
ganisational properties and its cognitive operation. These guidelines were compiled in
a preliminary work to this research [64].

4.5.1 Autonomous operation: performance and adaptivity

Let us analyse how uncertainty affects the operation of the system in relation to its
cohesion and directiveness. We have modelled uncertainty as a certain disturbance
to the system, which, coming from the environment or from the system itself, can
propagate in the organisation of the autonomous system, as displayed in figure 4.7

Figure 4.7: Propagation of disturbances in the organisation of
an autonomous system (from [90]).

The system’s program has a certain capacity to compensate these disturbances,
mainly if they are intensive. The concept of performance has a very specific meaning
in this context by referring to these capacities. Performance is therefore the effective-
ness of the temporary behaviour of the system. However, performance may be not
sufficient to cope with certain disturbances, typically the qualitative ones. In this case
a program failure happens.

The consequences of a program failure may affect the hypothetic structure of the
system (type 2 arrows in the figure). At this level, mechanisms of purposive directive-
ness may activate to try reconfiguring the system to correct its behaviour. This may
consist of modifying algorithms or reconfigure a certain part of the structure of objec-
tives. We shall call this capacity of the system adaptivity. System’s adaptivity can be

83

Chapter 4 Theoretical Framework

structural, in the case it is a function of the current functional structure, or purposive,
in the case it develops dynamically. In the second case it implies conceptual operation.
It may happens that system’s adaptivity could not compensate the program’s failure.
We shall call this situation structural failure. Structural failure can propagate to the real
structure of the system (type 3 arrows), breaking partially or totally system’s cohesion,
and affecting its directiveness towards the objectives.

Example For example, in a varying parameters PID, while the plant remains in a cer-
tain region the controller parameters do not change, but the control signal does,
according to the error. That corresponds to the program and performance of the
system. By contrast, when the plant enters a different region of operation the
PID parameters change accordingly, this stands for the hypothetic structure of the
system and its adaptivity.

4.5.2 Principles of Autonomy

From the analysis of the system organization, Lopez’s has enunciated some design
guidelines, the principles for autonomy, which are a series of factors related to the
provision of increased levels of adaptivity to a system. The most central for this work
is the principle of minimal structure[92]

Principle of minimal structure: the structure of the system must be minimized for
higher autonomy.

This stands, within the whole organisation for maximizing the system’s program,
which equals to maximize system performance. This is because more program pro-
vides better accuracy and resources more adapted to system resources. Secondly,
within the structure, the principle stands for minimizing the real and maximizing the
hypothetical structure. This equals to providing maximum adaptivity, because it means
more reconfigurability.

In our extension to Lopez’s foundation, maximizing hypothetic structure can be
done by increasing the number of alternative function designs.

There are other principles for the design of autonomous systems derived and/or
related to the basic principle of minimal structure. Lopez details them as follows:

Encapsulation: has two main aspects: i) minimization of the couplings between ele-
ments, ii) the construction of interfaces, in order to encapsulate heterogeneous
elements. Minimization of couplings contributes to minimization of structure.
Second, encapsulation favours reconfigurability. This is so because, by defini-
tion, isolating a function within a module and providing a precise specification
for the interface to the module [29, p. 73].

Regarding modelling (including self-modelling) well-defined interfaces and iso-
lated functionality allows traceability of interactions between modules.

84

4.5. Analysing Cognitive Autonomous Systems

a) b)

d)c)

program

hypothetic structure

real structure

Figure 4.8: Evaluation of system organisation: system a) has almost only real
structure, thus it would perform badly and could not adapt at all, any disturbance
would affect the real structure, therefore leading to structural failure if it were
not robust enough. System b) has great proportions of structure, both real and
hypothetic, but no program at all and hence, despite it may be able to adapt
and reconfigure itself for different situations, it has no means to address small
disturbances and would perform poorly. On the other hand, system c) has no
hypothetic structure: the system could not adapt to disturbances overwhelming
the compensating capacity of program, so if they happened it lead to structural
failure. The best organisation is that of system d), in which real structure is
minimal and program and hypothetic structure maximal, resulting in a system
with a priory good performance and adaptivity.

85

Chapter 4 Theoretical Framework

Therefore, the models of encapsulated systems are more easily integrated in
mechanisms of directiveness such as functional decomposition or objective re-
configuration.

Homogeneity: Considering the elements and couplings of the system, similarity be-
tween is a factor for interchangeability. For heterogeneous elements and cou-
plings, homogeneity can be achieved with additional elements enabling the in-
direct coupling between them: the interfaces.

Homogeneity represents increasing system efficiency, in the sense of optimizing
the use of its resources. Similarly, homogeneity of knowledge maximizes its
potential scope of use and power of representation.

Isotropy of knowledge: refers to the reusability of knowledge between different situ-
ations or contexts. Function definitions and objective decompositions are design
knowledge that is generated for a particular scenario, we call this knowledge bi-
asing. Perfect knowledge isotropy means that the knowledge and models can
be applied independently of biasing, that is it is general knowledge that can be
applied to many scenarios.

Scalability: is a factor that refers to the capacity of the system to grow. The principle
of scale stands for maximizing the degrees of minimal structure, encapsulation,
homogeneity and isotropy of knowledge by system growth.

4.5.3 Cognitive operation

It can be intuitively considered that quantitative uncertainty is accounted for by the
systems performance, and qualitative uncertainty by adaptivity [90, p. 150]. Increas-
ing knowledge mainly contributes to adaptivity, whereas increased physical resources
contributes to performance. Since we are concerned with adaptivity in this work, our
main focus is the maximization of the system’s knowledge. If we enhance the system’s
knowledge by making its models more representative, then the system will be able to
better account for qualitative uncertainty, increasing its adaptivity.

The organization of the cognitive system is an important factor regarding the ca-
pabilities of the autonomous system. Abstract quantities allow the system for general-
isation, thus representation power, and inference and other deliberative processes that
allow better knowledge exploitation. Potentially instantiated variables are necessary
for planning and reflection over past situations. Instantiated quantities stands for mod-
els of current situation. More instantiated quantities means more modelling refinement
of current state, whereas larger quantities of potentially instantiated quantities stands
for greater capability of the architecture to represent different situations or the same
situations with different models; we could talk about larger “model repository” (see
figure 4.9).

86

4.5. Analysing Cognitive Autonomous Systems

ExampleKnowledge in the mobile robot
Let us consider the knowledge embedded in the control system of our mobile robot.
We could consider two different implementations of the navigation module and the
map it exploits. In implementation 1, the control system uses only very detailed 2D
Cartesian representations of the environment. The organisation of the knowledge
thus involves a big portion of instantiated quantities, to account for the instanta-
neous representations of obstacles. The different maps stored in the map server for
the different areas the robot can traverse correspond to the potentially instantiable
conceptual quantities. The definition of the 2D coordinates and their occupancy
state by obstacles correspond to the abstract quantities that for the real struc-
ture of the system’s knowledge. The organisation of the cognitive subsystem for
implementation 1 is depicted in the upper part of figure 4.9.

We could consider a different implementation 2, with more diverse modelling
capacity in the system, using integrated representation consisting of occupancy grip
maps optimised into quadtrees or potential maps for local mapping, and graphs
to capture the relations between mapped areas. Using these more simple repre-
sentations, the amount of conceptual quantities instantiated to account for the
instantaneous modelling of the environment is smaller in this implementation 2.
The same applies to potentially instantiable quantities, given the simplified infor-
mation stored in quadtrees, when compared to 2D Cartesian maps. However, the
cognitive subsystem has now a greater amount of abstract quantities, given the
many different conceptualisation of space it handles.

Implementation 1 provides a better performance: more precise maps mean
more efficient and accurate navigation. However, this navigation can consume too
much computer memory, and be too slow in cluttered environments, where there
are many obstacles. Implementation 2 allows the control system to adapt to this
circumstances by changing from one representation and corresponding algorithms
for navigation to another more suitable for the environment.

87

Chapter 4 Theoretical Framework

Example
C O G N I T I V E S U B S Y S T E M

instantiated quantities potentially instantiated
quantities

CAPÍTULO 2. ESTADO DEL ARTE

Figura 2.1: Mapas métricos geométricos

debido principalmente a la facilidad de visualización que ofrecen y la compa-
cidad que presentan. Otra ventaja fundamental es la filtración de los objetos
dinámicos al hacerse la extracción previa de caracteŕısticas del entorno. Los
sensores necesarios para construir estos mapas no pueden generar mucho rui-
do, puesto que han de permitir distinguir los diferentes elementos del entorno.
Otro inconveniente a resaltar es su incapacidad para proporcionar un mode-
lo completo del espacio que rodea al robot. Los puntos que no se identifican
como caracteŕısticas geométricas del mundo real son eliminados, con lo que
para ganar en robustez y compacidad se pierde información de los senso-
res. Esta limitación afecta a tareas como la planificación de trayectorias y la
exploración de entornos, reduciendo consiguientemente la utilidad de estos
mapas en la navegación de robots móviles.

En los mapas métricos discretizados,se utiliza la información de los senso-
res sin segmentar y se construye una función de densidad de probabilidad de
ocupación del espacio. Como ésta no puede cubrir todo el espacio de forma
continua, se efectúa una descomposición en celdillas y se asigna una proba-
bilidad a que cada una esté ocupada o libre. Esta división puede ser exacta,
manteniendo las fronteras de los obstáculos como bordes de las celdillas, o
mediante celdillas de dimensiones fijas que se reparten por todo el espacio
[23]. En las figuras 2.2 y 2.3 pueden verse ejemplos de ambos tipos de des-
composición. En la división en celdillas fijas se aprecia que un estrecho paso
entre dos obstáculos puede perderse con esta representación.

En este caso no se analiza la pertenencia de cada celdilla a un objeto in-
dividual, por lo que aunque el espacio esté discretizado se logra su represen-
tación de forma continua. En la figura 2.4 se puede ver un mapa discretizado
o de ocupación de celdillas de un entorno con formas irregulares que haŕıa
complicada la representación geométrica.

Este tipo de mapas puede precisar de una alta capacidad de almace-
namiento, tanto mayor cuanta más resolución se requiera. Por otra parte,
permite representaciones continuas y completas incluso a partir de datos de
sensores con mucho ruido como los de ultrasonidos, lo que los hace especial-
mente prácticos.

DISAM-UPM Paloma de la Puente Yusty 20

C O G N I T I V E S U B S Y S T E M

instantiated
quantities

5

Espacio discretizado en celdillas

Quodtrees y octrees

potentially
instantiated

abstract quantities 2D maps

map area 1
map area 2
...

map area 1
map area 2
...

abstract quantities
quadtrees potentialsgraphs 2D maps

Figure 4.9: In a cognitive system, different proportions of conceptual quantities stand for dif-
ferent modelling properties.

88

Chapter 5

State of the Art of Self-Aware
Systems

As it has been discussed in the introduction, a diversity of techniques have been ex-
plored to tackle the problem of uncertainty when building robust autonomous systems.
In the following sections we present the state of the art in different approaches that
target system’s adaptivity to overcome the problem. They come from different sub-
disciplines, but they share a common objective with the present work. The current
research is highly inspired by these approaches.

5.1 Autonomous Supervisor for fault-tolerant control

As it has been discussed in section 3.5.2, fault-tolerant control addresses the problem
of faults (i.e. internal uncertainty) in control systems, and using methods rooted in
control theory. Blanke et al. [21, pp. 612–618] have proposed guidelines for the
design of fault-tolerant control. It involves the implementation of an Autonomous
Supervisor architecture in the control system (figure 5.1).

The architecture comprises four levels:

1. The lower level consists of the traditional control loop, I/O and references.
Fault-tolerance includes an additional block that allows to validate and filter
if required the input signals to the controller, i.e. references or setpoints and
sensory input.

2. The second level includes algorithms for fault diagnosis in the Detectors, and
Effectors to perform the remedial actions for controller re-design.

3. The third level is the supervisor logic, which determines the most appropriate
remedial action from the diagnosed state.

89

Chapter 5 State of the Art of Self-Aware Systems

4. The fourth level includes plant-wide control and coordination.

Plant-wide control
and coordination

Supervisor
level

Control level

Controller

Plant wide control

Autonomous Supervisor

Effectors Detectors

actuatorssensors

setpoints
(references) Filtering &

validity check

Figure 5.1: The Autonomous Supervisor architecture, adapted from [21].

The design procedure uses the analysis of fault propagation and structure to de-
velop the fault diagnosis and controller re-design actions performed at the supervision
level.

The component based analysis relies on the component model of the system pre-
sented in 56. It results in a list of component related faults and their effects. The
structural analysis provides information on the redundancy available in the system for
diagnosis and reconfiguration.

The supervisor logic consists of inference rules developed using the previous in-
formation about the known faults and their effects. These rules encode the knowledge
of which remedial action must be taken according to the system fault state diagnosed.

5.1.1 Fault Diagnosis

The information obtained by the diagnosis should be used for the controller re-design,
so it cannot only indicate when a fault occurs, but also identify its location and mag-
nitude. The successive steps are:

1. Fault detection, decide if a fault occurred and determine the time at which hap-
pened.

2. Fault isolation finds the location of the fault, i.e. in which component it oc-
curred.

3. Fault identification and estimation of its magnitude.

90

5.1. Autonomous Supervisor for fault-tolerant control

Different techniques can be used for fault diagnosis, depending on the nature of the
system (continuous-variable, discrete, . . .), as well as different architectural options:
embedded, distributed, decentralised, coordinated. An integrated approach for fault
analysis and system reconfigurability has been proposed in [54]. It consists of a self-
updating model based on functional analysis that captures the availability of services
provided by the systems components in a state transition graph.

5.1.2 Controller re-design

The objective of the controller re-design is to change the controller when a fault occurs
so it continues to satisfy the requirements. Two ways of doing so can be distinguished:

Fault accommodation implies changing the controller parameters to comply with
the new dynamical model of the faulty plant. This can be achieved by switching
to pre-designed controller configurations selected off-line for each fault.

Control reconfiguration if the previous is not a solution, the whole control loop, in-
cluding its structure, has to be changed. Alternative input and output is used for
the controller and a new control law has to be designed on-line. This is typically
the case with sensor and actuator failures, in which alternative components have
to be found to replace the faulty ones.

There can be different possible remedial actions for each of the listed faults, mak-
ing use of physical or analytical redundancy depending on the structural analysis.
Some of them may not necessarily involve control re-design.

• Switch to another version of service with full performance, if redundant hard-
ware is available.

• Change to a version that those not require the faulty component, even if with
degraded performance. This is the case of replacing a sensor by an observer that
does not used its faulty measurement, or considering controllability without a
faulty actuator, using only the remaining.

• Control re-design. An online control re-design may be required when the reme-
dial actions depend on the state of the system. Autonomous controller re-design
is a challenging solution equivalent in complexity to adaptive control.

• Change objective, when other possibilities are exhausted, relax the performance
objectives and design an appropriate controller for the faulty system.

• When appropriate fault handling cannot be achieved, the supervisor should com-
mand the system to a safe state.

5.1.3 Analysis

The Supervisor architecture for fault-tolerant control improves the adaptivity over a
standard control architecture, because it converts the control level from real structure

91

Chapter 5 State of the Art of Self-Aware Systems

into hypothetic structure. The amount of hypothetic structure in the system, and thus
the scope of the system’s adaptivity, depends on the re-design alternatives available,
that is the analytical redundancy of the system. The amount analytical redundancy
depends not only on the number of alternative designs for a certain part of the control
system, but also on the granularity at which alternative does exist. If the supervisor
is limited to switch between predetermined alternative designs for the whole control
system, the hypothetic structure is limited. However, if these alternatives are not at the
system level, but at the component/service level, the possibilities grow exponentially,
as does the hypothetic structure.

Considering the Supervisor level from a cognitive perspective, the knowledge is
embedded in the supervisor logic. If it is based on rules, thus not being an explicit
model of the control level structure of components, that means small amount of ab-
stract quantities and isotropy of knowledge. This reduces the potential model reposi-
tory and limits the scenarios and circumstances to which the supervisor can adapt the
system for.

5.2 Self-adaptive software

In software systems a lot of research has been done for dynamic adaptation in relation
to fault-tolerance. Traditional self-repair has been conducted at the code level [53].
These mechanisms, such as exception handling or timeouts, have become standard
coding techniques, well supported by modern programming languages (e.g. Java ex-
ceptions) and programming libraries. However, they are pre-defined at development
time, so they cannot account for unpredicted phenomena, neither can they take into
consideration run-time information to determine the source of the failure and take the
most appropriate corrective measure.

During the last decades different approaches have been explored to empower com-
puting systems with adaptive mechanisms at run-time, moving the solution from the
code-level to the module-level, be it a component or a service. Multi-agent systems
from AI are an example of this. More industry and business approaches following this
line are dynamic architectures in service-based software systems and, more recently,
the autonomic computing approach. Following we describe exemplary research works
of both lines that are relevent to this work.

5.2.1 Dynamic architectures

Garlan et al. [53] proposed an approach in which an stylized architectural design
model of the system is maintained at run time and used to detect when the system’s
behaviour departs from the desired range and thus decide high-level repair strategies.

The cornerstone in their approach is the architecture model, for which they adopted
a simple metamodel (shared by the core of most architectural description languages)
that represent the system architecture as an annotated, hierarchical graph. Nodes are

92

5.2. Self-adaptive software

components and arcs are connectors. Annotations are lists of properties that account
for the semantic properties (e.g. bandwidth of a connector, load in a component for
computing)

A key in their approach is the concept of architectural style, which:

defines a set of types for components, connectors, interfaces, and proper-
ties together with a set of rules that govern how elements of those types
may be composed.

Typical styles are client-server or publish-subscribe, and they have the advantage of
mapping well to many component integration infrastructures or platforms, such as
CORBA or EJB.

Their innovation is to use the style not only at design time, but to support run time
adaptation by incorporating it to the knowledge in the form of a stilised architectural
model used by the repair mechanisms.

The style is thus the knowledge that is used to determine: a) what properties of the
system to monitor, b) what constraints to evaluate, c) what to do when constraints are
violated, d) how to repair.

The complete Adaptation Framework they have proposed works as illustrated in
figure 5.2.

Architecture Manager

Repair
Handler Analyzer

Arch.
ModelG

en
er

ic

AP
IStyle API

Interpreter

Style API
Interpreter

Executing
System

Translator

45

6

1

3

2
Monitoring

Mechanisms

Figure 5.2: Garlan’s et al. Adaptation Framework (adapted from [53]).

an executing system (1) is monitored to observe its run time behavior; (2)
monitored values are abstracted and related to architectural properties of
an architectural model; (3) changing properties of the architectural model
trigger architectural analysis to determine whether the system is operat-
ing within an envelope of acceptable ranges; (4) unacceptable operation
causes repairs, which (5) adapt the architecture; (6) architectural changes
are propagated to the running system.

93

Chapter 5 State of the Art of Self-Aware Systems

Requirements for applying this: the system (its impplementation platform) must be
reconfigurable (e.g. possibility to redirect communications, to load dynamic libraries,
to do dynamic resource management).

Application of the framework:

• Define an architectural style - this is re-usable for other systems with the same
style.

– Define the adaptation operators (actions to change the architecture)

– Define the repair strategies.

• Define the architecture model, including the initial configuration of the system.

• Connect the framework to the system:

– Style-based monitoring: probes (implementation dependent) and gauges,
model-specific (reusable in other system with the same style)

– Map adaptation operators to implementation operators, which are offered
by the Runtime Manager.

Another and more recent example of dynamic software architectures is that of
Fiadeiro & Lopes [48], who presented a model for dynamic reconfiguration in service-
based software architectures. Their model can be considered a metamodel to describe
the architecture of service oriented systems. The architecture of these systems has the
particularity of not being determined at design time.

5.2.2 Autonomic Computing

In the recent years an initiative by IBM was launched to address some of the issues
discussed in 1.4 in the realm of software and computing systems.

The overarching goal of autonomic computing is to realize computer and software
systems and applications that can manage themselves in accordance with high-level
guidance from humans.

It is based on the example of the human autonomic nervous system, which together
with the endocrine system is constantly regulating and maintaining homeostasis [110].
This natural system is constantly monitoring changes and disturbances in our body
and generates correcting action of corresponding size to keep our internal balance, by
specific and dedicated but interdependent regulation mechanisms.

The essential issue in autonomic computing is self-management[75], by which
system’s administrators are made free of most details of the system’s operation and
maintenance, labours now addressed by the system itself, thus implementing a high
level of autonomy. There are several aspects considered in self-management:

• Self-configuration: autonomic systems will be able to configure themselves ac-
cording with high-level policies. That will permit new components to integrate
effortless in extant systems provided both incorporate autonomic technology:

94

5.2. Self-adaptive software

the new component will configure itself for the system, which in turn will adapt
to it.

• Self-optimization: an autonomic application will be continuously detecting op-
portunities to tune itself for a more efficient operation, i.e. they will automati-
cally seek for updates to improve its execution.

• Self-healing: autonomic systems will have unseen fault tolerant capabilities,
being able to analyse the root of eventual failures and smoothly recover from
them.

• Self-protection: an autonomic system will be able not only to defend from
detected external attack, but to proactively anticipate problems based on early
monitoring information.

Autonomic applications and systems will exhibit these characteristic at many lev-
els of granularity. An autonomic system will consist of a myriad of autonomic el-
ements, each one providing for some services to users or other elements. The self-
management will arise both from the interaction between the autonomic elements,
supported by a distributed service-oriented infrastructure, as well as from the internal
autonomic capabilities of each one.

Autonomic Manager

Managed element

KnowledgeMonitor

Analyse Plan

Execute

Figure 5.3: An autonomic system consists of
a set of autonomic elements interacting. Each
element is formed by an Autonomic Manager
and a managed element (from [75]).

As shown in 5.3 an autonomic element consists of an autonomic manager that
controls one or more managed elements. This later maybe any regular element in a
computing system, either hardware: a hard disk, a CPU, or software: a database. At
higher levels the managed element could be a whole service application. It is expected
that eventually the autonomic manager will be completely fused with the managed

95

Chapter 5 State of the Art of Self-Aware Systems

element in implementation, being the distinction merely conceptual.

At the lower levels, autonomic elements will have a limited range of internal be-
haviours, mainly hard-coded and fixed, to provide for adaptation. At higher levels
more flexibility is needed, and this behaviour will be more dynamic and undefined at
design-time, defined in goal-oriented terms, being the details resolved on the fly by
the autonomic element in its interactions with others and the user.

Reviewing the aspects listed in 5.2.2, we may observe that all they need for two
underlying capabilities:

self-awareness: since the autonomic manager relies on knowledge on the managed
element, its behaviour and state.

context-awareness: it has to be continuously monitoring its environment to be able
to react to changes

5.2.3 OMACS and adaptive multi-agents organisations

Oyenan, DeLoach et al. [43, 108] have proposed a multiagent framework to develop
autonomic systems. They argue that agents are autonomous and map naturally with
autonomic computing principles. Their framework allows to build multiagent systems
that are capable to adapt to unpredicted situations in their environment by reconfig-
uring its organisation at runtime. They claim that their approach provides for the
demanded systematicity and repeatability, opposite to other ad-hoc approaches, be-
cause it is based on a formal framework (OMACS) and is supported by a multiagent
development process.

The core of the approach is the Organization Model for Adaptive Computational
Systems (OMACS), which is a metamodel for artificial organizations, i.e. multiagent
or autonomic systems. It defines the knowledge required for the system to be able to
self-organize at runtime. OMACS defines an organisation as [108]:

a set of goals that the system is attempting to accomplish, a set of roles
that must be played to achieve those goals, a set of capabilities required
to play those roles, and a set of agents who are assigned to roles in order
to achieve organization goals.

Basically, an OMACS system or organization is an instance of the OMACS metamodel
presented in Figure 5.4 that fulfils all the constraints defined in the metamodel.

Using the previous information about its organisation, an OMACS system is able
to reason about its state in terms of the achievement of goals and self-configure ac-
cording to its capabilities to improve it if needed.

A model-driven development process for agent-based autonomic systems supports
the approach. The process involves a set of tasks to produce, departing from the sys-
tem’s requirements, the different models (Goal, Roles, Agents, etc.) compliant with
the OMACS metamodel that specify the design of the system.

96

5.2. Self-adaptive software

!"#$%$&'()*(+,$-$(.//&".0,$-'(+,)-(-1-+$234$%$4(
5*"#4$67$()-(+)7,+41(0"8/4$6(#)+,+,$(.//4)0.+)"*(
-1-+$2(.&0,)+$0+8&$9(:*("8&(.//&".0,'(-1-+234%$4(
5*"#4$67$()-(;.-$6("*(+,$(8*6$&41)*7(<=>?@(
2"6$4(.*6()-()2/4$2$*+$6(8-)*7("8&(<A>>(
.&0,)+$0+8&$'(#,)0,(.44"#-(8-(+"(&$8-$(+,$(-1-+$23
4$%$4(5*"#4$67$(.*6(-1-+$2.+)0.441(6$%$4"/(
.8+"*"2)0(.//4)0.+)"*-9((
B,)4$(+,$&$(,.%$(;$$*(-$%$&.4(.&0,)+$0+8&$-(

/&"/"-$6(C"&(.8+"*"2)0(-1-+$2'()+()-(.4-"($--$*+).4(+"(
6$%$4"/(-"C+#.&$($*7)*$$&)*7(2$+,"6"4"7)$-(C"&(
;8)46)*7(+,"-$(-1-+$2-9(A8-+.&6($+(.49(DEF(/&"/"-$(
)*+$7&.+)*7(+#"(-1-+$2-($*7)*$$&)*7(.//&".0,$-'(
G).;4$(@1-+$2-(="6$4)*7(.*6(@"C+(@1-+$2-(
=$+,"6"4"71'()*+"(.(2$+,"6"4"71(C"&(6$-)7*)*7(
.8+"*"2)0(-1-+$2-9(!"#$%$&'(+,$)&(.//&".0,()-(*"+(
.7$*+3;.-$6'(.*6(+,8-()-(%$&1(6)CC$&$*+(C&"2("8&(
#"&5'(#,)0,(/&"%)6$-(.(&)7"&"8-(2$+,"6"4"71(C"&(
6$-)7*)*7(C4$H);4$(284+).7$*+(.8+"*"2)0(-1-+$2-9(

3. Overview of OMACS

<=>?@(DIF()-(.(0"2/8+.+)"*.4(2"6$4(+,.+(
/&"%)6$-(.(2$+.2"6$4(.*6(.(C"&2.4(C&.2$#"&5(C"&(
.7$*+("&7.*)J.+)"*-9(K--$*+).441'()+(6$C)*$-(+,$(
&$L8)&$6("&7.*)J.+)"*.4(-+&80+8&$(+,.+(.44"#-(
284+).7$*+(+$.2-(+"(&$0"*C)78&$(.8+"*"2"8-41(.+(
&8*+)2$'(+,8-($*.;4)*7(+,$2(+"(0"/$(#)+,(
8*/&$6)0+.;4$(-)+8.+)"*-()*(.(61*.2)0($*%)&"*2$*+9(
@/$0)C)0.441'(<=>?@(-/$0)C)$-(+,$(+1/$("C(
5*"#4$67$(&$L8)&$6(C"&(.(284+).7$*+(-1-+$2(+"(;$(
.;4$(+"(&$.-"*(.;"8+()+-("#*(-+.+$(.*6(0"*C)78&.+)"*9(
!$*0$'(284+).7$*+(+$.2-(.&$(*"+(4)2)+$6(;1(.(
/&6C)*$6(-$+("C(0"*C)78&.+)"*-(.*6(0.*(,.%$(+,$(
.//&"/&).+$()*C"&2.+)"*(.;"8+(+,$)&(+$.2'($*.;4)*7(
+,$2(+"(&$0"*C)78&$()*("&6$&(+"(.0,)$%$(+,$)&(+$.2(
7".4-(2"&$($CC)0)$*+41(.*6(CC0+)%$419(M8&)*7(+,$(
6$-)7*("C(.*(<=>?@3;.-$6(-1-+$2'(+,$(6$-)7*$&(
"*41(/&"%)6$-(,)7,34$%$4(78)6.*0$(.;"8+(+,$(
"&7.*)J.+)"*'(#,)0,(+,$*(.44"#-(+,$(-1-+$2(+"(-$4C3
0"*C)78&$(;.-$6("*(+,$(08&&$*+(7".4-(.*6(+$.2(
0./.;)4)+)$-9(N,$-$(0,.&.0+$&)-+)0-(2.5$(<=>?@(
)6$.4(C"&(6$-)7*)*7(.8+"*"2)0(284+).7$*+(-1-+$2-9((

3.1. The OMACS metamodel

N,$(<=>?@(2$+.2"6$4()-(+,$(2$+.2"6$4(8/"*(
#,)0,(.8+"*"2)0(-1-+$2-(.&$(6$-)7*$69(O)78&$(P(
-,"#-(.(-)2/4)C)$6(<=>?@(2$+.2"6$49(<*41(+,$(
$*+)+)$-(6)-08--$6()*(+,)-(/./$&(.&$(-,"#*9(<=>?@(
6$C)*$-(.*("&7.*)J.+)"*(.-(.(-$+("C(goals(+,.+(+,$(+$.2(

)-(.++$2/+)*7(+"(.00"2/4)-,'(.(-$+("C(roles(+,.+(28-+(
;$(/4.1$6(+"(.0,)$%$(+,"-$(7".4-'(.(-$+("C(capabilities(
&$L8)&$6(+"(/4.1(+,"-$(&"4$-'(.*6(.(-$+("C(agents(#,"(
.&$(.--)7*$6(+"(&"4$-()*("&6$&(+"(.0,)$%$("&7.*)J.+)"*(
7".4-9(:*($--$*0$'($.0,("&7.*)J.+)"*()-(.*()*-+.*0$("C(
+,$(<=>?@(2$+.2"6$4(/&$-$*+$6()*(O)78&$(P(.*6()-(
-8;Q$0+(+"(.44(+,$(0"*-+&.)*+-(6$C)*$6(;1(<=>?@9(>+(
&8*+)2$'(+,$(.--)7*2$*+-("C(.7$*+-(+"(/4.1(&"4$-(+"(
.0,)$%$(7".4-(&$/&$-$*+(+,$(5$1(C8*0+)"*.4)+1(+,.+(
.44"#-(+,$(-1-+$2(+"(;$(.8+"*"2)09(N,$&$(.&$(2"&$(
$*+)+)$-(6$C)*$6()*(<=>?@(+,.+(.&$(*"+(&$4$%.*+(C"&(
+,)-(/./$&9(N,$(&$.6$&()-(&C&&$6(+"(DIF(C"&(+,$(
0"2/4$+$(2"6$49(

3.2. Goals

R".4-(6$-0&);$(.(6$-)&$6(-+.+$("C(+,$(#"&46(.*6(
+,8-(/&"%)6$(.(,)7,34$%$4(6$-0&)/+)"*("C(what(+,$(
-1-+$2()-(-8//"-$6(+"(6"(DSPF9(N1/)0.441'($.0,(
"&7.*)J.+)"*(,.-(.(+"/34$%$4(7".4(+,.+()-(6$0"2/"-$6(
)*+"(-8;37".4-9(K%$*+8.441'(+,)-(+"/34$%$4(7".4()-(
&$C)*$6()*+"(.(-$+("C(4$.C(7".4-(+,.+(.&$(/8&-8$6(;1(
.7$*+-()*(+,$("&7.*)J.+)"*9(N,$(-$+("C(.44(
"&7.*)J.+)"*.4(7".4-()-(6$*"+$6(.-(R9(N,$(active goal
set'(R.'()-(+,$(08&&$*+(-$+("C(7".4-(+,.+(.*("&7.*)J.+)"*(
)-(08&&$*+41(+&1)*7(+"(.0,)$%$9(R.(0,.*7$-(
61*.2)0.441(.-(*$#(7".4-(.&$(0&$.+$6("&($H)-+)*7(
7".4-(.&$(.0,)$%$69(

3.3. Roles

T"4$-(.&$(.(,)7,34$%$4(6$-0&)/+)"*("C(+,$(;$,.%)"&(
&$L8)&$6(+"(.0,)$%$(/.&+)084.&(7".4-(DUF9(:*(<=>?@'(
$.0,("&7.*)J.+)"*(,.-(.(-$+("C(&"4$-(+,.+()+(0.*(8-$(+"(
.0,)$%$()+-(7".4-9(N,$(achieves(C8*0+)"*'(#,)0,(
.--"0).+$-(.(-0"&$(;$+#$$*(V(.*6(P(+"($.0,(7".4'(

(

!"#$%!"&

'!()*%+),%-*

Role .("*,

/)01%2%,3

4-)2

0-&&"&&"&

5)0)12")56%"7"&

O)78&$(P9(@)2/4)C)$6(<=>?@(2$+.2"6$4(

Figure 5.4: Simplified version
of the OMACS metamodel,
from [108].

The framework is complemented with the Organization-based Agent Architecture
(see fig. 5.5). This agent architecture defines two parts of the agents: the Execution
Component, which would correspond to the traditional agent performing application
tasks, and the Control Component (CC), which is the autonomic part. The CC uses the
model or specification of the organisation according to OMACS to reason about the
state of the system and take appropriate reconfiguration measures. Figure 5.5 depicts
the typical implementation of an OMACS system, with a centralised design of the
autonomic part in the Organization Master, to which all the CCs of the agents report.
The OM then decides the next appropriate configuration (agent-role-goal assignments)
and

Control
Component

Execution
Component

FeedbackControl

Control
Component

Execution
Component

FeedbackControl

Organizational
Master organizational-level

communications

application-specific
communications

organizational-level
communications

application-specific
communications

Figure 5.5: The Organization-based Agent Architecture used
in most OMACS exemplary systems (adapted from [108]).

Analysis

The previous approaches for software systems address adaptivity at the architectural
level rather than at the code level. If we apply the principle of minimal structure,
we can argue that this increases the amount of hypothetic structure of the system in
relation to its program and real structure.

97

Chapter 5 State of the Art of Self-Aware Systems

For example, in OMACS, the possibility of runtime re-organization of the agents,
i.e. control re-configuration, means that the organization of agents corresponds to
the hypothetic structure, instead of being the real structure if it were a classical fixed
organization of agents. This provides the system with improved adaptivity, which is
limited by all the capabilities of the agents (the real structure in this case) as a set, and
not to the more limited number of capabilities of a certain organization.

From the cognitive perspective of autonomous systems, the OMACS approach is
totally knowledge-based, with the definition of a metamodel for agent organizations.
The more rich the OMACS model of a sytem is, regarding information about agents
capabilities and heuristics to assign agents to goals, i.e. potentially instantiable quan-
tities, the better the capability to adapt of the system will be.

5.3 Cognitive Architectures

Cognitive architectures is an interdisciplinary research area in which converge the
fields of artificial intelligence, cognitive psychology/cognitive science, neuroscience
and philosophy of mind. A cognitive architecture is a blueprint for intelligent agents.
It proposes (artificial) computational processes that act like certain cognitive systems,
most often, like a person, or that act intelligent under some definition. Cognitive ar-
chitectures form a subset of general agent architectures. The term architecture implies
an approach that attempts to model not only behavior, but also structural properties of
the modelled system.

We shall distinguish three main categories of cognitive architectures according to
their purpose:

• Architectures that model human cognition. One of the mainstreams in cog-
nitive science is producing a complete theory of human mind integrating all the
partial models, for example about memory, vision or learning, that have been
produced. These architectures are based upon data and experiments from psy-
chology or neurophysiology, and tested upon new breakthroughs. Examples of
this type of cognitive architectures are ACT-R [7] and Atlantis. These architec-
tures do not limit themselves to be theoretical models, and have also practical
application, i.e. ACT-R is applied in software based learning systems: the Cog-
nitive Tutors for Mathematics, that are used in thousands of schools across the
United States.

• Architectures that model general intelligence. These are related to the first
ones but, despite of also being based upon the human mind (as the only agreed
intelligent system up to date), do not constraint to explain the human mind in
its actual physiological implementation. They address the subject of general
intelligent agents, mainly from a problem-solving based perspective. Example
of these architectures are Soar [82] and BB1.

• Architectures to develop intelligent control systems. These architectures take
a more engineering perspective, and although they also address the general in-

98

5.3. Cognitive Architectures

telligence problem, they focus on applying it the building of technical systems.
They are intended as more powerful controllers for systems in real environ-
ments, and are mainly applied in robotics and UAV’s and UGV’s 1. Some ex-
amples of these architectures are 4D/RCS [1] and Subsumption [25], despite
some debate on the last one about if it can be considered “cognitive”.

This research falls mainly in the third category of cognitive architectures, of us-
ing them to build controllers with higher degrees of autonomy. Notwithstanding, an
analysis of the other two classes was conveyed, to explore and study artificial imple-
mentations of cognitive traits, specially those related to self-awareness.

5.3.1 Classification of cognitive architectures

As discussed in the introduction (page 15) for AI, cognitive architectures can be clas-
sified according to different criteria:

Connectionist vs Symbolic

Cognitive architectures can be divided between the two main paradigms that exists in
these fields:

Connectionist approach: The central connectionist principle is that mental phenom-
ena can be described by interconnected networks of simple units. The form
of the connections and the units can vary from model to model. For example,
units in the network could represent neurons and the connections could repre-
sent synapses. Another model might make each unit in the network a word, and
each connection an indication of semantic similarity.

Computationalism or symbolism: the computational theory of mind is the view that
the human mind is best conceived as an information processing system very
similar to or identical with a digital computer. In other words, thought is a kind
of computation performed by a self-reconfigurable hardware (the brain).

There are of course hybrid architectures that have a part of each paradigm, such as
ACT-R, with its symbolic and subsymbolic levels. Recently, Soar has included in its
latest version (Soar 9) connectionist mechanisms for learning.

Deliberative vs reactive

Another classification related to the field of intelligent agents distinguish between de-
liberative and reactive architectures.

Deliberative architectures. These architectures come from the GOFAI (Good Old-
Fashioned Artificial Intelligence) paradigm. The working of a deliberative agent

1UAV: Unmanned Aerial Vehicle
UGV: Unmanned Ground Vehicle

99

Chapter 5 State of the Art of Self-Aware Systems

can be described in terms of a sense→model→plan→act cycle. The sensors
sense the environment and produce sensor-data that is used to update the world
model. The world model is then used by the planner to decide which actions to
take. These decisions serve as input to the plan executor which commands the
effectors to actually carry out the actions.

Reactive architectures. Reactive architectures appeared in the 80’s in opposition to
GOFAI, claiming that there is no need of representation of the world for an
intelligent agent having the own world at disposal [24]. Reactive architectures
are designed to make systems act in response to their environment. So instead
of doing world-modeling and planning, the agents should just have a collection
of simple behavioral schemes which react to changes in the environment in a
stimulus-response fashion. The reference for reactive architectures is Brooks’
Subsumption architecture [25].

There are also in this case hybrid architectures that combine both reflective and
reactive capabilities, like RCS or ATLANTIS. In fact, for a cognitive architecture to
be useful for real-time control systems the hybrid approach seems not only appropriate
but necessary.

It is also remarkable that the symbolic paradigm is strongly related to deliberative
architectures and the connectionist with the reactive approach, despite there is a full
gradation between the extremes and in practice most architectures used in real systems,
and not only simulated environments, are hybrids to some extent.

5.3.2 RCS

RCS is a cognitive architecture that reifies Albus theory of cognition [2]. However, it is
also a Reference Model Architecture, suitable for many software-intensive, real-time
control problem domains.

RCS defines a control model based on a hierarchy of nodes. All the control nodes
at all levels share a generic node model. The different levels of the hierarchy of a
RCS architecture represent different levels of resolution. This means that going up
in the hierarchy implies loss of detail of representation ad broader scopes both in
space and time together with a higher level of abstraction 5.6. The lower level in the
RCS hierarchy is connected to the sensors and actuators of the system. The nodes
are interconnected both vertically through the levels and horizontally within the same
level via a communication system.

RCS Node

The RCS node is an organisational unit of a RCS system that processes sensory infor-
mation, computes values, maintains a world model, generates predictions, formulates
plans, and executes tasks. The RCS node is composed of the following modules: a sen-
sory processing module (SP), a world modelling module (WM) together a behaviour

100

5.3. Cognitive Architectures

Df. Intelligent super~sed-autonomy controllers are controllers capable of accepti~g

commands from hzlman s ~~pen7isors and executing those commafzds with little or nu

further inpfit from humans in unstructfired a ~ d often hostile environments.

An intelligent, supervised-autonomy controller is intelligent in that it is capable of
executing its assigned mission with or without direct communication from a human supervisor.

It is supervised in that it responds to commands from superiors with discipline in response to
established rules of engagement as would any well disciplined human soldier. It is autonomous

in that it is capable of formulating plans and coordinating with other intelligent agents in the

execution of mission assignments. Environments in which UGVs with supervised-autonomy

controllers are required to operate include wban warfare zones? rural battlefields, mountains?

woods, farrnlands, or desert tesrain, as well as all kinds of weather during day or night.

1 SENSORS AND ACTUATORS

Figure 5. A 4D/FtCS reference model architecture for an individual vehicle. Processing nodes, RCS-NODES,

are organized such that the behavior generation (BG) processes form a command tree. Information in the

knowledge database (KD) is shared between world modeling (WM) processes in nodes above, below, and at the

same level within the same subtree. KD structures ase not shown in this figure, On the right, ase examples of the

functional characteristics of the behavior generation (BG) processes at each level. On the left, are examples of the

scale of maps generated by the sensory processing (SP) processes and populated by the WM in the KR knowledge

database at each level. Sensory data paths flowing up the hieraschy typically form a graph, not a tree, Value

judgment (VJ) processes are hidden behind WM processes. A control loop may be closed at every node. An
operator interface may provide input to, and obtain output kom, processes in every node.

In Figure 5, each node consists of a behavior generation (BG), world modeling (WM),
and sensory processing (SP)? and knowledge database (D) (not shown in Figure 5). Most

nodes also contain a value judgment (VJ) process (hidden behind the WM process in Figure 5).
Each of the nodes can therefore function as an intelligent controller. An operator interface may

access processes in all nodes at all levels.

Figure 5.6: Example of a RCS hierarchy from [1], in which the differ-
ent resolution levels can be appreciated.

generation module (BG) and a value judgement module (VJ). Associated with each
node there is also a knowledge database (KD). Figure 5.7 illustrates the elements and
their relations within the node.

Queries and task status are communicated from BG modules to WM modules.
Retrievals of information are communicated from WM modules back to the BG mod-
ules making the queries. Predicted sensory data is communicated from WM mod-
ules to SP modules. Updates to the world model are communicated from SP to WM
modules. Observed entities, events, and situations are communicated from SP to VJ
modules. Values assigned to the world model representations of these entities, events,
and situations are communicated from VJ to WM modules. Hypothesised plans are
communicated from BG to WM modules. Results are communicated from WM to VJ
modules. Evaluations are communicated from VJ modules back to the BG modules
that hypothesised the plans.

5.3.3 Soar

Soar (which stands for State, Operator And Result) is a general cognitive architecture
for developing systems that exhibit intelligent behavior. It is defined as general by
its creators so as to emphasize that Soar does not only intend to address the problem
of human cognition, but that of intelligence as a universal phenomenon. The Soar
project was started at Carnegie Mellon University by Newell, Laird and Rosenbloom
as a testbed for Newell’s theories of cognition.

Soar is designed based on the hypothesis that all deliberate goal-oriented behav-
ior can be cast as the selection and application of operators to a state. A state is
a representation of the current problem-solving situation; an operator transforms a
state (makes changes to the representation); and a goal is a desired outcome of the
problem-solving activity.

101

Chapter 5 State of the Art of Self-Aware Systems

RCS node

World

Behaviour
Generator

Sensory
Processing

World
Modelling

Value
Judgement

actuatorssensors

Task Knowledge

Planners
Executors

Classification
Estimation
Grouping
Filtering

Mission
(goal)

Figure 5.7: Functional structure of a RCS node, adapted from [3].

The functioning of Soar is based on a sequence of actions which is called the
Execution Cycle and is running continuously. Soar’s memory is a production system,
and consist of three differentiated modules: working memory, which represents current
state, results of intermediate inferences, active goals and active operators, production
memory, where Soar stores long-term knowledge mainly procedural, and preference
memory.

5.3.4 Machine Consciousness Architectures

In the recent decade a new field is gaining momentum, at the convergence of cognitive
architectures, scientific research of consciousness and self-awareness, and cognitive
robotics. This new research topic is machine consciousness [69].

Even though there are old arguments against the possibility of machine conscious-
ness [99], several attempts at realizations of machine consciousness have been made
recently. In some cases, these systems propose a concrete theory of consciousness ex-
plicitly addressing artificial agents [34, 58]. In other cases, the implementations follow
psychological or neural models of human consciousness. This is true, for example, in
the case of the many implementations of Baars’ Global Workspace Theory (GWT) of
consciousness [50, 143, 10].

However, the multifarious character of consciousness is an obvious problem [22],
which most of the approaches circumvent by focusing on just one aspect of it. Access
consciousness seems to be the main target, leaving phenomenality to further clarifica-
tions of the hard problem [32] by philosophers and cognitive scientists.

102

5.3. Cognitive Architectures

Chella et al. [34] have developed a robot cognitive architecture in which self-
consciousness is based on higher order perception of the robot, in the sense that first-
order robot perception is the immediate perception of the outer world, while higher
order perception is the perception of the inner world of the robot.

Arrabales’ CERA-CRANIUM cognitive architecture is a reification of Baars’ Global
Workspace theory of consciousness for software agents. CERA architecture is a soft-
ware architecture that allows the integration of different cognitive components into
a single autonomous system. CRANIUM (Cognitive Robotics Architecture Neuro-
logically Inspired Underlying Manager) is a tool for the creation and management of
large amounts of parallel processes in shared workspaces; it can be considered an im-
plementation of a Dennet’s pandemonium. Arrabales has used it to implement Baars
Global Workspace.

LIDA Architecture

Franklin et al. LIDA2 architecture [50] is a paradigmatic case of cognitive architecture
for machine consciousness.

LIDA provides a conceptual (and computational) model of cognition implemented
as a software agent. The IDA model implements and fleshes out Global Workspace
theory. The LIDA implementation of GW theory yields a fine grained functional ac-
count of the steps involved in perception, several kinds of memory, consciousness,
context setting, and action selection.

The LIDA codelets are specialized programs that monitor the occurrence of a par-
ticular event that may require a conscious intervention. When such an event occurs,
these codelets form coalition with other codelets that contain information about the
situation. The coalition then competes to be placed under the focus of attention (spot-
light). If the coalition wins, its contents spread to other codelets coming.

Cognitive processing in IDA consists of continually repeated traversals through
the steps of a cognitive cycle. Incoming sensory stimuli is filtered through precon-
scious perception, where meaning is added and a percept produced, and then enhanced
with information from un-decayed percepts from previous cycles. The current struc-
ture from working memory cues transient episodic memory and declarative memory,
producing local associations, which are stored in long-term working memory. The
conscious broadcast (ala Gobal Workspace Theory) occurs, enabling various forms
of learning and the recruitment of internal resources. Finally Procedural memory re-
sponds to the contents of the conscious broadcast instantiating action schemes that
matches them, and the action selection mechanism chooses an action from one of
them for this cognitive cycle. Different learning mechanisms take place using a va-
riety of activation nets models at the perceptual, episodic, procedural and attentional
phases of the cycle.

2The initially named IDA architecture is, since the inclusion of learning mechanisms, the LIDA archi-
tecture.

103

Chapter 5 State of the Art of Self-Aware Systems

5.3.5 Analysis

Cognitive architectures that model intelligence, such as Soar and ACT-R, provide de-
sign patterns for some intelligent capabilities, such as inference and learning, but they
do not address the complete description of patterns and functional decomposition re-
quired in an architecture for building complex control systems, such as appropriate I/O
interfaces, distribution a encapsulation in computational separate components, etc. For
example, dedicated modules or interfaces for sensing and acting must be implemented
ad-hoc in Soar.

On the other hand, architectures for intelligent control such as RCS provide a good
methodology to address the construction of a whole control system. Arrabales CERA-
CRANIUM architecture also provides architectural guidelines to integrate sensors and
actuators in the lower layer of CERA.

This is closely related to the grounding of cognitive operation discussed in page
80. Soar does not provide a solution for grounding conceptual operation. On the
other hand, RCS provides specific design patterns for perception and grounding in a
hierarchical manner.

Architectures for general intelligence such as Soar and ACT-R provide good tools
for the cognitive operation, specially decision-making and planning.

Cognitive architectures organisation

Let us analyse the properties of cognitive architectures from the standpoint of the
organisation of the cognitive autonomous systems built with them, using the criteria
presented in section 4.5.

Organisation. In a RCS system the number of nodes and their layering are estab-
lished at design time, so they correspond to the system’s real structure and do not
change during operation. However, the connections between nodes for a mission, that
is, the command tree structure, is determined by the system itself at runtime. Since the
command tree hold for long periods of time —a mission or a task— it corresponds to
the hypothetic structure, allowing the system to adapt to different missions.

Encapsulation. RCS encapsulates control according to the abstraction level in nodes.
The architecture comes with an engineering methodology to systematically ad- dress
the encapsulation of control and cognitive functions. Interfaces between nodes are
clearly defined: bottom-up through SP modules and top-down through BG modules.

Self is the key aspect that RCS fails to address, in an otherwise suitable architecture
to develop cognitive controllers. The absence of explicit representation of lifetime
objectives and the lack of self-modelling prevent a system built with RCS from being
able to monitor its own operation and reconfigure it at the functional level.

104

Part III

The OM Architectural
Framework

105

Chapter 6

Model-based Self-Aware
Cognitive Control

If we view the development of this thesis as an engineering process, so far we have
presented the results corresponding to the analysis phase. We have studied the extant
solutions related to the problem of building autonomous self-aware control systems,
and we have characterised the problem with the theoretical framework we have com-
piled. Now we shall introduce the solution designed for the building of self-aware
autonomous systems. This chapter presents the main thesis of this work. The first
section discusses the basic ideas and principles from which we have departed, before
discussing our solution in the central section. It is described at an abstract level here,
stated as a set of first principles. To conclude this core chapter, a global overview of
the methodological path we have followed for the engineering realisation of the thesis
is outlined in the final section.

6.1 Guidelines for Developing Autonomous Systems

This work is deeply rooted in the ASys vision for the development of technology for
building autonomous systems. In this section we will present the basic ideas that have
been developed into the solution that this thesis proposes for the construction of self-
aware autonomous systems.

The underlying ideas of the ASys vision have already been presented in the moti-
vation of this work (section 2.1.2), and can be synthetised in the following statement:

It is possible to engineer any-level autonomy systems using cog-
nitive control loops.

Let us now discuss in more detail the core aspects of ASys concerning the design
of the autonomous system that this thesis addresses. Those other ASys’ aspects that

107

Chapter 6 Model-based Self-Aware Cognitive Control

relate to the engineering methodology of this work will be treated in section 6.3 of this
chapter.

6.1.1 Self-engineering for autonomy

Considering the adaptivity challenge for the control engineering of autonomous sys-
tems presented in chapter 1, there is a need to design the autonomous system (plant
plus controller) so that it is capable of directly addressing the mission objectives —the
desires in the mind of the customer or the functionality the control engineer designs
for. The ASys system, in order to do this may be in the need of re-designing, re-
building itself, now at runtime, to adapt to the new circumstances. In ASys, this may
be not just self-configuration or self-tuning; this may be indeed self-engineering.

The claim of the ASys approach is thus that to achieve robust autonomy it is nec-
essary to:

Break the engineering/runtime gap.

The scenario that ASys addresses goes beyond the current standard engineering
life-cycle, and is stated as autonomy engineering. It can be defined in crosscutting
terms: given the user needs (electricity availability, etc.) design the overall system
(plant plus control) that keeps fulfiling the needs embracing unexpected change.

What this necessarily implies is that what is kept as target setpoint for the auton-
omy loop (see 6.1 later) is not the system as structure but the system as set of processes
that render a function. So the objective of artificial autonomy is not self-sustainment of
systems but self-sustainment of functions. The vision of a seamless engineering pro-
cess for autonomous systems captures this capability by embedding into the system
the very engineering mechanisms used in its construction.

Artificial autonomous systems are self-engineered systems.

In the standard control engineering scenario, the engineering/runtime gap in a con-
trol system implies that unforeseen environmental conditions —i.e. out of design
range disturbances— can render the control law, which was fixed at design-time, no
longer applicable. Disturbances from within the system itself may also critically ham-
per its operation. Broadening these adverse conditions is the well-known domain of
self-tuning, robust, adaptive or fault-tolerant control. In complex, technical, multi-
authority systems-of-systems conditions are even harder.

In ASys, a self-engineered control system is a controller augmented with a meta-
control loop: it not only maintains a reference set-point for a variable in the environ-
ment —the basic control loop—, but it also maintains the very control function that
achieves that, even in the presence of the unexpected.

Self-engineered systems realise a teleological process towards a specified function
so, in a sense, function is the setpoint or reference injected in an autonomous con-
troller. These systems will embed the capabilities of design-time engineers for their

108

6.1. Guidelines for Developing Autonomous Systems

runtime operation. Obviously the engineering competence requires high-level cogni-
tive performance.

Many efforts have focused on the automation of systems analysis and design tasks.
Some of them have been discussed in this dissertation (e.g. in sections 3.3.2 and 3.2.1).
There even exist those advancing in the ASys’ line to break the design/runtime gap,
for example the fault-tolerant control techniques discussed in section 3.5.

Notwithstanding, these extant solutions typically comprise algorithms that rely on
a model of the system that is: i) domain dependent —e.g. MFM for the control of
processes—, therefore it is not of general applicability, and/or ii) partial —e.g. failure
model in fault-tolerant control, which is limited to fault information—, and thus the
scope of applicability is usually limited.

ASys proposes to generalise the control strategy so as to address any domain, in the
original sense of cybernetics and the early years of AI. This cross-domain applicability
intended, together with the high competences required for self-engineering, are the
reasons for seeking solutions amongst the techniques of AI and cognitive systems
to implement an intelligent controller, capable of embedding the required high-level
cognitive competences.

6.1.2 Model-based Cognitive Control

From the original objective of building systems capable of general intelligence [151],
Artificial Intelligence has spread into a pletora of subfields, depending on the for-
malism chosen to encode knowledge. This has rendered many of the technologies
developed of limited applicability, since these encoding formalisms are better suited
for some domains rather than others.

ASys’ seek for generality and robustness has determined the decision to look for
an architectural approach to intelligence, rather than an algorithmic one. This more
hollistic and general strategy is also the target of the field of cognitive architectures,
whose more relevant advances have been discussed in section 5.3. Much in line with
many of these research efforts, but even closer to cybernetics, ASys explores a bio-
inspired approach studying the principles of natural cognition.

From its control engineering perspective, ASys considers cognition as the exploita-
tion of knowledge —i.e. models— to realize control. We claim that we can equate
knowledge and models. Departing from the basic principle: a system is said to be
cognitive if it exploits models of other systems in their interaction with them, we have
started building up the ASys principled approach to cognition and consciousness, pub-
lished in [134]. This way, these principles prescribe a set of architectural traits for
cognitive systems.

The first principles frame the behaviour of a cognitive system in a modelling per-
spective:

Principle 1: Model-based cognition — A cognitive system exploits models of other
systems in their interaction with them.

109

Chapter 6 Model-based Self-Aware Cognitive Control

Principle 2: Model isomorphism — An embodied, situated, cognitive system is as
good as its internalized models are.

Principle 3: Anticipatory behavior — Except in degenerate cases, maximal timely
performance is achieved using predictive models.

Principle 4: Unified cognitive action generation — Generating action based on an
unified model of task, environment and self is the way for performance maximization.

Principle 5: Model-driven perception — Perception is the continuous update of the
integrated models used by the agent in a model-based cognitive control architecture
by means of real-time sensory information.

Autonomous systems have directiveness, as explained in section 4.3: their be-
haviour is oriented to the prosecution of some objectives, i.e. the task. In a cognitive
system, action steams from the evaluation of the state of affairs, as estimated in the
updated model, in terms of the objectives. This value is thus the meaning that for the
system has its knowledge (the models), rendering it aware:

Principle 6: System awareness — A system is aware if it is continuously perceiving
and generating meaning from the continuously updated models.

Awareness can be used to direct the system processes so as to be more efficient.
This puts attention, as understood in natural and bio-inspired systems, in our mod-
elling perspective [68]:

Principle 71: System attention — Attentional mechanisms allocate both physical and
cognitive resources for system perceptive and modelling processes so as to maximise
performance.

Self-awareness

In the above conceptualisation of cognition, we claim from our model-based position
that a system is self-aware or conscious when the model that is being continuously
updated and producing meaning includes a sub-model of the cognitive system itself.

Principle 8: System Self-awareness/consciousness — A system is conscious if it is
continuously generating meaning from continuously updated self-models.

The self-model allows conscious systems to introspect and reflect on how their
own actions produce value, being able to give meaning to them. In section 3.1 we
already discussed the basic properties attributed to self-aware systems.

As can easily be inferred from the model-based approach to cognition in ASys,
the models a system exploits for operating are what critically determines its possibili-
ties. When coming to artificial systems, there is a big difference between the (design)
models that engineers use to build a technical artifact and the (run-time) models that
some extant systems capable to some extent of reflection may use during their op-
eration. The use of the design models, developed at engineering time, as run-time
self-models will break the design-time/run-time divide and leverage the full potential
of model-driven development [17].

110

6.2. Thesis

6.1.3 Baseline principles for the engineering of autonomous sys-
tems

So far we have presented the ASys vision that is the basement of this work: section
6.1.1 regarding the requirements for the engineering of more autonomous technical
systems, and section 6.1.2 presenting a principled roadmap for building autonomy by
giving cognitive competences to the system. Let us now assemble these ideas into the
following design principles to address the development of autonomous systems:

• Metacontrol: Teleological robustness —the stubborn prosecution of mission
goals— is achieved by control loops to reject disturbances. When these can hap-
pen in the control systems themselves we need metacontrollers to reject these
disturbances [83] by modifying the controllers and this way maintain their func-
tion.

• Model-based cognitive control: Cognition is our core competence to develop
into autonomous systems; in the ASys perspective a cognitive control loop is
based on the exploitation of explicit models of the system under control [37].

• Break the run-time divide: Using design models from the engineering of the
system as run-time self-models will break the design-time/run-time divide, and
would allow for self-engineering systems.

This thesis proposes and realises a solution to reify these principles. The next sec-
tion presents the central ideas of this solution. Its development into a complete design
solution will be addressed in the following chapters of this part of the dissertation. The
final section of this chapter provides a global perspective of the methodology followed
in this engineering development of the thesis.

6.2 Thesis

Once we have already presented the principles to guide the development of autonomous
systems to which this work adheres, from the model-based approach to cognition to
the relation between self-awareness and the exploitation of explicit self-models, we
are in position to propose an answer to the question addressed by this thesis and raised
in section 2.3:

How can we enhance systems with self-aware capabilities so as
to robustly improve their autonomy?

In a controlled plant, a human engineer or operator is responsible for “controlling”
the control system, adapting and reconfiguring it if demanded by the circumstances
(remember section 1.1.3). We propose to add another controller, a metacontroller,
to the control schema, devoted to adapt the conventional controller to disturbances
falling beyond its limits. A conventional controller operates according to a model
of the plant based on quantities of the plant. The metacontroller will use, instead of
these quantities, a model that captures the architecture of the system in terms of its

111

Chapter 6 Model-based Self-Aware Cognitive Control

components and functions, to adapt this functional architecture in order to achieve the
desired behaviour.

In the terminology presented in chapter 4, the meta-control reconfigures the organ-
isation of the control system in order to adapt it to unforeseen disturbances affecting
its directiveness, and does so by exploiting a functional model of the system. We can
then say that the complete control system possesses self-aware capabilities, since it
uses an internal representation of itself to guide its behaviour for adaptation.

We have structured and detailed this answer in the following three postulates:

I. Functional Metacontroller: A robust autonomous system shall control its func-
tion. If we want a system to robustly realise a certain goal or set point in the presence
of disturbances, control theory tells us to close a loop on the variable the goal refers
to, by sensing those accessible variables from which the value of the desired one can
be inferred, and acting on those that influence that value. In the case of an autonomous
system, our objective as designers is that the system robustly provides the function-
ality required —i.e. a certain behaviour—, even in the presence of disturbances such
as unforeseen environmental conditions or internal faults. To realise that meta-control
purpose, stated in ASys principle I, we propose to close a functional loop between
the control system and the metacontroller. This can be achieved by a control loop
that takes as reference the functionality required, and senses and actuates on the sys-
tem’s structure, which is what determines its behaviour. Therefore the proposed meta-
control operates in the domain of the function and structure of autonomous systems.
Putting it in terms of our theoretical framework: to engineer a system with maximal
directiveness we shall close a control loop in the system at the functional level, by
having it operating on its own structure at run-time. This “functional” meta-controller
is the proposal of this thesis regarding the metacontrol principle.

II. Transforming system engineering models into run-time knowledge. If we
want to close a control loop on the system’s functionality, we need a model of it.
In the case of the design of a regular control loop, the model of the plant is obtained
from the real plant in a modelling effort by the control designer. In the case of de-
signing the meta-control loop on the functionality of an engineered system, on the
contrary, the engineering models that capture the functional architecture of the sys-
tem are usually developed before the system itself, they are prescriptive: the system is
built according to them. The “functional meta-controller” is to be designed from these
models. Given the difficulty of translating them into a mathematical formulation, such
as that of linear systems, suitable for directly obtaining the controller by control design
techniques, we propose to follow the ASys model-based cognitive control principle II
and convert these models into another explicit formulation, suitable to be used by the
“functional meta-controller” at run-time. This would prove a solution to breaking the
design/runtime gap (ASys principle III). The prescriptive nature of the engineering
models of the system represents also another advantage for the meta-control designer:
modelling errors are inexistent, or at least can be minimized, and the functional meta-
control has to deal “only” with the disturbances at run-time.

112

6.2. Thesis

inverse
model

reference control action controlled
variable

Plant

(a) Open-loop control.

Controller
reference control action

Plant
-

+
controlled
variable

(b) Closed-loop control.

Run-timeEngineering

design
requirements

system
organisation

system
behaviour

execution

(c) Open-loop engineering.

Run-time engineering

system
organisation

system
behaviour

execution
-

+
design

requirements

(d) Closed-loop autonomy engineering.

Figure 6.1: Analogy between control strategies and the engineering of autonomous systems.
The classical engineering process, with a gap in between engineering and run-time phases,
makes it impossible for the system to cope with situations not considered during engineering, in
the same way as any disturbance invalidates open-loop control 6.1a. Our metacontrol proposal
is a solution for the ASys autonomy-loop shown in 6.1d: a control loop is closed on the func-
tional requirements of the system, so a re-design of the organisation of the system is performed
continuously for adaptation, merging the engineering and run-time phases.

113

Chapter 6 Model-based Self-Aware Cognitive Control

III. Control the function by controlling its realisation. Formalising it according
to our theoretical framework: for controlling the system organisation to maximise its
directiveness we propose to decouple the functional and realisation views, assigning a
control loop to each. This way we propose a meta-controller design consisting of two
nested loops. The outer one shall maintain the system functionality by performing
a regulation control. It will sense the organisational state of the system and it will
estimate the functional status of the system, evaluating it according to the required
functionality. This way the systems becomes self-aware in our sense.

This loop will produce as its control action the organisational specification that
grounds the functions required to maintain the system’s functionality. The inner loop
would receive that specified organisation as the reference, and will perform a servo-
control to configure the system according to it.

6.3 Engineering Roadmap

In order to realise the previous postulates for the building of self-aware autonomous
systems, we have followed the ASys engineering strategy, centered around the ex-
ploitation of reusable assets over architectures defined by means of design patterns
[127]. This has enforced the generality sought for the solution designed, and also the
re-usability of the assets produced for its application to the engineering of autonomous
systems.

6.3.1 A Pattern-based Strategy

The postulates stated in this chapter propose a path towards an eventual design solu-
tion for self-aware autonomous systems, still to be fleshed out. Following the ASys
vision, we have elaborated this solution in the form of design patterns. As discussed
in 3.4, patterns provide a formal way of capturing design knowledge, by abstracting
the general schema of a solution for a recurring problem in a given domain.

The next chapter will describe the patterns that develop the postulates presented
in this chapter and the ASys’ principles into fully usable design knowledge for au-
tonomous systems. These patterns furnish for abstract schemas we can apply to shape
a design so that it presents the desired traits. They are design chunks or tools that we
have used to hammer a concrete design solution in the form of an architecture model.

6.3.2 Architectural Solution: a Reference Architecture

We motivated in sections 2.1.3 and 2.2.2 our orientation to develop a solution for self-
awareness at the architectural level. This architectural approach has led us to develop
our solution in the form of a reference architecture. As it has been explained in page
26, a reference architecture defines a template for the architectures of systems in a
domain.

114

6.3. Engineering Roadmap

Let us further justify the architectural approach we have chosen to solve the prob-
lem. If we are to follow the previous thesis’ statements in order to design systems
with improved robust autonomy, we have to be careful to maintain generality and not
to develop a specific algorithmic-based solution applicable only to a certain kind of
systems, for example those for which a mathematical linear model can be obtained.
The architectural approach helps us in that respect.

6.3.3 Engineering Solution

To summarize the roadmap we have followed in the realisation of this work: we have
elaborated a framework for the development of self-aware autonomous systems, by
applying a progressive refinement from abstract principles to a concrete cross-domain
architecture.

The conceptual and methodological path to this framework, which we have called
the OM Architecture Framework, is depicted in figure 6.2. From left to right: the prin-
cipled approach to model-based cognition and self-awareness for autonomy, discussed
in this chapter, has been captured as a set of design patterns; they have been applied to
synthesize the OM Architecture, composed of a reference architecture, a metamodel
and an engineering methodology, which includes a Java implementation of the con-
trol architecture; finally, the framework has been validated in the implementation the
control architecture of a mobile robot.

This part III of the dissertation deals with the core assets developed in this work:
the OM Architectural Framework. In this chapter 6.2 the postulates of the thesis have
been presented, refining the ASys principles for the design of controllers for self-
aware autonomous systems. Chapter 7 is devoted to the design pattern that reify our
principles, while chapter 9 describes the OM Architecture we have developed with the
aid of these patterns. Part IV of the dissertation discusses the engineering application
of the framework, defining an engineering methodology and detailing its application
in the development of the robotic testbed with it.

115

Chapter 6 Model-based Self-Aware Cognitive Control

Theoretical Framework

A
Sys D

esign
Principles

D
esign Patterns

EC
L

M
C

D
M

R

O
M

 A
rchitecture

O
M

 M
etacontroller

TO
M

A
Sys

M
etam

odel
m

odel
transform

ation
Engineering

M
odel

testbed
control
architecture

com
ponent

platform

O
M

 M
etaInterface

O
M

Java

O
M

TO
M

ASys

M
etacontroller

M
etaInterface

O
M

 A
rchitectural Fram

ew
ork

testbed im
plem

entation

Plant

C
ontrol System

M
etacontrol

Subsystem
R

un-tim
e

M
odel

D
om

ain Subsystem

Thesis
postulates

Part II
Part III

Part IV

O
M

 Engineering Process

Figure
6.2:

T
he

m
ethodologicalpath

follow
ed

in
the

developm
entofthe

O
M

A
rchitecturalFram

ew
ork,w

ith
the

elem
ents

and
core

assets
developed.

116

Chapter 7

Design Patterns for Self-Aware
Autonomous Systems

In this work we have followed a pattern-based design strategy. This chapter describes
the core patterns that formalise the design solutions developed to address the engineer-
ing principles stated in the thesis. The opening introduction discusses the common
rationale and context behind these patterns. In section 7.2 we present the Epistemic
Control Loop pattern, which reifies the ASys principle for Model-based cognitive con-
trollers. Section 7.3 describes the MetaControl pattern for the design of control sys-
tems with self-aware capabilities, while section 7.4 discusses the Deep Model Reflec-
tion pattern, which allows to engineer systems that use engineering design knowledge
during their operation. Each of these sections follows the schema proposed in section
3.4.2 to describe its corresponding pattern.

7.1 Design Patterns for Self-Aware Autonomous Sys-
tems

As it has been already explained in 6.3, this thesis follows a principled, pattern-based
architectural approach to provide a solution for building self-aware autonomous sys-
tems. Therefore, the postulates stated in this thesis, together with the ASys principles
they advance, have been developed as a set of patterns. These patterns encompass not
only the design of autonomous systems at the architecture level, but some also provide
a solution affecting the development process of these systems.

Table 7.1 summarizes this set of four core patterns that will be discussed through-
out the chapter.

117

Chapter 7 Design Patterns for Self-Aware Autonomous Systems

Table 7.1: Four Design Patterns for Self-Aware Autonomous Systems.

Acronym Name Content

ECL Epistemic Control Loop
To exploit explicit models to perform a
control loop.

MC MetaControl
A controller that has another controller
as its controlled plant.

DMR Deep Model Reflection
To use the system engineering model as
self-representation.

FSM Functional/Structural Metacontrol
To control the function by re-
configuring the structure.

7.1.1 Pattern Schema

The patterns that have been developed will be described using a pattern schema (see
page 57) based on that proposed by Sanz et al. in [126] in the context of ASys for
the capture and documentation of design patterns in the domain of complex intelligent
controllers. We have modified and adapted its sections to better suit the objective here
of describing novel design ideas.

Below we briefly describe the different sections of this schema we will be using.
Not all sections of them are equally applicable to all the patterns.

Introduction presents an introductory rationale for the pattern.

Name The name of the pattern. Names are important if things named are going
to be reused, inter-changed and discussed. Their name should be simple
but with a clear relation with the pattern itself.

Aliases Patterns are usually not new; most of them were employed for a long
time using different names for them.

Context Contextual information regarding the circumstances of application of
the pattern: a design situation giving rise to a design problem.

Related with Other patterns related with this one, by structure, by way of use
or —very important— because they are applied at the same time to a sys-
tem. Some typical related patterns are: inbound patterns —higher-level
patterns that can benefit from this one— and outbound patterns —lower-
level patterns that can help implementing this one.

Example The example provides a sample framework of application of the pat-
tern. This section identifies a possible use of the pattern in a real situation.

Core is the main part of the pattern.

Problem The problem the pattern tries to solve.

Problem Statement Essential problem statement.

118

7.1. Design Patterns for Self-Aware Autonomous Systems

Forces The competing factors that make the decision of the system archi-
tect difficult: requirements, desired properties, constraints. . .

Solution What the pattern does. What type of solution it provides. The core of
the solution.

Solution Principle stated as an instruction emphasizing the general solu-
tion principle.

Description A stepwise description of the structure of the solution and
an outline of its behaviour, which can be organised in the following
subsections:

Structure Architectural description of the pattern. Roles and rela-
tions between roles. It is usually a diagram. It includes a descrip-
tion of all the roles that appear in the pattern.

Dynamics How system activity happens. Sequences of role activa-
tion. It is important to note that adequate documentation tools are
critical for this section. Message sequence charts or finite state
machines are common tools for this work but there are many other
alternatives like for example use case maps that are very suitable
to high level dynamics description.

Appropriate diagrams should accompany both types of description of
the solution

Detailed considerations of the solution All subsequent paragraphs explain the solu-
tion and its implications in more depth.

Consequences Implications derived from the use of the pattern in an appli-
cation. Both unavoidable consequences (desirable or not) and those that
should be stressed by the system designer.

Implementation Practical issues regarding the put on practice of the pattern to
a real situation.

Example application Issues regarding the application of the pattern to the frame-
work presented in the example section at the introduction.

Variants Common modifications to the basic pattern structure. Similar patterns
with deviations from the solution provided by the present one.

Similar patterns extant patterns or solution templates that tackle the same prob-
lem in a similar vein.

References Bibliographic references for the pattern.

7.1.2 Context

In relation to this schema, the proposed patterns share a common context, which has al-
ready been thoroughly discussed in former chapters of the dissertation. Let us resume

119

Chapter 7 Design Patterns for Self-Aware Autonomous Systems

it here to adhere to the pattern schema and not repeat it for every pattern, although the
context section will still be present to comment specific aspects of each one of them.

The context for the previous design patterns is the development of robust control
architectures for autonomous systems, in the current scenario of increasing complexity
and interconnection of technical systems, with need of augmented dependability. The
design strategy for these systems has to address not only the problem of the uncertainty
in the environment, but also of the uncertainty arising from the systems themselves,
due to faults, unforeseen, emergent behaviour resulting from the interplay of their
components, or their connection with other systems [85]. More traditional approaches
such as fault-tolerance based on redundancy are too expensive and not efficient. The
universality of the problem demands a general approach rather than specific solutions
for certain applications, which are difficult to transfer to other domains.

7.2 Epistemic Control Loop (ECL)

This section describes the design pattern we have developed in this work to reify the
ASys principle of model-based cognitive control.

Related patterns The ECL pattern is rooted in well established control schemas:
feedback control [127], already presented in section 3.4.4, model-based predictive
control [115] or model-based control [153].

Inbound patterns The ECL pattern is intended for the design of complex con-
trol systems, for example it can be applied to design the computer-based controller as
defined in the Computer Control pattern discussed in [157].

Outbound patterns The ECL Pattern Framework comprises a set of patterns for
the design of the elements in the ECL, conforming to a pattern language. It is a work
under development in the context of ASys, some of its results will be presented in
chapter 9.

7.2.1 Introduction

Context/Rationale

As discussed in the overall context for the patterns presented in 7.1.2, current con-
trol systems face increasing demands on functionality and autonomy. Therefore con-
trollers are becoming increasingly complex. Control engineers face the challenge of
incorporating more cognitive capabilities in the design of controllers, in order to ad-
dress these demands, while maintaining a high level of dependability. General solu-
tions befitting any application domain are sought, rather than specific approaches of

120

7.2. Epistemic Control Loop (ECL)

limited applicability that are hardly scalable. Solutions at the architectural level of the
control system seem to be most desirable in this context.

Example

Consider the design of the control system for an unmanned ground vehicle applica-
tion. A standard mobile robot platform —i.e. the plant—, equipped with a range
laser sensor and odometry, is to be controlled so that it navigates to any location it is
commanded in an indoor office-like environment.

Several alternatives to implement the control system are available, including well
established techniques for SLAM, and planning algorithms and 2D movement control.
These techniques rely on their specific model of the problem: occupancy grid maps,
differential equations, etc.

7.2.2 Core

Problem

The ECL Pattern addresses the reification of the ASys’ principle for Model-based
cognitive control (109).

Problem statement – Design a control loop that uses an explicit model of the plant,
so that all the knowledge exploited by the controller to generate action is centralised in
such model. The explicitness of the knowledge in the model shall therefore allow for
the decoupling of the different operations performed around it. This way, different al-
gorithms and techniques could be used for each operation, and the resulting controller
would be scalable so that new ones can be incorporated without modifying the rest of
the operations.

Forces – a) Control algorithms determine the representation of the knowledge they
use —i.e. the model—, encompassing all the activities in the control cycle: sensing,
evaluation with the reference setpoint or action generation. b) These basic activities in
the control process are sometimes not clearly separated in control algorithms, making
more difficult the scalability of the controller for incorporating new algorithms for
each of these activities.

Solution

Solution principle – The Epistemic Control Loop pattern prescribes the basics of
the structure and behaviour of a control loop that exploits explicit plant knowledge

121

Chapter 7 Design Patterns for Self-Aware Autonomous Systems

—i.e. the model of the plant— in the performance of situated action. The ECL es-
tablishes an explicit separation of the operations in the loop, centered around the ex-
ploitation of the information contained in the model. This way the Epistemic Control
Loop pattern structures the loop into elements according to the activities developed in
a cognitive control system [130]: perception, evaluation, thinking and action genera-
tion or control. Figure 7.1 shows this separation of concerns in the basic architectural
elements or roles in an ECL.

The control loop operates at a certain level of resolution given by the model that
constitutes the heart of its operation.

This loop is a more abstract version of that defined by the Feedback pattern in
classical control [127]. Here signals conveying continuous or discrete variables are
generalised to informational flows.

Cyber

ECL
Controller

Physical

Plant

Perception

Think

Evaluation

Actuators

Control

goal

Sensors

Model

sensory
input

action
command

Figure 7.1: The Epistemic Control Loop Pattern structure. Arrows show struc-
tural connections between roles, with the arrow head indicating the direction of
the data-flow, whereas dashed line arrows show the basic flow of information
that leads to action generation.

122

7.2. Epistemic Control Loop (ECL)

Structure – The ECL pattern prescribes a general architecture for the control loop,
from now on named the control or ECL unit, defining both its external connections to
other elements of the system and its internal organization.

External view An ECL control unit has three basic informational flows to other
units or elements in the system: sensory flow, goal, action command.

The sensory input flow consists of signals from sensors conveying information
about the sensed variables. Sensors do not usually directly measure the state of the
plant as the ECL model represents it, but rather quantities related to that state. Sensors
convert those quantities into conceptual. The sensory flow consists of those conceptual
quantities, from which a representation of the plant state can be obtained through a
perceptive process.

The goal is an input informational flow consisting of the reference or setpoint for
the controller, its objective according to our theoretical framework.

The action command is the control action that is outputted to the actuators. It may
consist of several commands.

Internal organization. The ECL pattern proposes an structural separation of
activities which are otherwise not very different from those that could be found in
other control patterns, although maybe implicit, whereas the ECL explicits them in the
structure of the control unit. This way, four basic activities are performed around the
Model, which is the core element of the control unit: Perception, Evaluation, Control
and Thinking.

All application and domain specific knowledge an ECL controller uses is con-
tained in the Model. This means that information about the concrete application is
included in the model: regarding the physical plant and environment —f.g. differ-
ential equation model of the plant, noise models of the sensors, available commands
in the actuators and their expected consequences in the plant— and also concerning
the mission —reference setpoints, constraints—. But moreover, domain knowledge
is also included in the model; this comprises algorithms for obtaining the state of the
plant from sensory observations, control action from that state, etc. The Model must
be accessed and manipulated explicitly, so it can be designed using for example the
Database Management System pattern from the computer science domain.

The Perception element in ECL encompasses the processing of the sensory input
from the Sensors to update the estimation of the plant state in the Model. This process
may also use information of the previous state, the sensor model, etc., contained in the
Model. It can also drive the sensors.

The Evaluation process evaluates the estimated state in relation with the current
goal. An example of the result of this evaluation is the error signal of classical closed-
loop control.

123

Chapter 7 Design Patterns for Self-Aware Autonomous Systems

The Control is responsible for generating proper actions by using the evaluation
result, the information about possible actions contained in the Model, and any available
knowledge, for example about planning issues. This action is sent to the Actuators as
the action command.

The Think process includes additional reasoning activities operating on the Model,
e.g. to improve the state estimation, together with any operations that involve the
manipulation of knowledge, such as prediction, in which potential future states are
produced and evaluated for planning purposes.

Dynamics – The ECL defines a cyclic operation for the control unit in which each
cycle follows the perceive-reason-act sequence. However the Model serves as a de-
coupling element that prevents the blocking of the operation caused by a failure in
any of the steps. The Perception process in ECL corresponds to the first step and may
include other reasoning operations as described previously. The Evaluation process
then generates value from the current estimated state in the Model. In the last phase of
the loop the Controller produces the most appropriate action based on the information
available from the evaluation.

7.2.3 Detailed Considerations

Consequences

The Model contains both the instantaneous state of the plant and more permanent
general knowledge about it. It is the explicitness of this last static knowledge that
differentiates the ECL from other control patterns. In these other cases, the static
knowledge —i.e. the plant model—, which is application dependant, is supposed to
be fixed and embedded in the controller together with the control algorithm, so it is not
possible to change or incorporate an element to the control schema without entirely
re-implementing it. With an explicit model bearing all the information used in the
different elements of the control, the ECL design allows for changing the algorithm of
any element of the control, or incorporating a new one, without modifying the rest.

Implementation

Having the application and domain knowledge explicit means that a model for the
domain must be developed, whose metamodel must be the model of the implemented
architecture for the ECL unit.

References

RCS The ECL pattern is heavily inspired by the RCS node presented in section 5.3.2.
The RCS (Real-time Control System) node [3] defines similar functions that are re-

124

7.3. MetaControl (MC)

quired in a real-time intelligent control unit. However, the ECL pattern does not in-
clude hierarchical organisation, as specified in RCS. Perception and action hierarchies
will result from the application of other patterns to the inter connection of ECL units.

PEIS The PEIS (Physically Embedded Intelligent System) loop [123] also consid-
ers the aggregation of distributed control components with different functionalities.

OODA Boyd’s OODA Loop (Observe, Orient, Decide, and Act) [59, 107] is a
concept originally applied to the combat operations process, often at the strategic level
in the military operations1. It is now also often applied to understand commercial
operations and learning processes.

7.3 MetaControl (MC)

Aliases – Meta Architecture (HUMANOBS project), Reflection

7.3.1 Introduction

Context/Rationale2

Nowadays many control systems are not anymore simple, isolated PID-like controllers.
They are complex software-intensive systems, composed of many interacting ele-
ments. These controllers implement sophisticated control functionalities in their ap-
plication domains: from navigation capabilities in unmanned vehicles, to optimization
of production in chemical plants. Additionally, increased levels of dependability and
autonomy are demanded. Unforeseen environmental conditions and internal uncer-
tainty are disturbances that threaten the autonomous and reliable operation of these
control systems.

7.3.2 Core

Problem

The MetaControl pattern addresses the Metacontrol postulate of this thesis stated on
page 112.

Problem statement The MetaControl pattern addresses the problem of designing
control systems that are capable of self-adaptation to maintain their functionality, even
in the presence of disturbances both external —changes in environmental conditions—
and internal —faults, unexpected behaviour.

1The concept was developed by military strategist and USAF Colonel John Boyd. More information can
be found at http://en.wikipedia.org/wiki/OODA_Loop

2specific to this pattern, in addition to the general context and rationale introduced in page 119

125

http://en.wikipedia.org/wiki/OODA_Loop

Chapter 7 Design Patterns for Self-Aware Autonomous Systems

Forces a) Unforeseen environmental conditions can made a control system misbe-
have. b) Internal faults cause malfunction of the control system

Solution

Solution principle – MC proposes a separation of concerns in the control system
in between providing the control functionality in the domain, and providing the capa-
bility to adapt that control. For this second concern the control approach will also be
used, therefore having a control loop controlling the controller.

This separation will be translated to the structure of the control system, which will
therefore be divided into two subsystems: the Domain Subsystem, which consists of
the traditional control subsystem responsible for sensing and acting on the plant so
as to achieve the domain goal given to the system —e.g. move the mobile robot to a
certain location, grab a certain object with a robotic hand. . . —; and the Metacontrol
Subsystem, which is a control system whose plant is in turn the Domain Subsystem,
and whose goal is the system’s requirements.

Structure – According to the MetaControl pattern the two subsystems in which the
control system is to be divided operate in different domains: the Domain Subsystem
and the Metacontrol Subsystem.

The Domain Subsystem (DS) operates in the application domain. The DS can be
patterned after any usual reference architecture for control: it achieves the application
goals taking them as its control setpoint, and sensing and executing appropriate action
over the plant. The Domain Subsystem could be from a simple PID controller to the
navigation architecture proposed in [93] for a mobile robot.

The pattern imposes some requirements on the architecture of the Domain Sub-
system:

In relation to its internal structure, the Domain Subsystem’s architecture must be
modular. That is, it has to be made of components connected through well defined in-
terfaces. This modular structure shall have some redundancy, not necessarily physical
but maybe analytical [21], in order to provide for reconfiguration opportunities.

Concerning the externally exposed interface:

• the implementation of the DS has to provide a monitoring infrastructure, pro-
viding data at run-time about the processes and elements realising its control
function.

• the implementation platform shall yield mechanisms for reconfiguration, in-
cluding the possibility to modify the internals of the components —e.g. chang-
ing the value of their parameters— and their externals: deactivating or eliminat-
ing components, instantiating new instances, or changing their connectivity.

The Metacontroller Subsystem (MS) can be patterned after any control architec-
ture, with no additional constraints on its internals. Its reference setpoint will be the

126

7.3. MetaControl (MC)

Control
System

Plant

Domain
Subsystem

application goal

Metacontrol
Subsystem

requirements

reconfiguration

actionsensing

monitoring

Figure 7.2: The structure proposed by the MetaControl
Pattern.

functional requirements imposed at design to the Domain Subsystem. The MS will
connect to the DS through an interface including:

• the monitoring about the DS, as the sensing input to the MS,

• the reconfiguration mechanisms, serviced by the DS the control action made
available to the MS.

Dynamics – The Metacontroller controls the Domain subsystem by changing its
structure, and hence its dynamic behaviour. An action from the MS can completely
change the dynamics of the DS. Therefore, to maintain the stability of the controlled
system composed of DS plus Plant, the MS shall operate at a much slower frequency
than the system.

7.3.3 Detailed Considerations

Consequences

Some important issues must be considered regarding the dynamical coupling of MS
and DS.

The MS must filter with special care any high frequency noise in the monitoring
data: it is not desirable that a rare, transient non-critical fault in a component of the DS
may cause an action from the MS that completely reconfigures the Domain Subsystem.

127

Chapter 7 Design Patterns for Self-Aware Autonomous Systems

The transitory dynamics of the DS whenever the MS performs an action over it are
also important. Attention has to be paid so that this transient does not also destabilise
the DS + Plant system. Atomicity in the reconfiguration actions, during which the
actions of the DS over the Plant may be halted, could be used.

Variants

Several control schemas proposing an adaptation mechanism for the controller have
been put forward; they can be considered variants of the MetaControl pattern to some
extent. Some of the more relevant in the control literature are: Model-based Adaptive
Control, Reference Model Adaptive Control. A more recent variant in the field of
Fault-tolerant systems is the schema proposed by Blanke et al. in [21] for Fault-
tolerant control.

References

The separation of the domain control and the meta-control is at the core of AERA, the
architecture for autonomous agents developed in the HUMANOBS project3.

The issue of metacontrol is also discussed in relation to the reconfiguration of
control systems in [42].

7.4 Deep Model Reflection (DMR)

7.4.1 Introduction

Context/Rationale

The context for this design pattern is the gap between the engineering and runtime
phases of an autonomous system, discussed in section 6.1.1. Summarising it here, the
standard engineering of a control system fixes as frozen its capabilities to deal with un-
certainties. The resulting system cannot therefore cope at runtime with circumstances
not considered during design. However, there was engineering knowledge available at
that former phase that could be useful to give a solution for those unexpected circum-
stances. Autonomous systems could then greatly benefit if they were designed so that
the engineering knowledge could be applied at run-time.

3HUMANOBS (Humanoids the Learn Socio-Communicative Skills by Imitation) is an European project
funded by the FP7 program. More info at www.humanobs.org

128

www.humanobs.org

7.4. Deep Model Reflection (DMR)

7.4.2 Core

Problem

The Deep Model Reflection pattern addresses the second postulate of this thesis:

Transforming system engineering models into run-time knowledge.

Problem statement – This pattern addresses the problem of how to use the engineer-
ing models of a control system as a self-representation, so that the system can exploit
it at run-time to adapt its configuration and thus maintain its operation converging to
its requirements.

Forces – a) The engineering models of a system contain valuable information that
could be exploited at run-time. b) Engineering models can be interpreted only by
domain engineers.

Solution

The Deep Model Reflection pattern proposes a solution not at the level of the system’s
design, but at the level of the engineering process and accompanying framework for
it.

Solution principle – The Deep Model Reflection pattern proposes to develop a
metamodel capable of explicitly capturing both the static engineering knowledge about
the system’s architecture and functional design, and the instantaneous state of reali-
sation of that design. This Functional Metamodel has to be machine readable to be
usable by a model-based controller.

Besides, a transformation model from the design languages, used to model the
system during engineering to this metamodel, shall be feasible, in order to generate the
Run-time Model of the system to be exploited during operation from the Engineering
Model of it.

7.4.3 Detailed Considerations

In order to economize efforts, a single engineering model is desirable. Otherwise,
several transformations should be developed for every relevant model of the system
—functional, electrical, mechanical—, and a careful integration to unite the results
into a consistent and coherent run-time model would be needed.

The metamodel (FM) to which the Run-time model has to adhere to be exploitable
for online system self-reconfiguration shall comply with more complex and detailed

129

Chapter 7 Design Patterns for Self-Aware Autonomous Systems

System
Engineering

Run-time
System

Engineering
Model

Run-time
Model

Design
Language

(DL)

Functional
Metamodel

(FM)

conforms to conforms to

transformation

transformation
model

Figure 7.3: The roles involved in the Deep Model Reflection Pattern: automatic generation of
the Run-time Model departing from the Engineering Model is possible if each one conforms to
a formal metamodel, and a transformation model between both metamodels is provided.

requirements than just being formal. A complete discussion of them, together with a
solution for the Functional Metamodel is provided in chapter 8 of this dissertation.

Consequences

The Deep Model Reflection design pattern mainly affects the engineering process of
autonomous systems. Apparently it may increase the effort in the design of such a
system: the engineering models of the system have to be converted into the runtime
model, and, moreover, an extra component in the system must be designed so as to
exploit the said model during operation (this component is out of the scope of the
present design pattern, but it is addressed by the MetaControl pattern in 7.3 and the
Epistemic Control Loop pattern in 7.2). However, if the appropriate methodology and
toolset are available, the extra effort can be minimal. Specifically, a Model-Driven
Engineering approach can be used to develop the system, thus naturally producing a
single, unified engineering model of the system as a result of the design phase. SysML
is the most suitable option for the language of that model, bringing also the possibility
of an automatic transformation into the runtime model. This is so because SysML has
a formal metamodel (MOF).

Implementation

The implementation of the DMR requires the following actions:

• Provision of a Functional Metamodel, which could be one already available.

• Application of a strict Model-Driven Engineering methodology to design the
system, using a single design language to model the system (e.g. UML or
SysML).

130

7.4. Deep Model Reflection (DMR)

• Provision of a transformation model from the design language to the Functional
Metamodel.

Once the former elements have been incorporated to the engineering methodology
and toolset, the DMR pattern will display in the design phase of a concrete autonomous
system:

• the modelling of the system during design will produce a complete Engineering
model as a result of the strict application of MDE.

• the Run-time model is automatically generated by transformation of the Engi-
neering Model.

Example Application

The DMR has been applied in the Reference Architecture and accompanying frame-
work developed in this thesis work. As a core result, the Functions and Components
Metamodel has been developed as a core asset (see chapter 8), to provide for the DMR
Functional Metamodel. Additionally, UML was selected as the Design Language for
the development of autonomous systems, and a transformation model from UML to
the Functions and Components metamodel has been specified as a set of rules. Chap-
ter 10 about engineering autonomous systems with the OM Framework shows how
the Deep Model Reflection pattern has shaped the engineering framework developed
in this work.

Regarding the application to the development of a specific system, chapter 11
about the robotic testbed for this thesis describes how the engineering model for the
mobile robot was produced and transformed into the runtime model.

Variants

In the discipline of functional modelling, closely related to the process industry, sev-
eral methodologies have been proposed to obtain functional models of the plants from
the engineering models. The purpose of these functional models is to be used for di-
agnosis, analysis of abnormal situations, etc., as discussed in the state of the art about
functional modelling in section 3.3. Such approaches can be considered variants of
this Deep Model Reflection pattern. The difference is that in DMR the finally pro-
duced model is intended to be exploited by the system in order to re-engineer itself.

References

Metamodelling is a core topic in the domain of software modelling [79, 55, 13], and
functional modelling has been addressed in many disciplines, for example in the con-
trol of industrial processes [87]. A more detailed analysis of all these references was
already provided in section 3.2.

131

Chapter 7 Design Patterns for Self-Aware Autonomous Systems

7.5 Functional/Structural Metacontrol (FSM)

Related patterns

Inbound patterns The Functional/Structural Metacontrol pattern provides a de-
sign solution to the Metacontrol Subsystem defined in the MetaControl pattern.

Outbound patterns The OM Architecture, which will be discussed in chapter
9, defines a set of patterns and guidelines for designing a metacontroller according to
the FSM pattern.

7.5.1 Introduction

The Functional/Structural Metacontrol pattern addresses the problem of building a
self-aware metacontroller for autonomous systems. It does so by following the design
guideline of the third postulate of the thesis (page 114).

7.5.2 Core

Problem

Problem statement – Design a Metacontrol Subsystem to couple with the Domain
(control) Subsystem so that the behaviour of the complete system (Plant + Control)
fulfils the system’s requirements.

Forces – a) Environment disturbances out of the scope of the DS. b) Internal Faults
in the DS. c) changes in the system’s mission

Solution

Solution principle – Divide the Metacontroller, in two layers. The lowest one a
control loop on the structure of the Domain Subsystem, in terms of its components’
configuration, and the topmost realising a control loop on the system functions.

Structure – The lowest layer, called the Components Layer, receives as sensing the
monitoring data from the DS, a certain desired configuration of the components form-
ing the DS as its goal commanded from the upper layer, and produces the appropriate
reconfiguration commands over the DS.

The uppermost layer, called Functions Layer has as goal input the requirements of
the system. It receives as sensing from the lower Components Layer the estimated state

132

7.5. Functional/Structural Metacontrol (FSM)

Plant

Metacontrol Subsystem

Domain (control) Subsystem

Components Layer

Functions Layer

system
requirements

reconfiguration

estimated
components

state

monitoring

desired
components
state

Figure 7.4: The two-layered feedback loop structure of
a metacontroller in the Functional Metacontrol Pattern.

133

Chapter 7 Design Patterns for Self-Aware Autonomous Systems

of the components of the DS, from which it has to observe the current functionality
rendered by the system. It then generates the DS components’ configuration that best
fulfils the system requirements in the observed circumstances, and commands it to the
lower layer.

7.5.3 Detailed Considerations

The Functional/Structural Metacontrol could be further generalised into a more gen-
eral pattern. This can be done by considering that the domain subsystem does not
need to be a controller, it can be any kind of system that can be modelled in terms of
functions.

The FSM pattern can then become the FSC: Functional/Structural Control. This
pattern describes how to divide the organisation of a function/structure controller op-
erating over a certain (domain) system. Essentially, the FSC pattern specifies how to
develop a system that can exploit the available knowledge about its functional struc-
ture to improve run-time operation by acting over this very function and structure.
Using the controller the system is able to reorganise itself to keep operation.

There are plenty of realizations of this pattern whenever structural/functional knowl-
edge is used at runtime. For example, we could consider some fault-tolerant con-
trollers as a realization of this pattern: the domain system performs a certain valuable
activity by means of some organisation -the structure- of a collection of components
-that serve the functions. The FT mechanism is able to use knowledge about this or-
ganization to re-organise the system in case of detecting a faulty component so as to
keep the service.

Example Application

The FSM pattern has been applied for the metacontrol architecture developed in this
thesis, and it is described in chapter 9.

134

Chapter 8

TOMASys Functional
Metamodel

In this chapter we present TOMASys, the metamodel we have developed to support
the model of itself that an OM system will exploit for self-awareness. It presents a
functional conceptualisation of an artificial system based upon that described in the
theoretical framework of chapter 4. Along this chapter, the rationale behind the main
elements and concepts of the metamodel will be presented, and the metamodel’s de-
sign decisions will be discussed.

8.1 Rationale

The solution presented in the core of this thesis (section 6.2) intends to endow tech-
nical autonomous systems with self-awareness. It is deeply rooted in the idea of the
systematic run-time exploitation of explicit models for control purposes, presented in
section 6.1.2 and reified by the Epistemic Control Loop pattern (section 7.2).

The run-time model used by the metacontrol subsystem is therefore a key element
in the OM Architecture (figure 8.1). The Deep Model Reflection pattern discussed
in section 7.4 provides a metamodelling solution to build this model. Taking a meta-
modelling approach provides to the solution independence from both the application
domain and the specific component platform used for system’s implementation.

In this chapter we present the metamodel we have developed to apply the DMR
pattern. It is a metamodel that must be capable to model any autonomous system –
the domain subsystem–, and formal enough so that the resulting model be machine
readable and executable, that is exploitable by the metacontrol subsystem of the OM
Architecture.

In order to adhere to postulate II, so that the model shall be obtained from the

135

Chapter 8 TOMASys Functional Metamodel

engineering models of the system, the DRM pattern prescribes that there must exist
a model transformation from the engineering languages into the metamodel. This
has driven the formalisation chosen for the metamodel. The transformation will be
discussed in section 10.3.

According to the thesis postulate III for separating organisational and functional
concerns (page 114), the metamodel must include concepts for the explicit represen-
tation of the autonomous system’s structure and also of its function.

The aim for developing the metamodel was to elicit the minimal set of concepts
that would allow the metacontrol subsystem to reason on the impact of the system’s
current state upon its mission or objectives, in an analogous way to what a plant engi-
neer would do.

Meta-controller

Run-time
Model

Functional
Metamodel

conforms to

Figure 8.1: The metamodel to which the run-time model con-
forms is central to the solution developed in this work.

8.1.1 Requirements and Scope

Considering the rationale discussed above, we can synthetize the following list of
mandatory properties and requirements for our metamodel for the function and orga-
nization of an autonomous system:

• the metamodel must explicitly capture the complete knowledge about the organ-
isation and directiveness realisation of the autonomous system, separating the
ontology of the system from its teleology,

• the metamodel must be formal enough to have machine readable implementa-
tions, and

• it must be feasible to develop a transformation from the engineering description
languages used to specify the design and functionality of autonomous systems,
such as UML, to our metamodel.

In relation to the scope for the envisioned metamodel, we have limited ourselves in
the different dimensions of the problem of its construction. Regarding the core traits
of an autonomous system, we have limited our solution, to the structural aspects of the
system, given the difficulty of including dynamical aspects. Therefore the metamodel
only covers the former.

136

8.1. Rationale

In relation to the engineering knowledge encoded in the model of the system and
the cognitive process it supports, the metamodel provides infrastructure only for the
perception of the dynamic state of the components and the functional designs. The
knowledge about the types of components in the system and their properties, that is
the structure of the system, is supposed static ad hard-coded at development time.
The same applies to the functional designs. However, the metamodel is envisioned
to support the development of learning mechanisms that would allow the metasystem
to perceive new components of previously unknown types, and create new design
solutions from them.

8.1.2 Relation to other functional models and specifications

The metamodel for the function and organization of autonomous systems we have
developed is based on previous efforts to model the function of artificial systems.
Those that have had more influence on it have been introduced in section 3.3. MFM
[87], GTST [96], Di-Higraphs [42] have furnished conceptualisations for the func-
tional perspective. The component model of Blanke [21] and the metamodels coming
from software: OMACS[108], Fiadeiro et al. [48] and Garlan et al.[53], have sup-
plied organisational notions, together with concepts to capture the relation between
function and organisation. Additionally, these metamodels have provided solid ideas
and methodologies for the formalisation and operationalisation of the metamodel de-
veloped in this work.

Considering the most basic and general issues of modelling itself, as discussed
in section 3.2, the MDE approach to modelling has provided useful concepts. For
example, concepts from UML, SysML and MOF, such as Component, Port, or Class,
Instance and Property, have been used to formalise the metamodel, constituting its
meta-metamodel.

Component-based software specifications

There is a series of technical specifications from the OMG, in the context of component-
based software systems and MDE, that define conceptualisations of systems. They are
in the line of UML, but more specifically oriented to component-based systems. These
specifications have been a source of relevant concepts for the metamodel we have de-
veloped too. But, in addition to their content, their descriptions have also furnished
useful formats, notations and conventions to express our metamodel.

The core model, which underlies the rest, is the UML (2) Components and Com-
posite Structure packages. These packages from the UML modeling language define
a component model through a series of elements: component, ports, connectors, prop-
erties, internal structure diagrams, etc. They conceptualise a software system in terms
of components:

From UML:

137

Chapter 8 TOMASys Functional Metamodel

A component is a self contained unit that encapsulates the state and be-
havior of a number of classifiers.[. . .] A component is a substitutable unit
that can be replaced at design time or run-time by a component that offers
equivalent functionality[. . .]

Ports represent interaction points between a classifier and its environment.
The interfaces associated with a port specify the nature of the interactions
that may occur over a port.[. . .]

Robotic Technology Component Specification [103] defines a component model
and associated infrastructure services for the development of software for robotic sys-
tems. It is based on the Robotic technology Component (RTC), which is defined as a
“logical representation of a hardware and/or software entity that provides well known
functionality and services”. RTC are intended as powerful building blocks (RTCs) so
that they can be easily integrated and reused in different applications. The specifi-
cation includes an introspection section that describes a data model for querying and
administering RTCs at runtime. This corresponds to the monitoring and reconfigura-
tion capabilities demanded for our MetaControl pattern.

The Dynamic Deployment and Configuration for Robotic Technology (DDC4RTC)
[106] is a specification of data models and service interfaces that departs from RTC
Specification to define the application of that component model to the activities of
dynamic deployment and reconfiguration in robotic applications. These activities are
closely related to the goal of this thesis to provide adaptivity to autonomous systems,
since deployment and reconfiguration of components can be used as basic adaptivity
mechanisms in component-based systems.

8.2 Teleological and Ontological Model of
an Autonomous System

The metamodel we have developed to fulfil the presented requirements is based on
the theoretical framework for artificial autonomous systems that has been presented in
chapter 4.

The concepts of a system’s elements and couplings in the framework have been
developed into those of components and connectors, in order to capture the organisa-
tional/structural aspects of an autonomous system. On the other hand, to account for
the system’s directiveness, ideas from other functional modelling approaches, such as
the ones proposed by Blanke en at. [21] and de la Mata and Rodríguez [42], have been
adapted to operationalise the concepts of objective, function and grounded function.
The concept of role, well known in the literature [105, p. 169], has been added. The
design of a system defines a series of subsystems (FunctionDesign), each one render-
ing a certain Function within the system. This definition consists of a specification of
components (Roles) whose joint behaviour renders the desired Function.

With all these elements we have defined the metamodel for function and organisa-
tion, called Teleological and Ontological Metamodel for Autonomous Systems (TOMASys).

138

8.2. Teleological and Ontological Model of an Autonomous System

An overview a la UML of the principal concepts that form TOMASys is displayed in
figure 8.2.

Objective Function
Grounding Component

Functional
Hierarchy Configuration

Role

* achieves

* requires

Component
Class

Function
DesignFunction

type realises type

Component

definition

role

realiserBinding

* solves

* requires

Figure 8.2: Core elements in the TOMASys metamodel.

8.2.1 Model of an autonomous system with TOMASys

TOMASys captures the control subsystem (CS) of an autonomous application in terms
of the components that compose it and the functions they are realising. This way, the
model consists of a tuple CS = 〈O,C,FG,F,CC,FD,R,AD〉, that contains two kind of
elements:

Elements that capture the instantaneous state of the control system:

• O: the hierarchy of objectives for the system.

• C: the set of components, connected by connectors, which form the system.

• FG: the set of function groundings, which capture the assignments:

– objective/function design

– component/role

Elements that represent static knowledge about the design of the control system
and the properties of its components:

• F : the set of functions

• CC: the set of component classes

• FD: the set of function designs, each of them defining a set of roles R

139

Chapter 8 TOMASys Functional Metamodel

Additionally:

• ADM the application domain model defines the domain knowledge that con-
straints and specifies the entity types (components, quantities) that exist in the
particular engineering domain of the autonomous system application, e.g. mo-
bile robot. This knowledge is distributed in the concrete value of some of the
properties of the previous TOMASys elements.

The elements listed above and their relations and properties will be described in
the following sections.

Example TOMASys model of the mobile robot exemplary system

We could define a TOMASys model of our mobile robot exemplary system
presented in 1.5.2. It would consist of the following basic entities:

Components, representing the instantaneous state of core modules of the control
system at runtime:
C= { higgs_motors, higgs_odometry, higgs_laser, higgs_map_server,
higgs_localisation_module, higgs_navigation_module }
considering that our robot is named Higgs, and every running instance of the
components is named by prefixing that name to the type of element. Observe
also that single components for the sensors and actuators are considered, which
encompass both the physical device and the software driver.

Component Classes, capturing the information about properties of these modules:
CC= {motors, laser, odometry, map_server, localisation_module, naviga-
tion_module}

Functions, representing abstract objectives:
F= {navigation, localisation, range_scan}
navigation represents the explicit objective to go to the target destination.; whereas
localisation and range_scan refer to the implicit functionalities to obtain estima-
tions of the robot self-pose and reading from the laser sensor, respectively.

Function Designs, capturing functional designs that achieve the functionality de-
fined by the Functions:
FD= {grid_cell_navigation, acml_localisation, laser_sensing}

Objectives, that is the state of the run-time instances of the Functions, which
represents the instantaneous state of the system’s hierarchy of objectives: O=
{o2:navigation, o0:localization, o1:range_scan}

Function Groundings: realisations of the Function Designs:
FG= {fg1:grid_cell_navigation, fg2:acml_localisation, fg3:laser_sensing}

140

8.2. Teleological and Ontological Model of an Autonomous System

Note that to name the Objectives and Function Groundings, the UML notation
for instances is used, the instances being the elements of O and FG, and the
corresponding classes the elements in F and FD. This corresponds to ontological
instantiation [79], and has been used here for conciseness. In the rest of the chapter
this notation is used for linguistic instantiation [79], which relates elements in a
model to the language (TOMASys) element it is an instance of (see page 141).
Simple names are used for these instances, e.g. fg1, o1, with letters to identify
their class and a number to identify them unequivocally.

The properties of these entities will be detailed in the examples of the following
sections. For the shake of conciseness we will discuss only a portion of the control
system: the localisation subsystem, which involves all the elements required to
realise the functionality of estimating the robot self-pose.

8.2.2 Organisation of the Metamodel

The elements of the metamodel listed above can be divided into two categories, each
of them accounting for one of the two referred views of an autonomous system:

Organisation Elements (C, CC), represent the ontology of the system as it is imple-
mented, i.e. its organisation, captured in terms of components and their connec-
tions (C), and their instantaneous state, i.e. accounting for the program. It also
includes static knowledge about their properties (CC), i.e. accounting for the
real structure.

Function Elements (O,FG,F,FD,R,) capture the teleology of the system, in the
sense of [87] of representing the roles the designer intended for the components
to achieve the objectives of the system. These representations involve the design
solutions provided at engineering time for the required functionality (F,FD,R),
i.e. explicitly capturing the system’s structural directiveness. They also include
instantaneous information of how they are being realised in the run-time system
(O,FG), i.e. capturing the objectives hierarchy.

The system is thus modeled in TOMASys as a certain Configuration of com-
ponents at the ontological level, and as a Functional Hierarchy of instantaneous
objectives and the groundings of functions that realise them at the teleological level,
as depicted in figure 8.2.

Formalization of TOMASys

For the specification of the TOMASys metamodel we have used a UML-based nota-
tion. Each element is captured as a class with a set of properties. To differentiate when
referring to an element of TOMASys in the text, instead to a general concept, this font
is used. UML Class diagrams have been used to show graphically the properties of the
metamodel elements and their relations, as illustrated in figure 8.3.

141

Chapter 8 TOMASys Functional Metamodel

property1

property4 : [values]

TOMASys element

property3()

property2 other TOMASsys
element

Figure 8.3: Example of the graphical representation used for TOMASys ele-
ments. The elements on the left has 4 properties: property 2 is an instance of the
metamodel element at the arrow end, property 3 is a function of other properties
(that is, it could be considered as a UML method), and property 4 can have only
a discrete set of values.

The diagrams in the examples are based in the UML Object diagram. They de-
pict instances of the metamodel elements as Objects. The header section of the box
contains the name of the instance, separated from the type of metamodel element it is
an instance of by a colon. In the content section of the box their properties and the
values they have are expressed as property = value. In some cases, the instance that
corresponds to the value is also graphically depicted (this is not the case in strict UML
diagramming, in which this only occurs in composite diagrams).

8.3 Organisation Elements

In order to represent the ontological view or organisation of an autonomous system, i.e.
what the system is, we have developed a minimal set of concepts that could account
for most design descriptions of the construction of autonomous systems. Most of
current systems are nowadays mechatronical and increasingly software-based, but as
for most engineered systems the standard design descriptions, independently of the
concrete methodology followed, are centered around the idea of decomposing them
into a set of minor subsystems or components that interact with each other through
defined couplings or connectors1.

Following we describe the elements of TOMASys that account for this view of
engineered autonomous systems.

8.3.1 Components and connectors

Component: The concept of Component is the core element for describing the organ-
isation of a system. A Component is a logical representation of either a physical
or software element of a system, which performs defined operations producing
an output that in the most general case depends on the input and the internal state

1for the moment we have not consider the hierarchical aggregation of components

142

8.3. Organisation Elements

status

log : []

internalState : []

Component

type : quantityType

state

Connector

state : possibleStates

profile : PortProfile

Port

type

* ports

value

profile : ParameterProfile

Parameter * parameters

connector * ports

availability

deploymentInfo

ComponentClass

errorModel(Component)

possibleStates : []

directionality

type

name : String

PortProfile

type

name : String

ParameterProfile

* portProfiles

* parameterProfiles

Figure 8.4: TOMASys elements for describing the organisation of an au-
tonomous system.

143

Chapter 8 TOMASys Functional Metamodel

of the component. The concept of Component in TOMASys operationalises that
of element, defined in section 4.2.1.

Connector: Components interact with other components through input and output
quantities —couplings, according to our general systems framework—, their
directionality with respect to each component depending on whether the com-
ponent produces (output) or consumes (input) them. These quantities constitute
the connectors between components. A Connector represents one or a group
of these quantities in the coupling of two or more components2. A connector
is thus the TOMASys representation of a coupling.

Port: On the Component’s side, the relation between a component and a connector
is modelled by a Port that the Component owns. Ports thus represent the input
and output of a Component for its designed operation. A port is linked to one
connector, and only one, whereas a connector can be linked to any number of
ports, each of them thus pertaining to a different component. In relation to
fault analysis, a port is in a certain state, depending on the state of signal
that flows through it. TOMASys defines two possible states: {OK, ERROR},
whose meaning is straightforward, but additional states can be defined in the
application domain model of the system, such as LOW, FLUCTUATING, etc.

Example Components of the localisation subsystem

The function of the localisation subsystem is to periodically provide an estima-
tion of the position of the robot. To achieve that, run-time data from the odometry
and laser readings are combined and compared to previous knowledge about ob-
stacles, which is received from the map server, using probabilistic techniques in the
localisation module. A more detailed description of this subsystem is provided in
the discussion of the testbed in section 11.2.

Let us detail the TOMASys Components of the localisation subsystem. The
localisation subsystem consists of: two sensory sources: the odometry and the laser
sensor, a map server and the localisation module that implements the localisation
algorithm.

2TOMASys only considers components as the building block of a system from the structural point of
view. Connectors are limited to represent the connections between components. Other component models
consider connectors as elements with similar properties than components. In TOMASys, such a complex
connector can be modelled as a component, connected through TOMASys connectors with the compo-
nents it interconnects.

144

8.3. Organisation Elements

scans:Connector

odometry
:Component

map_server
:Component

map:Connectorodom:Connector

ports = [scan_out]

parameters = [bd, ...]

type = laser

sicklms:Component

ports =

localisation_module
:Component

profile = baudrate
bd:Parameter

connector

connector = scans
profile = scan
scan_out:Port

Figure 8.5: Graphical representation of the main organisation elements in the model of the
localisation subsystem. For simplicity only the higgs_laser is completely detailed. The notation
follows basic UML syntax for the definition of instances: the header of each element contains
the name of the instance and its class. Inner boxes contain the attributes and their values. The
bd parameter and scan_out port are explicitly displayed. The connector attribute of the port is
depicted as a line to its value, which is the scans model element, of class Connector.

portProfile = [scan]

parameterProfiles = [baudrate, devicePort]

laser:ComponentClass
baudrate:ParameterProfile
type = "double"

type = "Scan"
direction = OUT
scan : PortProfile

Figure 8.6: Graphical representation of the TOMASys elements that capture the real structure
of the laser sensor.

145

Chapter 8 TOMASys Functional Metamodel

8.3.2 Internal Structure of Components

The elements enumerated so far allow for a black-box representation of components.
Now we present the elements in TOMASys that capture the internals of a component
in relation with the operation it is designed to perform.

The behaviour or operation of a component –i.e. the relationship between input
and output quantities– depends on two kind of quantities:

Parameters: A parameter is a quantity whose value determines the relatively per-
manent behaviour of the component. An explicit access to modify this value
has been designed so as to control the operation of the component through it.
A component may have any number of parameters. Example: the baudrate at
which a laser range sensor publishes its readings.

Internal State: in the more general case, the instantaneous output of a component
not only depends on its instantaneous input, but also of its history of inputs,
represented in the notion of state in systems theory terminology. In a designed
component, this state is captured in a set of quantities we shall refer to as its
Internal State

In technical systems, some components are usually monitored because of its im-
portance for the system correct operation, so information about it’s internal state is
available at runtime, e.g. in software logs. However, this is not the internal state,
but designed conceptual quantities that capture information about the operation of the
component internals. We have considered valuable to include an element in TOMASys
to incorporate this information in the dynamic knowledge of the component.

Log: captures all the monitoring information that is available at each instant about the
operation of a component.

Finally, we have defined the component status to synthetize the information about
how the operation of the component is going, adopted from the literature of fault-
tolerant systems. The fault-analysis knowledge about the component is discussed in
the next section.

Component Status: represents the operational state of a component: how compliant
its behaviour is to that expected from the component. We have defined a discrete
and finite number of status a component can be in: ONLINE if the component
is operating normally, ERROR if it is not properly operating, but the reason is
known —could be internal, an input out of bounds, a parameter not correctly
configured. . . —, FAILURE if it is not properly operating due to an unkown
cause.

The following properties correspond to what is usually referred as the configura-
tion of a component: ports, parameters. The specific behaviour of a component of a
certain type during a certain activity depends on how it is configured, in terms of the
values of its parameters and its connections through ports to the rest of the system.
Therefore, the configuration of ports and parameters, together with the type of the
property, define the component’s hypothetic structure. On the other hand, the value

146

8.3. Organisation Elements

of the rest of its TOMASys properties can, and will, vary instantaneously during an
activity. They represent the instantaneous state of the component, so this TOMASys
elements represent the program of the component.

8.3.3 Component Classes

The elements of the previous subsection capture the instantaneous state of the com-
ponents within a system. There is other important information to model the system
organisation: the properties of its components and connectors. This information can
be considered static knowledge, since the properties are constant during longer spans
of time. A group of these properties can also be shared by a set of components, which
is thus considered a type of components. This corresponds to the metamodelling con-
cept of types or classes [80]. In this subsections the TOMASys elements to represent
the different types of components and their properties are described.

Component Class: describes the knowledge about a set of components that share
some of its properties. For example, the properties of all the laser range sensors
could be described by a laser range Component Class as illustrated in figure
8.6.

A Component Class aggregates the following elements that encode the proper-
ties common to all Components that are of that class.

Port Profile: describes a port that all Components of the class have: the name
of the port, to identify it amongst the rest of the ports of the component, its
directionality, that is whether it is an input or output port, the type of the quantity
of the I/O connection the port represents –i.e. power, a certain data type. . . –, and
the set of possible states of the port (remember that they are part of the ADM).
A Component Class may contain any number of Port Profiles, but a given Port
shall have only one Port Profile as its profile.

Parameter Profile: similarly to a Port profile, a Parameter Profile encodes the
knowledge about a parameter common to all the components of a certain class.
For example the baudrate at which all laser sensors publish their readings,
shown in figure 8.6. A Parameter Profile thus has a name, to identify the pa-
rameter amongst those of the Component Class, a quantity type, and maybe
additional knowledge of allowable values for the quantity corresponding to the
parameter.

Both Port and Parameter profiles correspond to properties that define the inter-
nal structure of elements that have it, such as Classes and Components, in the UML
metamodel. They provide information about the real structure of components.

However, at engineering time we usually also have information about how the
state of the component affects its behaviour or operation. Very important fields such
as risk analysis, reliability engineering or fault diagnosis deal with the assessment of
the effects of faults in the operation of dependable systems. A common technique ac-
cepted as a standard in everyday industrial use is the failure-modes and effect analysis

147

Chapter 8 TOMASys Functional Metamodel

(FMEA) [21, p. 86], which can be integrated in a component model [21, pp. 83–
107]. Failure modes are listings of the ways in which a component may fail. There are
databases with this information available for many industrial components. Analysis
of fault propagation in the FMEA technique uses a Boolean mapping based on matrix
schemes. The Fault propagation matrix determines which faults cause which effects
in the component.

We have included two different entities in TOMASys to integrate the FMEA infor-
mation: the Internal Failure Model and the Complete Failure Model. This
is because they are used in different scopes: the Internal is used to quickly obtain the
status of a component at the organisational level, whereas the Complete is used to as-
sess the effects of fault propagation between components in the system’s functionality
(this will be discussed later in page 152 in relation to roles).

Internal Failure Model: encodes the engineering information about the possible
internal failures of a component. It defines which identifiable faults, as captured
in the log information, cause a complete failure of the component, rendering all
component outputs unavailable. The Internal Failure Model has the form
of a boolean function3 i f m:

i f m(log) : L → Cstatus with L the set of log messages for that component

ifm outputs the Component Status of a Component as a function of its log
information. The i f m function in TOMASys thus conveys the information en-
coded in a row in the FPA matrix corresponding to the effect of a complete
component failure.

External Failure Model: captures the complete information of the fault propaga-
tion analysis, generalised for any system the component may participate in. The
External Failure Model of a component has the form of a function f m:

f m(log, portIN
i) : L

⋃
P IN →POUT fm outputs a vector with the states of the

output ports of the component as a function of the log information and the states
of the input ports.

The fault analysis information embodied in the specific i f m and e f m functions of
a component is part of the ADM of the system.

3beware that the term function is used here in the mathematical sense. Along the chapter the term
function, is used to refer to different concepts: i) the broad concept of function in systems engineering (in
regular style), ii) the concepts defined in the theoretical framework for autonomous systems, in emphasized
style iii) in the name of a TOMASys element, in tomasys style, iv) in the mathematical sense, also in
regular style, but easily identifiable by the context.

148

8.3. Organisation Elements

ExampleTOMASys failure models for the laser sensor

The FPA scheme for the laser sensor is illustrated in the following table:

Effect scan low rate laser scan unavail-
able

Fault laser driver glitch laser not properly
connected

Log message [WARN: A scan was
probably missed]

. [ERROR: Device dis-
connected]
[ERROR: Initialize
failed! are you using
the correct device
path?]

The FPA matrix is defined:(
el.rate
eunav.

)
=

(
1 0
0 1

)
⊗
(

fglitch
fnotconn.

)
Modelling this knowledge with TOMASys, we can define the following ifm and fm
functions as Boolean mappings:

For ifm:

Mi f m : L ×S →{0,1}

mi f m
i, j = 1 if log j⇒ status = ERROR

mi f m
i, j = 0 otherwise

For mf:

M f m : F = L
⋃

PIN×S →{0,1}

m f m
i, j = 1 if f j⇒ portOUT

i = ERROR

m f m
i, j = 0 otherwise

Engineering knowledge of a type of component can also include information on
how to deploy that component.

Finally, there is engineering information about a Component Class that may dy-
namically vary during system operation, and that is the availability [0,1] of that
type of component. For example, a sensor can be restarted/re-deployed to fix a wrong
initial configuration of one of its parameters. However, no matter what reconfiguration
we may carry, if there is only one physical sensor in the system, and it is broken, the
component instance will not work: it is unavailable, i.e. the availability of that

149

Chapter 8 TOMASys Functional Metamodel

sensor Component Class is 0.

In TOMASys, the different levels of the organisation of a component are captured
by different sets of elements:

• real structure: it is defined by the types of the components, i.e. their Component
Classes, which define their permanent traits.

• hypothetical structure: it is captured by the values of the parameters and the
connections of the ports.

• program: the internal states and logs of the component capture information of
the program.

Correspondingly, the real structure of the whole system is represented in TOMASys
by the set of Component Classes CC, the hypothetical structure by the set of possible
configurations of components, given by the set of possible values of the set of param-
eters P and connections between components.

8.4 Function Elements

The elements of TOMASys shown so far model the organisation of an autonomous
system from an ontological point of view. The elements presented in this section
model that organisation from a teleological perspective. They capture the objectives
that the system pursues during operation, and the functions that it instantaneously
performs to achieve them.

This part of the metamodel operationalises the concepts of objective and function
from [90] that have been presented in the theoretical framework of this work (pages
75 to 77). The functional elements of TOMASys thus model the realisation of the
directiveness of an artificial system into its organisation.

On one hand the concepts of Objective and Function model the knowledge
about the requirements of the system, as obtained in the analysis phase of the system
engineering, and their instantiation at runtime. On the other hand Function Design
and Function Grounding model the knowledge of the design solutions, defined in
the engineering phase of the system, and how they are grounded in a set of resources
that realise them.

8.4.1 Objectives and Functions

Autonomous systems are designed with a purpose, described at engineering time by
a set of requirements, and instantiated in the run-time system as a set of objectives as
defined in 4.3.2. They are modelled in TOMASys by the concepts of Objective and
Function.

Objective: a certain subspace of the state space of the system plus its environment
towards which the system drives its behaviour.

150

8.4. Function Elements

availability()

FunctionDesign

Objective FunctionGrounding

complies()

Role

availability()

Function

typetype
Component

confidence

Solves

definition

realises*

* requires

* requires

Figure 8.7: TOMASys elements for representing the directivenes in an au-
tonomous system.

TOMASys defines a discrete set of states for the objectives of the system, accord-
ing to whether the behaviour of the system is directed toward it (CONV ERGENT),
diverges from it (ERROR), or its equipontentiality region is non-existent, i.e. no mat-
ter what actions the system may take, even reconfiguring it will never achieve the
objective (UNACHIEVABLE).

There can be different types of objectives, defined by parameterisations of the tar-
get subspaces that define them. For example, the instantaneous objective for a mobile
robot to go to a certain destination (xd ,yd ,zd), can be generalised by considering as
parameters the Cartesian coordinates of the destination point. We then have an ab-
stract objective or abstract function (see 79) f to go to destination point (x,y,z) to be
determined at runtime by assigning concrete values to the parameters, thus resulting in
a particular instance of the function, which is the runtime Objective. This is modeled
in TOMASys with the objective being of a certain Function type.

Function: A TOMASys Function represents the concept of an abstract function
(see 79), which is defined by a parameterized target subspace. This TOMASys
element corresponds to a demanded functionality, as defined by the end concept
in [87].

Engineers design solutions to realise the functions required in the system, by spec-
ifying configurations of the system components and algorithms to prescribe their be-
haviour. This is what Lopez refers to as function definition (see page 77). It is
modeled in TOMASys with a Function Design. According to TOMASys, an au-
tonomous system has a set of Function Designs it can use to solve its demanded
functions.

151

Chapter 8 TOMASys Functional Metamodel

Function Design: defines a design solution to address or solve a demanded Function
with a certain confidence [0..1]. It corresponds to the concept of function def-
inition presented in 4.3.3.

errorModel

FunctionDesign

realisability() : [0,1]

availability() : [0,1]

Function

compliance() : [0,1]

failureModel()

ports

parameters

type

Role

Function

confidence : [0..1]

Solves

Requires

Figure 8.8: he solve and require associations between Functions and Function
Design shape the runtime Functional Hierarchy.

The confidence of a Function Design is a user defined attribute that encodes the
knowledge of how well the design is expected to accomplish the Function it solves.

A Function Design contains a set of roles that define how certain components
in the system must be configured so that their operation will realise the Function.

Role: encodes the specification of a Component, by defining its structural properties
both internal (parameters) and external (ports). It also defines additional con-
straints about the relations with other components. This concept is based on the
software engineering concept of role [105, p. 169].

A Role thus has some properties as Component: it has a type, that prescribes the
Component Class of the Component, and a set of parameters and a set of ports.
The meaning of these properties is different, though. Whereas in a Component they
are descriptive, capturing the actual values for a real component, in the Role they are
prescriptive, specifying what these values should be for a component to play the Role
successfully to realize the Function Design.

The error model, is another property of the Role. The error model of a Role
computes if its realiser Component is playing the role properly, or a fault has the
effect of preventing it. It is formalised as an em function that returns OK when the
realiser component is properly performing the role, and ERROR otherwise. The
error model conveys fault analysis knowledge, but not context-generic for a type of

152

8.4. Function Elements

component, as does the ifm and fm functions of a Component Class. It encodes fault-
analysis specific for the Role, that is, for the context of an instance of a Component
Class with a certain configuration, interacting with a specific configuration of other
components. However, a default error model can be given by the Failure Model
of the Component Class that is the type of the Role. This defines a minimum fault
analysis, since any particular instance of the component will be prone to the faults
included in the Failure Model knowledge. A more strict em function can be defined
also as part of the ADM, in a similar fashion to the fm, but including a larger and more
specific set of faults.

TOMASys Role includes also a compliance function C → [0,1] to determine
if a component can play the role given the definition. It can be the case that a role
requires a component of a class that is not available anymore in the system. In that
case the Function Design cannot be grounded. The realisability [0,1] defines
if a Function Design can be realised in a Function Grounding given the availability of
components to play the roles it defines.

Non-critical systems usually contain just one Function Design for each func-
tion. In fault-tolerant systems with physical redundancy, this one-to-one correspon-
dence between functions and function designs still holds, but Function Designs
for critical functions are or can be grounded several times using different resources,
because there are multiple instances of those required. However, in fault-tolerant sys-
tems with conceptual redundancy[21], there are more than one Function Design
that solve a critical function.

When none of the function designs that solve a certain function is realisable,
that Function is not available in the system (availability= 0), and all objectives
that are particular instances of it are in UNACHIEVABLE status.

A Function Design may also require the realisation of sub-objectives —other
Functions— by other parts of the system. The requires associations of Function
Designs and Functions in the TOMASys model of a system determine the runtime
hierarchy of dependencies between Objectives and Function Groundings (see figure
8.8).

Problems or errors in the components defined by the roles, or in the objectives
required by a Function Design can have different impacts on the realisation or ground-
ing of that function at runtime. The effect may vary from a transitory lower perfor-
mance, to a global failure of the function. This is described in the errorModel of the
Function Design, which is a function e:

e : CS×SO→{OK,ERROR,FAILURE,PERMANENT _FAILURE} with CS be-
ing the set of status of the components playing one of the roles of the Function De-
sign, and OS the set of statuses of the objectives required (see later on page 8.4.2).

TOMASys expects the behaviour of the subsystem defined by the roles of a Func-
tion Design to be convergent to its objective. So the roles and additional constraints
imply some desired and expected behaviour. This is defined in the Function solved.
Although an understanding of that behaviour is important for the engineering of the

153

Chapter 8 TOMASys Functional Metamodel

system, the elements and their attributes and associations presented so far are sufficient
for the purpose of the metamodel, so it is not further specified in TOMASys.

Example OM metacontrol of the localisation subsystem
Let us exemplify the concept of Function Design with the localisation subsystem
of our mobile robot. Suppose we could deploy two alternative designs to achieve
the self localisation objective, because there is another sensor in the robot that can
input scan readings, such as a Kinect camera.

This can be modeled in TOMASys with two function designs, depicted in
figure 8.9: fd_loc1 uses the laser, and solves the self localisation function with a
high certainty, fd_loc2 uses a Kinect sensor, and solves the function with a lower
certainty, since the scan readings of the Kinect are not as many and as accurate
and those from the laser. The roles and associated constraints are graphically
shown, similar to an UML collaboration diagram. Some of the parameters of
the localisation_module component have different values in each case, since they
depend on the characteristics of the sensory sources (this is represented by the gray
boxes inside the amcl components in figure 8.9). Note that we are here considering
Function Designs for localisation that embed all the required functionality in the
set of roles. We could have externalised some of the requirements as a required
function, for example receiving scan readings, and thus eliminating the Role for
the scan sensor.

roles = roles =
fd_loc1 : FunctionDesign fd_loc2 : FunctionDesign

f0 : Function

description = "self localisation"

laserodometry

map_server

amcl

config 1

scansodom

map

kinectodometry

map_server

amcl

config 2

scans

map

odom

confidence = 0.95

s1 : Solves

confidence = 0.7

ss : Solves

Figure 8.9: Two alternative function designs that solve the localisation Function. The
figure sketches for each of them the different configuration of components that are defined by
their set of Roles and constraints.

154

8.4. Function Elements

8.4.2 Functional Hierarchy: instantaneous state of the system’s
directiveness

At runtime specific components are assigned to fill the roles of the Function Designs
in the system, and concrete Objective instances of its required Functions are required
to ground it. This runtime information of the grounding of the functional design to
achieve the objectives is modeled in TOMASys as a set of Function Groundings:

Function Grounding: represents the instantiation of a Function Design to ad-
dress a particular objective. It thus contains the instantaneous state of ground-
ing of the Function Design, as a set of assignments or Bindings linking
system Components and the Roles they play to realise the design.

The set of Function Grounding thus models in TOMASys the instantaneous state
of the system’s directiveness.

A Function Grounding models how a part of the system configuration is de-
voted at runtime to achieve an objective of the Functional Hierarchy, and how
that depends on other objectives downstream that hierarchy.

Objective

relevance()

status

relevance

RootObjective

status

FunctionGrounding

Binding

Component

FunctionalHierarchy Configuration

Rolebindings

* realises

* requires

Figure 8.10: The elements in TOMASys that represent the instantaneous state
of the system’s functions as a Functional Hierarchy of objectives and grounded
functions.

The status of a Function Grounding synthetizes its working state. It can have
the following discrete set of values :

OK: when it is working properly the components in the bindings comply with their
roles and the required objectives are in the course of being achieved. In this case
the status of the Objective it solves is ACHIEVED.

155

Chapter 8 TOMASys Functional Metamodel

FAILURE: when the function grounding is not behaving as expected due to a failure
in one or more of its required objectives, and thus not achieving its objective,
because one of its required objectives is not being achieved.

ERROR: when the function grounding is not working due to an internal error.

PERMANENT_FAILURE: when it is not working due to a not recoverable internal
error, i.e. it is impossible to instantiate a component compliant with one or more
of its roles. Its function is unavailable.

We can now define the following default errorModel for an Objective, defining
its status in terms of the state of the TOMASys elements it is related to:

CONVERGENT: when there is a Function Grounding instantiated to achieve the
objective and its status is OK.

ERROR: when there is no Function Grounding addressing it, or if there is, then it is
not in OK status.

UNACHIEVABLE: when there is no Function Design available for instantiation that
would realise the function of the Objective.

Objective relevance

At runtime, the system Objectives have different relevances depending on how
much their failure will impact the system overall performance. This is determined
by the instantaneous state of the Functional Hierarchy, but for those in the head
of it: the root objectives. For this a fixed relevance ∈ [0..1] is defined by engi-
neers to account for how important is that the system behaviour complies with it. Root
Objectives are the more abstract ones and are static during system operation. The rest
of the objectives downstream are determined instantaneously depending on the Func-
tion Designs that are grounded to realise for the objectives upstream. The same occurs
to their relevances. The function that determines their relevance is part of the domain
model and is defined by engineers.

Example Functional grounding of the localisation subsystem

Let us analyse the complete TOMASys model at the functional level for the
running localisation subsystem. Here the required input from a range sensor is
externalised as a required Function, differing from the function designs illustrated
in 154

At the top of the Functional Hierarchy for the localisation subsystem is the
root objective o0, instance of the function f 0 “self localisation”. There is a realisa-
tion named “localisation” that solves f 0. It defines a configuration of components
through the roles [r01,r02,r03] and f d_loc.constraints. This configuration of roles

156

8.4. Function Elements

for f d_loc is depicted in the upper part of figure 8.12: an amcl component, which
implements a Montecarlo-based algorithm for localisation estimation, receives in-
formation from the odometry of the robot and a map server component and input
range information through a scans connector. It then outputs a estimation of the
robot’s position to a pose Connector4. f d_loc requires the function f 1, i.e. that
range scan data be continuously published in a connector. There is a realisation
for f 1: the F_laser Function Design specifies in the role r1 a configuration for a
laser component to get range scans.

bindings = [b4]

status

type = flaser

fg1 : FunctionGrounding

o1 : Objective

realisations = [flaser]

description = "get range data"

f1 : Function

o0 : Objective

performance = 0.9

constraints = ...

description = "get position"

roles = [r01,r02,r03]

fd_loc : FunctionDesign

requires = null

performance = 1

constraints = ...

description = "get laser data"

roles = [r1]

fd_laser : FunctionDesign

fg0 : FunctionGrounding

status

bindings = [b1,b2,3]

type = localisation

b3 map_serverr03
odom
amcl_node

realiser

r02b2

role
r01b1

role
sicklmsr1b4

realiser

requires

realises

realises

f0 : Function

description = "localise robot"

type

solves
realisation

requires

type

solves

realisation

type

type

Functional
Hierarchy

Figure 8.11: The Functional Hierarchy of the localisation system.

The Functional Hierarchy is thus composed of o0, a Function Grounding f g0

157

Chapter 8 TOMASys Functional Metamodel

of f d_loc, which contains the bindings of the roles to the run-time components,
described in 8.5, that realise them, the objective o1 required and the grounding
f g1 with the binding of the sicklms Component to the r1 laser role.

type = amcl

:Component

type = odometry

:Component

type = map_server

:Component

pose
:Connector

scans
:Connector

definition =

r1 : Role

parameters = [bd, ...]

type = laser

:Component

value = 19200
profile = baudrate
bd:Parameter

scans
:Connector

odom map

Figure 8.12: Example of the TOMASys definition of a function design. The lower box
shows the definition of the role r1 of the flaser function design. The upper part shows a
simplified graphical representation of the specifications of components and connectors for
the localisation function design, as captured by its defined roles and associated constraints.

8.5 Overall analysis of TOMASys

TOMASys constitutes a sound conceptualisation of autonomous systems in terms of
components and functions. It can be considered as an upper ontology in the vision of
Asmann et al. [11] described in section 3.2.5, and a metamodel, because it provides
the language to build models of autonomous systems.

The metamodel approach to knowledge reified by TOMASys provides the au-
tonomous system with an enhanced knowledge organisation (see section 4.5.3). The
metamodel corresponds to the real structure of the cognitive subsystem. Having a
metamodel means moving information from specific models that were real structure,

158

8.5. Overall analysis of TOMASys

to general, abstract knowledge at the metamodel level, therefore maximizing the hy-
pothetic structure, with a larger amount of potentially instantiable models. It thus con-
tributes to system adaptivity. Regarding the resolution level of the TOMASys model
of a system, the more detailed the model is —decomposing the control system struc-
ture in many components, specifying every parameter, defining all the functions and
their—, the larger the program of the cognitive subsystem, and subsequently the better
the performance of the metacontrol.

The TOMASys functional decomposition by the required relation between func-
tions and objectives provides isotropy for the design knowledge. This decomposition
allows the functional hierarchy to be determined instantaneously, the general knowl-
edge captured in the relations between functions and function designs. This knowledge
is thus reusable in different possible hierarchies for different scenarios.

8.5.1 TOMASys and other functional metamodels

Although TOMASys constitutes a component model in the sense presented in page 56,
taking ideas from the software specifications introduced in section 8.1.2, it is intended
to address a functional modelling of the system in the line of the approaches presented
in section 3.3.

The OMACS approach analysed in section 5.2.3 has many characteristics in com-
mon with TOMASys, addressing the modelling of dynamic software architectures
(agents in their case, control components in ours) from a goals/functions perspec-
tive. However, we have tried to improve the limitations that we consider the OMACS
model has. For example, it merges the structural and functional levels, as other func-
tional models do, e.g. the Di-Higraphs of De La Mata et al. presented in page 55.
Another difference is that OMACS does not explicitly models the differences and re-
lations between instances and types of components. We have considered that key not
only for the scalability and reusability of model elements, but for the representation of
physical redundancy and the applicability of the approach to large systems. In addi-
tion, TOMASys considers objectives at different levels, forming a hierarchy, as in the
case of the Goal-Tree – Success Tree model (page 55).

TOMASys is envisioned to integrate in OASys (Ontology for Autonomous Sys-
tems) [18], as the subontology to provide the concepts for self-modelling of ASys
systems. TOMASys elements have been developed from the same autonomous sys-
tems conceptualisation than those in OASys different packages.

159

Chapter 8 TOMASys Functional Metamodel

160

Chapter 9

The Operative Mind
Architecture

Now that the basic architectural patterns for cognitive control and the proposed meta-
model for self-awareness in autonomous systems have already been presented in the
previous chapters, this chapter presents the reference architecture that we have devel-
oped making use of them. This architecture provides a blueprint for universal meta-
control systems that realises the solution for self-aware robust autonomy enunciated
in the thesis postulates (section 6.2).

The chapter is organised as follows. The first section presents a global overview
of the architecture, describing its characteristics, and discussing how it addresses
the thesis statements concerning the architecture of an autonomous system. It also
sketches its basic operation and how the architecture reifies the design patterns for
self-awareness. The next section discusses the organisation of the metacontroller, the
core technological design of this work. Two more sections describe in detail the op-
eration of the two control loops that lay at its core. Finally, in the last section the
functioning of the metacontroller is discussed for the target scenarios of robust auton-
omy envisioned.

9.1 An Architecture for Metacontrol

To realise the metacontrol solution proposed in this thesis we have taken an architecture-
based approach. This way, the Operative Mind (OM)1 architecture operationalises the
metacontrol solution for self-aware autonomus systems that have been postulated in

1The name of the architecture comes from the Operative Mind, which is the conceptual framework
that has resulted from analysing the supporting value that biological consciousness renders to the mind
when considered as a controller [67]. Those preliminary notions have eventually resulted in this reference
architecture, and thus we have named it after them.

161

Chapter 9 The Operative Mind Architecture

chapter 6. It defines the structure and internal processes of the metacontroller that
provide the autonomous system with enhanced adaptivity and robustness.

9.1.1 A Reference Architecture

The OM Architecture is a reference architecture as introduced in page 26: it defines
the functional processes, elements, relationships and data flows in a metacontroller.
A key characteristic of the this architecture is that it can be applied to provide meta-
control capabilities to any controller fulfiling a minimal set of requirements, in order
to improve its autonomy. The OM Architecture is intended to be universal: it has
been developed in line with the aim of this work to be of general applicability to any
system. The OM Architecture is independent both of the domain of the autonomous
system (e.g. a mobile robot, an automated process plant, etc.), and the component
platform in which the control system is implemented.

9.1.2 Scope of the OM architecture

The OM Architecture tackles the problem of building a metacontrol subsystem to be
included in the control architecture of an autonomous system, as proposed by the
MetaControl pattern (section 7.3), in order to improve the system’s capability for self-
adaptation. It is a blueprint to guide the building of said metacontrol subsystem and
its integration with the rest of the control system.

There are two requirements that the application of the OM Architecture imposes
on the (domain) control of the autonomous system. Firstly, its is required that the con-
troller be implemented using componentised technology (see section 3.6), e.g. [119].
This is because at the center of OM is the exploitation of a functional model of the
system based on TOMASys, as will be discussed in section 9.3.2, and so it assumes
the system can be represented in that component model. Secondly, the control system
must also offer mechanisms for online monitoring and reconfiguration of the compo-
nents, or at least the possibility to implement them. This is what is known in software
as introspection mechanisms.This implies that this technology for self-awareness —as
realized— is still not universal —as was the initial objective of ASys— because it can
only be applied to certain classes of software-based controllers but not to any kind of
system. For example, it is not easy to use this realization to add self-awareness-based
functional metacontrol to neural network controllers, because these are typically non
componentable and the introspection mechanisms are too low level. The same can
be said about some classes of physically-realised (as opposed to software-realised)
controllers. In these, while strongly componentised, we usually lack the necessary
introspection mechanisms.

However, while the realization in OM is only applicable to certain classes of soft-
ware controllers, the theoretical model is still widely applicable beyond these con-
straints (which are, in fact, not too hard considering the current trends in real-world
controller implementations).

162

9.1. An Architecture for Metacontrol

The metacontrol scenarios

As discussed in section 3.6, the control system of an autonomous system consists of
several software components interconnected in a certain configuration. Unforeseen
events, i.e. uncertainties, can alter the behaviour of that configuration and make it
deviate from its objectives: from slight deviations degrading system’s performance to
lost functionalities or, in the worst scenario, a general system failure.

For example, these uncertainties can be individual component failures in the con-
trol system, or unexpected data flow incoming from the plant, due to unpredicted
events, plant hardware damage or out-of-range circumstances.

The goal of the metacontroller defined in the MetaControl Pattern is to manage the
runtime control system so that it keeps system’s directiveness towards its objectives,
even in the presence of referred disturbances. Within this context, the OM Architecture
has been designed to address the following scenarios regarding the operation of the
system organisation of components:

1. One or several components of the control system undergo a transient failure.
The metacontroller is expected to recover those components from the failures,
maintaining the configuration of components.

2. The system actual configuration is incorrect (for example due to an erroneous
initialisation). The metacontroller fixes the configuration.

3. One or several components undergo a permanent failure and no components that
could perform identical roles are available, that is: the desired configuration of
the system is not feasible. The metacontroller re-designs the system, i.e. by
instantiating a new functional hierarchy, and reconfigures it accordingly.

4. The control system fails to achieve its functional requirements due to an un-
known cause. The metacontroller reconfigures the system following the best
alternative design —i.e. functional hierarchy— available to maintain directive-
ness.

These four scenarios can be reduced to only two, considering how the failure af-
fects the system from a design standpoint:

• Component recovery, corresponding to scenarios 1 and 2, which fall into the
typical fault-tolerance scenario.

• Function recovery, in the case of scenarios 3 and 4, which requires an actual
re-design of the control architecture.

ExampleReconfiguration of the localisation system

Let us suppose that the control system initially consists of the grounding of the
localisation function fd_loc1 of the example on page 154 which uses the laser sen-

163

Chapter 9 The Operative Mind Architecture

sor, so that the domain control system consists of the components shown in figure
9.1(a). In the case of a transient failure of the laser, e.g. due to a synchronisation
problem, a re-initialisation of the laser driver could solve the problem. This corre-
sponds to the first scenario described above. However, in the case of a permanent
failure, e.g. because the physical sensor is disconnected, a simple recovery at the
component level is not possible. This is the third scenario. The metacontroller can
only achieve the localisation objective by configuring the system according to the
function design fd_loc2, which uses the available Kinect component (see figure
9.1(b)), and reconfigures the system according to it.

laser

localization
module

odometry

map

scansodom

kinect laser

localization
module

odometry

map

scans
odom

kinect

(a) (b)

Figure 9.1: Reconfiguration of the localisation subsystem in the event of a permanent laser
failure. The figure depicts the initial configuration (a) and the configuration after the failure and
subsequent reconfiguration (b).

Operational needs for metacontrol

Note that the previous operational scenarios demand the following functionality from
the metacontrol system:

• maintain a representation of the functional design of the control system that is
running at any instant.

• maintain an updated state of the functions for the currently instantiated func-
tional design.

• produce a new instance of a functional design accordingly to the available com-
ponents for the system.

• memory of past reconfiguration actions.

This requirements shall be addressed by the OM Architecture. They can be further
decomposed into the capabilities tree of figure 9.2.

164

9.1. An Architecture for Metacontrol

Maintain best DCS
Functionality

Detect failures Maintain knowledge of
available components

Monitorize DCS
functional state

Instantiate best feasible
DCS functional
configuration

Maintain knowledge
of functional designs

Control DCS components
configuration

Control individual
state of components

Control component
configuration

Monitorize component
configuration

Configure
component

Detect internal errors
in components

Control component
activity

Monitorize
component activity

Figure 9.2: The functional requirements of a metacontroller expressed as a tree
of capabilities.

165

Chapter 9 The Operative Mind Architecture

9.1.3 OM-based metacontrol overview

The OM Architecture consists of a core element, the Metacontroller, responsible for
controlling the control system, connected to the Meta I/O Module, which grounds
its conceptual operation. The MetaInterface specifies the data flows between both
elements. They consists of a sensory flow, for obtaining information about the domain
control, i.e. monitoring, and an action flow, to adapt the control system to the current
circumstances, i.e. reconfiguration.

Let us put in a nutshell how these elements of the architecture, schematised in
figure 9.3, interact. While the control system is running, the Meta I/O module uses
the platform mechanisms to observe and gather monitoring information about it. This
signal is used by the OM Metacontroller to update an integrated model of the compo-
nents and functions of the control system. The current functional state of the system
is evaluated against the required functionality, and corrective reconfiguration actions
are computed if needed. These reconfiguration actions are finally propagated back
to the Meta I/O module, which uses the available platform mechanisms to make the
corresponding changes to the running control system. That is, it activates required
components, deactivates those unwanted, re-connects and changes the parameters of
them as appropriate. All actions are done over components and their connections.

Running control system

OM Metacontroller

Components
Loop

Functional
Loop

reconfiguration
actionsmonitoring

desired configuration

Meta I/O

Goal: components
 configuration

functional action

components action

Goal: engineering
 requirements

functional
model

components
model

components state

Figure 9.3: General view of the OM architecture.

Looking inside the OM Metacontroller, it is organised as a two-layered controller
following the Functional Metacontrol Pattern (page 132): one layer controls the con-

166

9.1. An Architecture for Metacontrol

trol system’s organisation, and the other controls its function2. The activity of both
layers is driven by an integrated model of the function and structure of the control
system, according the Epistemic Control Loop Pattern (page 120).

At the Components Loop, the monitoring information from the Meta I/O is used
to update a model of the control system in terms of its structural organisation. The
resulting estimation of the current state of the components is evaluated against a de-
sired configuration. Reconfiguration actions are determined from that evaluation and
commanded if necessary to the Meta I/O module. A reconfiguration action can consist
of the instantiation of new components, elimination of others, or re-wiring or modifi-
cation of the parameters of those already existing.

At the upper layer, the Functional Loop takes as sensory input the evaluation of
the component’s organisation, and from it updates the functional state of the system
captured by the Functional Hierarchy (described in 155). The hierarchy is evalu-
ated in terms of the state of achievement of the root objectives. If any of them is not
achieved, system design knowledge is used to compute a new configuration for the
control system, which is finally sent to the Components Loop. The Functional Loop
thus performs a very basic “design” activity, using the minimal designs of functions
stored in the TOMASys model to instantiate a feasible design for the complete sys-
tem. The design problem is a hard one; in the OM framework we are tackling a very
simplified version according to the limited scope of the TOMASys metamodel.

9.1.4 Integration of patterns for self-aware autonomous systems

The OM Architecture has resulted from a synthesis combining the four design patterns
presented in Ch. 7: MetaControl, Functional Metacontrol, Epistemic Control Loop
and Deep Model Reflection. Figure 9.4 shows how the progressive application of the
patterns modifies the standard engineering process of building an autonomous system
that was discussed in 7. Each of them contributes to the architecture of the controller
and to its engineering process. Steps 1, 2 and 3 reflect how the application of the
patterns affects the runtime architecture of the control system, whereas the 4th pattern
application affects the development process of the control system:

1. The MetaControl pattern prescribes the division of the control system into two
subsystems, for the different concerns of producing appropriate action on the
application domain, and adaptation action over the control itself.

2. The Functional/Structural Metacontrol pattern structures the metacontrol sub-
system as two layered loops, one of them devoted to the control of the con-
troller’s structure and the other one to its functionality.

3. The Epistemic Control Loop pattern organises the operation of both loops around
a model that contains the knowledge about the structure of the system in terms of
components and how they realise the functions. The application of this pattern

2This is indeed a manifestation of the old philosophical duality of structure/function; note than in OM
we are able to decouple both to improve system autonomy.

167

Chapter 9 The Operative Mind Architecture

renders a model-based metacontroller in which the metamodel determines its ca-
pabilities, in line with approaches in self-adapting software such as [43, 53, 48],
already presented in 5.2.

4. The Deep Model Reflection pattern prescribes the form of the run-time model
used by the metacontroller and how it is obtained. The metacontroller model
must conform to the TOMASys metamodel. This way, if a transformation
model is defined from the engineering modelling language of the controller (the
domain control subsystem) to the TOMASys metamodel, the run-time model
could be obtained by direct transformation from that engineering model, as ex-
plained in the description of the DMR pattern (page 128).

168

9.1. An Architecture for Metacontrol

engineering

runtimeengineering

runtimeengineering

runtimeengineering

runtimeengineering

runtime

MS

CS

Plant

MS
Functions Layer

Components Layer

FL

MP C

T

E

CL

MP C

T

E

Engineering
Model

knowledge

spec

control engineering

Control System

Plant

req

Plant

Metacontrol
Subsystem

transformation

1. Pattern
 MetaControl

2. Pattern
 Functional Metacontrol

3. Pattern
 Epistemic
 Control Loop

4. Pattern
 Deep Model
 Reflection

MS

FL

MP C

T

E

CL

MP C

T

E

Control System

CS

Plant

Patterns
MC
FM

Patterns
MC

Patterns
MC
FM
ECL

CS

Plant

Run-time
ModelOM

Architecture
(MC, FM, ECL, DMR)

OM metacontrol engineering

control engineering

Figure 9.4: Progressive application of the four patterns for self-awareness to the engineering
of a control system. The top left box depicts the traditional engineering of a control system,
whereas the bottom box shows the engineering with the OM framework. Dotted arrows in
between boxes represent the stepwise application of the design patterns.

169

Chapter 9 The Operative Mind Architecture

9.2 Instrumenting the Domain Controller

The OM Metacontroller interacts with the domain control system by monitoring (sen-
sory input) and reconfiguring it (action output). The raw monitoring information avail-
able, as well as the reconfiguration actions that are possible, depend on instrumenting
the implementation technology of the control system, i.e. its component platform
[119]. For that reason, in order to maintain the OM Metacontroller independent of the
domain platform, an interface that defines the monitoring and reconfiguration signals,
the MetaInterface, has been specified. An adapter module is thus necessary to adapt
the available domain infrastructure to the MetaInterface: the Meta I/O module. It plays
the roles of the sensors and the actuators for the OM Metacontroller, as defined by the
ECL pattern (page 120).

OM Metacontroller

Running control system

MetaInterface reconfiguration
signal

monitoring
signal

Meta I/O

filter signal effect signal

Figure 9.5: The signals between the OM Metacontroller and
the Meta I/O module that are specified by the MetaInterface.

9.2.1 Meta I/O Operation

The Meta I/O module is strongly tied to the infrastructure provided by the platform
of the control system, and so the OM reference architecture only prescribes which
behaviour it must exhibit as a black box component. A concrete design for the internals
of this module is presented in 11.4.2, in which the ROS implementation developed for
the testbed of this work is described3.

Regarding its monitoring function, the Meta I/O gathers all instantaneously avail-
able information about the relevant components of the system and sends it periodically
to the Metacontroller. Which components are relevant for monitoring is decided by
the OM Metacontroller based on the knowledge of the components involved in the

3ROS (Robot Operating System) is a state of the art component platform for robotic applications. Note
that OM is general and not necessarily tied to ROS-based control systems. The ROS platform is used in this
thesis as a case study.

170

9.2. Instrumenting the Domain Controller

functions defined by the model of the control system4. It can use the filtering to com-
mand the Meta I/O to filter-out information about certain components, e.g. to save
bandwidth, or to actively gather information about the absence of other important
components. More complex attentional mechanisms could be incorporated.

With respect to its reconfiguration function, the Meta I/O receives from the OM
Metacontroller asynchronous commands to reconfigure the control system. These
commands are only issued by the metacontroller when they are required. The com-
mand consists of a set of actions over components and their connections. The Meta
I/O reports back about the execution of each of those actions through the effect sig-
nal, whether they have been successfully completed, they are still under processing,
or they could not be completed.

9.2.2 MetaInterface

The signals exchanged between the Meta I/O and the Metacontroller modules are spec-
ified by the MetaInterface, which defines the interface that the infrastructure of the
control system must expose to the OM Metacontroller. This interface can be divided
in two, according the monitoring and the reconfiguration services it provides.

Monitoring interface

There are two data flows involved in the monitoring of the control system:

Monitoring signal: contains the monitoring information with the state of the com-
ponents in the system. It consists of a vector of Component Observations:

monitoring signal:= {comp_obs1,comp_obs2, . . .}5

A Component Observation is a data structure that contains information about
the instantaneous state of a component of the control system. It can be con-
sidered as a “normalised” reading of monitoring data, since it only includes di-
rectly observed quantities, without any additional knowledge about the control
system, and it is independent of the technology of that component, contrary to
the reading directly provided by the platform-specific signal from the platform
instrumentation.

A Component Observation contains of the following elements:

• name of the component, which identifies it in the system.

• parameters: it is a vector containing pairs (param_name,value), with the
information of the values of the parameters of the component.

4note that some components and functions may be left out of the model, because they are not to be
controlled by the metacontroller.

5 EBNF-like syntax is used to define signal and data-structures in OM

171

Chapter 9 The Operative Mind Architecture

• ports: a vector containing information about the ports of the component.
Each entry contains the port name, its directionality, the connector it is
connected to and its type.

• log: it is a string containing the latest log entry produced about the com-
ponent, i.e. any information not fitting in the previous fields and admitting
to be stored as a string.

Monitoring information about the connectors between the components is im-
plicit, embedded in the ports section of each Component Observation.

Filtering signal: it contains two vectors: one with the names of the components
about which information is required, the other with the names of the compo-
nents about which information shall be omitted, not being of interest at that
moment for the OM Metacontroller.

filtering signal :=
[

observe := {comp_name1,comp_name2 . . .}
omit := {comp_namea,comp_nameb . . .}

]

Reconfiguration Interface

The Reconfiguration Interface defines the signals that are interchanged between the
OM Metacontroller and the Meta I/O for the execution of reconfiguration actions.

Reconfiguration signal: it is sent from the Metacontroller to the Meta I/O module.
It is a command consisting of a set of reconfiguration actions to be executed on a
corresponding set of components. Each action is defined by a unique identifier,
a type that identifies its nature, and a set of arguments.

reconfiguration signal:= {action1,action2, . . . ,actionn}
action := (action_id, type,args{(arg1_name,value), . . .(argn_name,value)})

The nature of the actions is described later in the component action vocabulary.

Effect signal: the reconfiguration interface includes a feedback signal from the Meta
I/O module to the OM Metacontroller, to inform it about the state of execution
of the commanded actions.

effect signal := {(action_id,action_status), . . .}
action status ∈ {PROCESSING,SUCCESS,FAILURE}

9.2.3 Component Action Vocabulary

The action vocabulary is the set of primitive actions the OM Architecture defines for
the reconfiguration of components. They are:

LAUNCH: initialises and starts the execution of a component.

RESUME: resumes the execution of a component which is initialised.

172

9.2. Instrumenting the Domain Controller

STOP: halts the execution of a component, which maintains its configuration but
loses its internal state.

PAUSE: suspends the execution of a component, which maintains its configuration
and internal state, but produces no output.

KILL: stops and removes a component from the system.

RESET: puts the component in the default configuration (the factory one, not neces-
sarily the one we want it to operate with).

CONFIG: changes the configuration of a component: parameter values and port con-
nections.

Each of these types of actions takes a different number of arguments. The action
types RESUME, STOP, PAUSE, KILL and RESET take a single argument, which is
the name of the component to act upon.

The LAUNCH action takes as arguments:

• a vector of strings containing the deployment information for the component
that is to be launched in each element:

– the name of the Component Class to be deployed,

– the place where to deploy it, typically a computation node.

• a Component Specification data structure, which contains the configuration in-
formation:

– a vector of (param_name/value) pairs with the values for the component’s
parameters,

– a vector of (port_name/connector) pairs with the connections to be set
for the component.

The CONFIG action takes two arguments:

• the name of the component to be reconfigured,

• a Component Specification data structure with the new configuration for the
component. It only contains (name,value) pairs for those parameters and ports
that need to be modified.

This vocabulary could be extended with other possible commands, such as:

SELF_TEST: to initiate a testing process in a component so that it sends current
information to the monitoring infrastructure. A pro-active sensing.

CHECKPOINT: Save a copy of the state to recover it sometime in the future. This can
be used for a pro-active perception of the internal state of the component
too.

TRACE: Use logger component to trace the behavior of the component. A parameter
can be the trace level. This is another “attentional” mechanism affecting the
bandwidth of the input for the perception of the log of the component.

173

Chapter 9 The Operative Mind Architecture

MOVE: to re-deploy a component somewhere different without losing its state.

REPLACE: Ask to negotiate with other component the exchange of roles in a system.

9.3 OM Metacontroller

The OM metacontroller is a model-based cognitive controller, as they have been pro-
posed in our principled approach presented in section 6.1.2. Its goal is to maintain
the functionality of the control system. For that it keeps a representation (the OM
Model) of the functional state of the control system and analyses it to decide if a re-
configuration action is required. The model is constantly updated with the monitoring
information coming from the Meta I/O module. The reconfiguration action is gen-
erated using the design knowledge about the control system that is contained in the
model, and implemented by commanding the Meta I/O module. It may involve the
activation of new components, the elimination of extant ones, and/or, most commonly,
the re-configuration of the components, by changing the values of their parameters
and/or their connections to others.

OM Metacontroller

Running control system

Components
Loop

Functional
Loop

TOMASys
model

reconfigurationmonitoring

desired
configuration

:

functional
state

Meta I/O

:

components
state

Goal: components
 configuration

Goal: root objectives

Perception Control

Perception Control

Evaluation

Evaluation

filter signal
effect signal

Figure 9.6: The main elements of the internal structure of the OM Metacon-
troller. Both the Components and Functional loops follow the ECL pattern.

174

9.3. OM Metacontroller

9.3.1 Epistemic Control Loops for metacontrol

The OM Metacontroller is organised according to the ECL pattern: the perception,
evaluation and control activities are integratd and coorditaned through the central OM
Model. However, it does not consists of a simple ECL unit. The OM Metacontroller
consists of two layered control loops, following the Functional Metacontrol pattern.

The upper loop, the Functional Loop, has the target goal of achieving the root ob-
jectives of the autonomous system. The lower layer, the Components Loop, functions
as a servo-controller, trying to maintain the configuration of the system compliant
with that commanded from above. Each loop is an ECL unit that exploits a shared
TOMASys model of the control system. Their operation is detailed in sections 9.4 and
9.5.2, which discuss the details of their perception, evaluation and control activities.

Note that the Components Loop is a feedback loop —i.e. it is always late in its
response—, reacting to components’ failures or undesired states. However, the Func-
tional Loop can be feedback, reacting to current functions’ failures, but also anticipa-
tory, correcting in advance functions’ failures that are not present but predicted from
the causal relations in the functional hierarchy.

9.3.2 OM Model

The cornerstone of the operation of the OM Metacontroller is the Model of the control
system: it is the knowledge exploited according to the Epistemic Control Loop pattern.
The OM Model is an integrated model of the functions and components of the con-
troller, and is shared by the Functions and Components loops. The OM Model consists
of data structures that contain static and dynamic information about the operation of
the control system in terms of its functional and components structures.

On one hand, it is a symbolic representation that conforms to the TOMASys meta-
model, which provides the domain ontology knowledge for the OM Metacontroller. It
defines the entities that exist in the plant —i.e. functions and components— their prop-
erties and relations —i.e. parameters, ports, connections, solve and require relations—
and the basic semantics for them.

On the other hand, the OM Model is organised according to the ECL Knowledge
Repository design pattern for cognitive controllers compliant with the ECL pattern.
This structural pattern organises the elements in a repository for their use in an ECL-
based controller. In addition, the KR pattern defines semantics for the model elements
for the ECL controller (in this case the OM Metacontroller) to operate with them in
the control loop. These semantics are specified by the ECL Metamodel.

We can represent these considerations about the OM Model in a metamodelling
relation in which any OM model conforms to the OM Metamodel, whose elements
inherit properties from both the TOMASys metamodel and the ECL Metamodel (see
figure 9.7). This way the Model in an OM Metacontroller integrates the operational se-
mantics and organisation specified by the ECL Metamodel and the Knowledge Repos-

175

Chapter 9 The Operative Mind Architecture

itory pattern, with the domain ontology and semantics about autonomous system or-
ganisation and directiveness defined by the TOMASys metamodel.

OM Model

< conforms-to >

TOMASys ECL
Metamodel

OM Model

< conforms-to >

TOMASys ECL
Metamodel

OM Metamodel< conforms-to >

Figure 9.7: The metamodelling approach enforced by the ECL KR pattern as it
has been applied in OM to produce the OM Metamodel.

ECL Knowledge Repository and Metamodel semantics

Let us start by briefly discussing the ECL KR pattern. The ECL Knowledge Repository
is a pattern that structures the Model of an ECL unit as a repository (KR) of data
structures that contain symbolic representations of the plant.

The elements of the Knowledge Repository are knowledge atoms or simply atoms ,
and other conceptual quantities corresponding to simpler pieces of information.

knowledge atom: atomic piece of data in the KR . It is a chunk of information or
knowledge characterised by having semantics for its perception and evaluation.

There are two types of of atoms in the Knowledge Repository :

state atom: is an atom of knowledge that describes the state of an instance in the
plant, be it actual or desired, e.g. a goal. This instance can be as simple as a
single quantity or variable, such as the temperature, or as complex as a complete
entity, e.g. an obstacle, in which case the state atom may include several fields,
e.g. geometric position, size, colour, etc., for representing the relevant quantities
of the entity. These fields containing the instantaneous state of the atom are
domain dependent and they are specified by the type of the state atom if known,
which is a concept atom.

concept atom: contains static, long-term knowledge about the entities in the world
and their properties, or procedural knowledge about actions. This way, concept
atoms contain the implementation of the semantics for the types of entities in
the plant, for example by defining methods like the following:

• recognise(atom) gives a value related to the membership of the atom ele-
ment passed as parameter to the type of entity defined by the knowledge

176

9.3. OM Metacontroller

atom.

• measure(atom1, atom2) contains the metrics for comparing two entities.
If they pertain to the same type of entity, and their state is measurable,
the difference between them is given, in addition to a measurement of that
difference in the real interval [0,1] with 0 representing the case the two
atoms are identical.

Knowledge Database

long-term
knowledge

instantaneous
knowledge

state atom

concept atom concept atom

state atomstate atomstate atom

estimated statestate atom

Figure 9.8: The entries in an
ECL Knowledge Repository

According to these two basic types of entries, the knowledge in the KR is divided in
two parts:

instantaneous information: it includes information about instances in the plant. It
consists of state atoms and associated entries. They may refer to the current state
of the plant, a past one or predictions of future or hypothetical states and enti-
ties. It encompasses the two packages of knowledge usually named in cognitive
architectures as the immediate experience and short term memory. Information
about the current course of actions is also part of the instantaneous information
stored in the KR.

long-term knowledge: it is made of the concept atoms. It contains more permanent
information about the types of entities that exist in the plant, their properties
and their behaviour. The long-term knowledge also includes procedural knowl-
edge: types of actions, inverse models about actions’ effects, and algorithms
and domain heuristics related to action decision and planning.

The knowledge repository contains two static elements that are fundamental in the
operation of the ECL unit:

Estimated State: it is the set of state atoms that account for the representation of the
current state of the plant.

Goal: it is a set of state atoms that represent the desired state of the plant that the ECL
unit is designed to achieve or maintain.

177

Chapter 9 The Operative Mind Architecture

Domain-specific semantics for evaluation need to be provided so as to measure the
difference between the estimated state and the goal , or error signal .

Following we present the definition of the KR elements and their semantics that
we have developed for the domain-specific case of the OM Model.

OM Model elements

Considering the OM Model a particular case of an ECL KR repository, its elements
are particular instances of the TOMASys elements, extended with the operational se-
mantics discussed before.

OM Model

instantaneous
knowledge

long-term
knowledge

Functional
Hierarchy Configuration

C2 : ComponentClass
fd2 : FunctionDesign

C1 : ComponentClass
fd1 : FunctionDesign

functions components

f2 : Function
f1 : Function

Figure 9.9: The elements in the OM Model.

This way, in the OM Model the state atoms in the instantaneous knowledge
are instances of the following OM Metamodel elements: OMComponent, OMPort,
OMParameter, OMObjective and OMFGrounding, which inherit their properties from
the corresponding TOMASys elements. They represent the current configuration
and functional hierarchy of the autonomous system.

Correspondingly, the long-term knowledge contains instances of the following
conceptual atoms : OMFunction, OMFunction Design, OMRole, OMComponent-
Class, OMParameter and OMPortProfile. The autonomous application-specific knowl-
edge is captured in the TOMASys Application Domain Model discussed in page
140. These metamodelling relations are identified in figure 9.10. The OM Model
contains not only information about the elements that conform the control system,
but also semantics for them. Part of these semantics are embedded in the OM Meta-
model, but another part is defined for the concrete system. These semantics include the
TOMASys Application Domain Model, but also rules for perception and action related
to the ECL-based operation of the OM Metacontroller. For example, the rule that two
components are of the same ComponentClass if they have the same profiles of ports
and parameters reifies a perceptive function for categorization. The rule to decide if

178

9.3. OM Metacontroller

two OMComponent atoms correspond to the same component in the control system,
for example if the values for their parameters and ports are the same, corresponds to
a possible perception function of identification. Using the mismatches between two
components can be used as an evaluation function to check if an OMComponent
atom satisfies an OMComSpec.

OM Model

TOMASys ECL Metamodel

OM Metamodel

semantics for the
specific application

control system

default semantics
for the domain of

components

Application-Domain
Model

ECL operational
semantics

< implements >

< refines >

Figure 9.10: Metamodeling relations of the OM Model. The OM Metamodel
implements default semantics for ECL operations, and also for the TOMASys
ADM. These semantics can be further refined in the concrete OM Model for the
autonomous system.

The knowledge in the OM Model is divided in terms of elements that represent
the functional design of the system, used by the Functional Loop, and elements that
capture its grounding in terms of components, which is the responsibility of the Com-
ponents Loop. A more detailed explanation of how each one of the loops uses its
corresponding part of the Model is given in the following sections.

OMComponentSpecification: linking Functional and Components loops. A spe-
cial element, with no corresponding TOMASys counterpart, has been added to the OM
Metamodel: the OMComponentSpecification (or OMCompSpec for brevity). This el-
ement encodes the specification of a configuration for a component. It encapsulates a
specification of the properties of the component that corresponds to its configuration,
i.e. port connections and parameter values, and not to its internal state. It includes
two additional properties: a compliance(spec, s) function, that defines the semantics
to compute for a given OMCompSpec atom spec, if it is satisfied by another atom s,
which can be either another specification, or an OMComponent representing an actual

179

Chapter 9 The Operative Mind Architecture

component in the system. Let us remember that a TOMASys role defines a template
specification of a component that participates in a Function Design. In the binding
when the Function Design is grounded, that templatized specification corresponding
to the role is given concrete values and becomes an actual specification. This is what
is represented in the OM Metamodel by the OMComponentSpecification modeling
element.

status : {ACHIEVED, ERROR}

compliance(spec1,spec2) [default] =

OMComponentSpecification

parameters : OMParameters[]

type : OMComponentClass

ports : OMPorts[]

if spec1.type != spec2.type
 return 0
if spec1.ports[] != spec2.ports[]
 return 0
if spec1.params[] != spec2.params[]
 return 0
else
 return 1

Figure 9.11: Properties of
the OMComponentSpecifica-
tion metamodel element.

The OMCompSpec allows to decouple the Components and the Functional loops
(figure 9.12). On one hand, the goal of the Components Loop is defined by a set of
atoms instances of OMCompSpec, which represent a desired reference configuration
of the system. At runtime, the OM Metacontroller updates the status of these specifi-
cations by evaluating if the estimated state of the configuration of components in the
system satisfies it (arrow lines from the atoms in the Components Configuration Esti-
mated State to the specifications in the Components Goal). On the other hand, at the
Functional Loop, within the bindings defined by the function groundings in the Func-
tional Hierarchy, the roles have as realisers the OMCompSpec instances that compose
the Components Loop goal.

Functional Hierarchy
Estimated State

Components Configuration
Estimated State

Components Goal

bindings =

fg1 : FunctionGrounding

fg0 : FunctionGrounding
bindings =

b3 spec3r03

spec2

spec1

realiser

r02b2

role
r01b1

role
spec4r1b4

realiser

spec1 : OMCompSpec

spec2 : OMCompSpec

spec 3 : OMCompSpec

spec4 : OMCompSpec

odometry
: OMComponent

map_server
: OMComponent

sicklms
: OMComponent

amcl_node
: OMComponent

Figure 9.12: The specifications in the Components Goal relate the estimations
of the actual components in the system with the roles they fulfil in the functional
hierarchy.

180

9.3. OM Metacontroller

ExampleOM Model of the localisation subsystem

The OM Model of the localisation subsystem contains elements that represent
the configuration of components and the functional hierarchy as described in the
examples of chapter 8. They are shown in figure 9.13

The ECL semantics are provided by the information corresponding to the
TOMASys Application Domain Model.

fg1 :
OMFunctionGrounding

o1 : OMObjective

o0 : OMObjective

fg0 :
OMFunctionGrounding

requires

realises

realises

Functional
Hierarchy

f1 : OMFunction

fd_loc :
OMFunctionDesign

fd_laser :
OMFunctionDesign

f0 : OMFunction

solves
realisation

requires

solves
realisation

odometry
: OMComponent

map_server
: OMComponent

sicklms
: OMComponent

ports =

amcl_node
: OMComponent

laser
: OMComponentClass

odometry
: OMComponentClass

map_server
: OMComponentClass

localisation_module
: OMComponentClass

es
tim

at
ed

 s
ta

te
lo

ng
-te

rn
kn

ow
le

dg
e

functions components

Figure 9.13: Example: OM Model of the localisation subsystem.

181

Chapter 9 The Operative Mind Architecture

9.4 Components Loop

The Components Loop is an ECL unit that targets as goal a certain desired config-
uration of the control system. To achieve it, the Components Loop senses the cur-
rent system configuration using the Monitoring interface of the Meta I/O module, and
manipulates the current configuration of components using the Reconfiguration Inter-
face. The Components Loop follows a feedback schema and its operation consists of a
periodic executive cycle of sequential ECL activities: perceive→ evaluate→ control.
In this section we describe the different ECL processes involved in the Component
Loop operation, which are sketched in figure 9.14.

OM Model

g0 : ComponentsGoal

spec2 :

spec1 :

long-term knowledge

cclass2 : OMComponentClass

cclass1 : OMComponentClass

Components Configuration
Estimated State

c2
: OMComponentc1:

OMComponent

monitoring
signal

Perception

filter signal

Control

Evaluation error signal

reconfiguration
signal

Meta I/O

effect signal

Reconfiguration Plan

a2 :
Reconfiguration Actiona1 :

Reconfiguration Action

External
Perception

Proprioception

plan update

re-plan

execution

Figure 9.14: Basic model elements, processes and flows of information in the
Components Loop.

9.4.1 Components Model

The knowledge exploited by the Components Loop are instances of elements in the
OM Metamodel that inherit from TOMASys organisational elements: Components,
Connectors, Component Classes, etc.

Components Goal: the goal of the components loop is a set of component speci-
fications, which represent the desired configuration of the control system <
spec1,spec2, . . . ,specn >

Each specification is an atom instance of the OMComponentSpecification

182

9.4. Components Loop

The Components loop works as a servo-controller acting to make the estimated
configuration of components coincide with the one specified in its goal.

Estimated State: the estimated state in the Components Loop is a TOMASys configuration
of components: < component1,component2, . . . ,componentn >, representing
the current state of the components of the control system.

Long-term knowledge consists of concept atoms that are instances of the OMCom-
ponentClass, and other atoms that define their properties, e.g. instances of OMPort-
Profile and OMParameterProfile. These atoms define the properties of the components
in the autonomous systems: their parameters, the ports they expose, and their error
models.

The OMComponentClass provides a default failure model for components. It
specifies that if any of the connectors of the input ports has no components connected
with an OK status (i.e. the component is not receiving any of its required inputs), or
an internal failure has arisen, then the component is in FAILURE. This general failure
model may be overridden if a particular one is defined in the OMComponentClass
atom of the component.

In the OM Metamodel, TOMASys elements have been augmented with seman-
tics for perception and evaluation. These will be discussed later when presenting the
perception and evaluation activities performed in the Components Loop.

ExampleRepresentation of a laser sensor in the OM Model
Let us detail the representation of one of the components of the localisation sub-
system, for example the laser sensor.

The state atom sicklms encapsulates the information about the instantaneous
state of the laser sensor:

log = -empty-

status = OK

ports =

parameters =

type = laser

sicklms : OMComponent

value = 19200

profile = baudrate

bd:OMParameter

connector = scans

profile = scan

scan_out:Port

value = "/dev/ttyS0"

profile = uri

device_port:OMParameter

Figure 9.15: Example: the estimated state of the laser sensor.

The knowledge about the characteristics of the sensor, e.g. the types of its
parameters and ports, its failure models, is coded in the concept atom laser:

183

Chapter 9 The Operative Mind Architecture

laser : OMComponentClass

fm(laser_comp, log) =

ifm(laser_comp, log) =

portProfiles =

parameterProfiles =

availability = AVAILABLE

measure() = ...

baudrate:OMParameterProfile

type = "double"

measure(a,b) =

quantity = "scanReading"

direction = OUT

scanPort : OMPortProfile

allowedValues = [0.20, 10]

measure() = ...

scanReading : Quantity

measure() = ...

uri:OMParameterProfile

type = "string"

if a.direction == b.direction
 return 0
else
 return 1

recognise(aclass, acomp) [default] =

measure()

fm() : {OK,ERROR}

portProfiles

availability

ifm() : {OK, ERROR}

OMComponentClass

parameterProfiles

if acomp.ports.type[] != aclass.portProfiles[]
 return FALSE
else
 return TRUE

if log == "device disconnected"
 or log == "initialize failed"
 return laser_comp.status = ERROR

if log == "device disconnected"
 or log == "initialize failed"
 return laser_comp.scanPort.status = ERROR

Figure 9.16: UML-like representation of the conceptual atom that stores the knowledge about
the robot’s laser sensor.

The ifm and fm failure models that the laser OMComponentClass implements
are those described in the example about failures models in page 149.

An example of application-domain metrics is shown in the scanPort concept
atom. This element encodes the knowledge about the output interface of scan
range sensors.

For the moment, the Application Domain Model is basically limited to infor-
mation about the organisation elements (concept atoms of type OMComponent-
Class).

9.4.2 Components Perception

At the beginning of each operation cycle, the Components Loop updates the estimated
state and the availability of components in the system. The first objective is achieved
using the Meta I/O monitoring, whereas for the second one the effect signal is also
used. From a cognitive control point of view we could talk of two different perceptual
activities: external perception in the first case, and proprioception in the second.

184

9.4. Components Loop

External perception

The external perception process updates the estimated state in the Components Loop
at each cycle, using the monitoring signal incoming from the Meta I/O. This process
follows the perception model of López [90], depicted in figure 9.17.

According to López’s model, the perceptive process of an autonomous system
analyses the values of environment magnitudes arriving to the sensors, which is called
proximal stimulation, and generates a representation in the system, i.e. a percept.

The perceptive process identifies and characterizes the presence of certain entities
in the environment. These entities concepts that are relevant for the objectives of the
system, and are called referents of the perceptive process. When an instantiation of a
referent is identified in the environment and characterized, it is conveyed to the system
through the representation system as a perceived object or percept.

Referents usually cannot be sensed directly, but inferred from a series of patterns
in the proximal stimulation input which are singular to them. These are called the
singularities.

A generic perceptive process will then present two phases. First, identifying sin-
gularities in the proximal stimulation, and then associating them to the existence of
instantiations of the referents in the environment. The first phase shall be called prox-
imal information processing. The second, cognitive information processing.

4.3. SUBPROCESSES OF PERCEPTION

Referents may be highly abstract concepts in some systems (e.g. beauty, wisdom, etc.), so that

they cannot be directly sensed, but inferred from a series of characteristics in the current state of the
environment which are singular to them. These shall be called generically singularities, a
generalization of other concepts used for biological and artificial systems (cues, invariants, features,
geons).

A generic perceptive process will then present two phases. First, identifying singularities in
the proximal stimulation, and then associating them to the existence of instantiations of the referents
in the environment. The first phase shall be called proximal information processing. The second,
cognitive information processing.

Figure 2: Phases of a perceptive process and related concepts. Over the arrow the generalized concepts considered here
are indicated. Below, particular, related notions extracted from the literature.

The singularities considered by a perceptive process determine its capacity to perceive in the

same way as referents. Abundant and developed singularities may contribute to more efficient
cognitive information processes, while few and primitive singularities may result insufficient to
perceive.

It is worth mentioning that singularities in some artificial and biological systems are detected
immediately by the sensors. Some sensory systems, such as the human eye for example, react to
certain events in the proximal stimulation which stand for singularities (e.g. movement). This is the
foundation for theories like the ecological approach [2], in which cognitive information processing
is neglected.

4.3. PERCEPTION IN TIME

We have seen that, in general, a perceptive process performs operations of two kinds, directed

to detecting singularities in the proximal stimulation, and inferring the presence of objects in the
environment from them. During the evolution of a system, perceptive processes in time may adopt
many forms, depending on the topology of the functional structure, the capacity of the system, the
current objectives, etc.

Thus, a perceptive process will not always result in a sequence of a proximal and a cognitive
information phase. It may require several phases of either. For example, several phases of proximal
information processing in order to refine the analysis of a proximal stimulation, or to obtain
singularities from a sequence of stimulations.

Figure 9.17: Phases and main elements of a perceptive process, from [90].
Over the arrow López’s terms are indicated. Below, alternative terms from the
literature.

In an OM Metacontroller, the sensory processing is performed at the Meta I/O,
and results in the component singularities that conform the monitoring sugnal. The
external perception thus consists of the cognitive perception, in which the monitoring
signal is processed to identify in it the components of interest in the system, which are
the referents of the perception process. These referents include the OMComponent
atoms in the currently estimated state, the OMComponentSpecification instances in

185

Chapter 9 The Operative Mind Architecture

the Components Goal, and the OMComponentClass concept atoms corresponding to
both sets.

For each component observation in the monitoring signal the process results either
in an update of the information of one of the components already in the estimated state,
or in the generation of a new OMComponent entry in the estimated state. The external
perception follows the following activity flow:

1. Update referents with the components in the estimated state and in the current
Components Goal. Additionally, a filtering signal is produced from the refer-
ents, containing the names of the referents, and it is sent to the Meta I/O.

2. For each Component Observation (CO) in the monitoring signal, the following
actions are performed:

(a) Identification: identify if the singularity corresponds to one of the referent
instances. For this, the identification model for Components is used.

(b) if the Component Observation is identified as corresponding to a Compo-
nent in the estimated state, that Component is updated with the information
in the singularity.

(c) if not, then:
the observation is matched against the OMComponent lass atoms corre-
sponding to the classes of the referents using their recognition model. If
the singularity is recognised as corresponding to a component instance of
one of the classes, then a new OMComponent instance of that class is
added to the estimated sate, and filled with the information of the singu-
larity.

Proprioception

The effect signal containing the feedback about the execution of reconfiguration ac-
tions is asynchronously received from the Meta I/O. These feedbacks are buffered and
processed in each cycle of the Components Loop after the monitoring signal. Two
different perception activities are performed over the different feedbacks contained in
the effect signal:

• The status of the reconfiguration actions issued is updated according to the feed-
back, e.g. if an action has been successfully completed, or if its execution has
failed; this process is described in detail in page 189.

• The feedback information about the failure of an action usually conveys infor-
mation about the component over which the action was performed. For exam-
ple, if the execution of a LAUNCH action over a component could indicate that
its corresponding Component Class is no longer available. The OMCompo-
nentClass extends the ComponentClass, adding an availability() function to
it, which adds more knowledge about the class of component, in addition to
the error models already defined by TOMASys. This function takes as input

186

9.4. Components Loop

the entries in the effect signal corresponding to components that are instances
of the OMComponentClass, and associated log information in the monitoring
infrastructure, and updates its status of availability accordingly.

9.4.3 Component Evaluation

After an estimation of the current state of the system configuration is obtained in the
perception process, the state of achievement of the Component Goal is assessed ac-
cordingly. Let us remember that the Goal of the Component Loop consists of a set of
OMComponentSpecification atoms, which encodes a desired configuration of com-
ponents in the control system. The complies() functions of the specifications are used
as evaluation policies to determine, for each OMCompSpec, when an OMComponent
atom in the estimated state fulfils it.

The set of evaluation policies is computed at the functional level from the com-
pliance functions of the roles that define the desired configuration. This is explained
later in section 9.5.3.

The evaluation process can be decomposed in two steps:

1. Firstly, an error signal is computed as the difference between the estimated state
and the Component Goal. For this measurement metrics for components are
defined in the domain application model, included as measure(c1, c2) func-
tions in each OMComponentClass, which output the differences between two
OMComponent atoms.

2. Assess the fulfilment of the Goal according to the difference, by using the eval-
uation policies for each specification in the goal.

Error Signal

For the computation of the error signal, specific metrics for the domain of components
are provided in the OM Metamodel as part of the TOMASys Domain Application
Model. Besides, the Difference metamodel element has been added to account for
distances between instances of the Organisational elements of TOMASys. A Differ-
ence knowledge atom represents the relation between two atoms of the same type, for
example a parameter, being the one corresponding to the Component in the goal the
origin, and the one in the estimated Component the end point. The Difference also has
the attribute n_diff, which is a numerical value of the difference in the range [0..1].
The n_diff is determined by metrics for that element defined in the application
domain model.

The error signal is a vector that contains one element per each entry that specifies
a component in the component goal. Each element can be either null if there is a
component in the estimated state that fulfils the goal, or a Component Difference
otherwise.

187

Chapter 9 The Operative Mind Architecture

error_signal =<ComponentDi f f erence1, . . . ,ComponentDi f f erencen >

if there are n component specifications in the goal.

A Component Difference is a data structure consisting of a vector of differences
between the specification and the component in the estimated state that is considered
to correspond to that specification.

Supposing that there are m differences in between the ith component specification
and its corresponding component in the estimated state:

ComponentDi f f erencei =< di f f erence1, . . . ,di f f erencem >

Evaluation

For each specification in the current goal, the associated Component Difference with
the estimated state is evaluated according to the evaluation policies provided with the
specification. The evaluation policies are functions:

eval : C→ [0,1]
that define for each component if it fulfils the specification (C is the set of all compo-
nents).

A very simple example of evaluation policy could define that if there is any dif-
ference, as obtained in the error signal using the domain metrics, then the component
does not comply with the specification (eval = 0).

A more complex example of evaluation policy could use the sum of the numerical
differences obtained between the component and the specification, and compare it
with a certain threshold value, below which the specification would be considered
as achieved (eval = 1). This evaluation policy can be formalised with the following
equation: ∆i = ∑k δk ·wk

if ∆i ≥ σ → the specification is not achieved

where:
∆i is the numerical value computed for the ComponentDifference of the ith component
specification
δk is a numeric value for each Difference entry in the ComponentDifference (provided
by the Component Metamodel)
wi is a weight defined by the evaluation policies of the specification
σ is the threshold defined for component specifications

The result of the evaluation processes is a set of evaluations that contains, for each
specification in the components goal, a status value ∈ {OK,ADDRESSED,ERROR}
that defines if the specification is achieved, and an error signal, which is used in the
control process to compute corrective reconfiguration actions.

The status of an specification can be OK if it is achieved, ADDRESSED if it is not
but there is an ongoing action to achieve it, or ERROR if it is not achieved.

188

9.4. Components Loop

ExampleHere is an example of the evaluation of an entry in the specifications of the
Components Loop goal that specifies a laser component in the desired configura-
tion. It is depicted in the specification on the right, whereas the corresponding
entry in the estimated state is shown on the left.

c1 : Component
name ’sicklms’
type laser
ports scan
parameters baudrate = 19200

cs1 : ComponentSpecification
name ’sicklms’
type laser
ports scan
parameters baudrate = 19000

Let us consider that for the Parameter Profile baudrate we define domain
metrics such that the numerical difference is 0 only if the two values of the baudrate
parameter are equal, and it is 1 in any other case. The corresponding entry in the
error signal vector would be:

ComponentDifference
param. - baudrate n_diff = 1

The evaluation of c1 according to the specification cs1 —following policies like
those previously described— would be:

∆i = ∑k δk ·wk = 1 ·0.1 = 0.1→ specification not achieved
where:
δk = 1 the difference corresponding to the baudrate parameter
wi = 0.1 given than a different baudrate may not be acceptable
σ = 0.1 is the default threshold for component specifications

9.4.4 Components Control

The Component Loop computes, at each cycle, a control action that is the reconfigu-
ration signal sent to the Meta I/O module. The reconfiguration required may involve
different actions over different components. These actions may not be independent
one from another; e.g. the reconfiguration of a component may require that those
components using its outputs shall be restarted afterwards. That is, reconfiguration
actions shall be executed following a plan.

For this reason the Component Loop uses an action-planning pattern to compute
and execute its control action.

At each cycle, the control process takes as input the current error signal, and com-
putes a reconfiguration plan. Then it sends the reconfiguration command to the Meta
I/O module.

The reconfiguration plan stored in the Components Loop consists of a set of Re-
configuration Actions. Each action is computed for one of the specifications and may

189

Chapter 9 The Operative Mind Architecture

require other actions.

Reconfiguration
Plan

type

specification

status

Reconfiguration
Action

requires

Figure 9.18: UML class diagram showing that the Reconfigu-
ration Plan is composed of Reconfiguration Action atoms.

The control process then involves three activities: reconfiguration plan update,
re-plan and action execution. Following we describe step by step the whole process.

1. First, the action feedback is processed, and the status of the actions in the reconfig-
uration plan is updated accordingly (see figure 9.19):

• if a success is received for an action a1:

– the action is eliminated from the current plan.

– the action is eliminated from the set of required actions of those that re-
quire it.

• if a failure is received for an action:

– the action is eliminated, and the associated specification status becomes
ERROR.

– all the actions required by a1 and requiring a1 are canceled and eliminated
from the reconfiguration plan.

2. Re-plan: the error signal is processed to compute new actions and include them in
the current plan if needed:

• if the specification is achieved, all waiting actions related to it in the reconfigu-
ration plan are cancelled. Any processing actions are allowed to finish.

• if the specification is not achieved and it has not been addressed, a suitable ac-
tion plan is computed. An action plan contains a set of actions that achieves the
specification. To obtain the plan, the inverse model of the Component Class of
the component the specification refers to is used. This inverse model is defined
in the application domain model and specifies the action commands that
can be applied to reduce or eliminate a difference.

190

9.5. Functions Loop

• if the specification is not achieved but it has been addressed, and thus there are
processing or waiting actions in the current plan to achieve it, nothing is done.

State Machine for a
Reconfiguration Action

Waiting

Done
failure

Processing

[no required actions]

action
feedback received

(fail)

Done
success

action
feedback received

(success)

/ cancel actions
requiring

(action computed)

(action eliminated)

/ remove from actions
requiring

action
cancelled /

cancel actions
requiring

Figure 9.19: The different states of a Reconfiguration Action computed, and
the transitions between them.

3. Finally, all those actions in the reconfiguration plan that have left the waiting state
because they do not require any previous actions are added to the reconfiguration sig-
nal and sent to the Meta I/O module.

9.5 Functions Loop

The Functions Loop is another ECL unit on top of the Components Loop, and is
responsible of maintaining the grounding of functions that best fulfils the control sys-
tem’s requirements, i.e. its root objectives.

Functional Goal: the goal of the Functions Loop is to guarantee that the root objec-
tives can be achieved.

To achieve this goal the Functions Loop commands the Components Loop an ac-
tion consisting of a certain desired configuration of components that best fulfils the
root objectives. This desired configuration is a set of Component Specifications
that define the desired configuration for the components of the domain control system.
These specifications define the minimal set of components that grounds all the func-
tions that address the system’s root objectives. The Functions Loop receives as sensory
input from the Components Loop the evaluation of the specifications with the current
estimated state of components. From it the Functions Loop updates the state of the
Functional Hierarchy of the system, assesses how well it achieves the root objectives,
and computes any required design reconfiguration.

191

Chapter 9 The Operative Mind Architecture

9.5.1 Functions Knowledge

The knowledge exploited by the Functions Loop contains instances of the functional
elements of TOMASys: Objectives, Functions, Functions Designs, Functions Ground-
ings, etc.

Estimated state: the estimated state at the Functions Loop consists of state atoms
representing the instantaneous Functional Hierarchy of the system, and
thus are instances of Objective and Function Grounding metamodel types.

The long-term knowledge at the Functions Loop consists of the functions that
can be grounded in the system to realise its functionality. It thus consists of a set of
Functions Designs, the Functions they realise, and the Roles they define.

The TOMASys model defines some of the semantics for these elements, which
define the perception and evaluation processes at this functional level. These semantics
are complemented with application-specific ones, defined in the domain application
model. They are encoded in the compliance functions of Roles, and the error models
of Function Designs. They are described in the following sections.

9.5.2 Functions Perception

The perception process in the Functional Loop updates the functional knowledge in
the OM Model, both instantaneous and long-termed. It involves two activities: up-
dating the currently estimated state of the system at the functional level, which drives
the behaviour of the Functions Loop, and updating the functional knowledge, which
constrains that behaviour. The estimated functional state drives the behaviour of the
Functions Loop, because it generates control actions to achieve the root objectives.
The functional knowledge constrains that behaviour because the functional ground-
ings decided by the Functions Loop must be realisable, for example because only
available Functions Designs can be grounded.

These perceptual activities take place at the beginning of each cycle in the Func-
tions Loop. Following we describe both.

Estimating the functional state: update the Functional Hierarchy

As previously commented, at the Functional Loop the estimation of the state, obtained
by the perceptual activity, consists of the upstream propagation of the status of the
elements of the Functional Hierarchy of the system. This eventually determines the
state of the root objectives, which is the goal of the loop.

The Functional Hierarchy is a set of Objectives and Function Groundings related
by requires and realises associations, going downstream from the root objectives.
The perception process of the hierarchy thus consists of the partial update of the status
of the elements in the hierarchy considering their internal failure models, and their
integration, as depicted in the activity diagram shown in figure 9.20. The sensory

192

9.5. Functions Loop

input used in this perceptive process is the evaluation produced at the Components
Loop: the status of the component specifications and the associated estimated state of
components.

faults : set of fg
[fg.error()]

set of
spec.error

Objectives
Exteroception

FunctionGroundings
Propioception

updateHierarchyStatus Figure 9.20: Activity diagram
of the update of the Functional
Hierarchy.

Update of the status of the Function Groundings: The status of the ffunction
groundings is updated using the compliance functions of their roles and their inter-
nal failure models (defined in their respective Function Designs), the input being the
updated state of the Components Specifications in the Component Goal, which is pro-
duced by the evaluation at the Components ECL. A default internal failure model can
be used, which consists of the following rules:

• a binding is in error if the component that fulfils the specification, which in
turn plays the Role, is in INTERNAL_FAILURE. This is a default compliance
function for Roles.

• a function grounding is in internal error if any of its bindings is in error.

• additionally, a Function Grounding becomes in PERMANENT_FAILURE
if the Functions Design it realises is UNREALISABLE.

More complex compliance functions and internal failure models could be consid-
ered so, that, for example, transitory error states are ignored, and a Function Ground-
ing does not become in FAILURE unless one of its bindings has been in ERROR for
more than a certain time.

Update the status of Objectives: Some of the objectives in the functional hierarchy
could be observable. For example, in the case of the sample localisation subsystem, a
software instrument can be implemented to detect whether an estimation of the robot
position is computed with the desired frequency. This is the case in which the objective
directly refers to a conceptual quantity in the control system, that is a TOMASys
connector. For an objective to be observable a perception model must be provided

193

Chapter 9 The Operative Mind Architecture

for the objective function, and the sensing information it requires must be available.
These requirements are application specific.

The case of updating the status of an objective from internal signals that refer to
connectors can be considered as a case of direct observation. There are cases in which
log information of the components that realise the design grounded to achieve the
objective can be used to detect if the objective is being achieved or not. This saves the
implementation effort of building probes. In the case of our localisation subsystem,
the log of the localisation component provides error messages that inform whether an
estimation is being produced or not.

Direct observation: the perception model uses readings of the quantities the objec-
tive refers to.

Indirect observation: the perception model uses other information, for example log
information in the components that interact with the objective’s referred quanti-
ties.

Integration: The integration of the information of the status of Objectives and Func-
tions Groundings is done through their error models, which define their status as a
function of the status of their realiser Function Grounding or their required Objectives,
respectively. It thus consists of an upstream propagation of errors in the Functional Hi-
erarchy.

The following default error models have been defined in the OM Metamodel, im-
plemented as a set of logic rules:

OMFunctionGrounding: a function grounding is in error if any of the objectives it
requires is in FAILURE state.

OMObjective: an objective is in FAILURE if its realising function grounding is in
FAILURE or ERROR status. This error model for objectives is actually implicit
in TOMASys.

Example Functional perception of the laser failure
Let us explain how the perception of the state of the functional hierarchy proceeds,
taking the localisation subsystem and a permanent failure in the laser sensor.

The failure of the sicklms laser component scales up to the function level by
causing its associated OMCompSpec in the Goal to fail. In the Functional Loop
this failure implies the internal failure of the fg1 functional grounding (the only
one in which the laser component realises a role). Then the failure propagates
upwards the functional hierarchy according to the realises associations from OM-
FunctionGrounding atoms to OMObjective atoms, and the requires associations
from OMObjectives to OMFunctionGrounding.

194

9.5. Functions Loop

1

2

4

status = OK

fg1 :
OMFunctionGrounding

status = OK

o1 : OMObjective

status = OK

o0 : OMObjective

status = OK

fg0 :
OMFunctionGrounding

requires

realises

realises

initial :
Functional
Hierarchy

status = ERROR

fg1 :
OMFunctionGrounding

status = FAILURE

o1 : OMObjective

status = FAILURE

o0 : OMObjective

status = FAILURE

fg0 :
OMFunctionGrounding

requires

realises

realises

final :
Functional
Hierarchy

bindings =

status = OK -> ERROR

fg1 :
OMFunctionGrounding

o1 : OMObjective

o0 : OMObjective

fg0 :
OMFunctionGrounding

3

role
sicklmsr1
realiser

Figure 9.21: The functional hierarchy before the failure of the laser sensor on the left side
figure. The propagation of the failure in the functional hierarchy in the center. The final state of
the functional hierarchy on the right.

Update Functional Knowledge

The realisability of Function Designs and the availability of Functions are updated
in each perception cycle from the availability of Component Classes. This way the
knowledge about available design alternatives is thus updated and available for the
Functional Loop to decide how to reconfigure the system.

This update is computed using the realisability functions of the Function Designs
in the OM Model, and the availability functions of the Functions, and taking as in-
put the status of availability of the Component Classes, as currently updated by the
Components Loop.

The OM Metamodel defines the following default realisability and availability
functions for function designs and Functions, respectively:

Realisability model of a OMFunctionDesign

• if any of the component classes in the roles is UNAVAILABLE→ UNRE-
ALISABLE

• if any of the required functions is UNAVAILABLE→ UNREALISABLE

• otherwise the function design is REALISABLE

195

Chapter 9 The Operative Mind Architecture

Availability Model of a Function

• if any design for this function is REALISABLE→ AVAILABLE

• else it is UNAVAILABLE

9.5.3 Evaluation and Reconfiguration of the Functional Hierarchy

The goal of the Functions Loop is to compute a configuration system that optimally
achieves the root objectives. This optimality premise can be formulated as a maxi-
mization and a minimization:

• the maximization of a certain global functionality of the system, function of
the root objectives of the system (RO). This gf function can be formulated as a
weighted average of the achievement of the objectives, considering a numerical
valuation of the status of a root objective: status(o) = 1 if CONVERGENT, and
0 otherwise:

g f : RO→ [0..1]

g f = ∑∀o∈OR status(o)·relevance(o)
∑∀o∈RO relevance(o)

• the minimization of the resources required by the system configuration. Re-
member that this configuration is determined by the bindings specified by the
Functional Hierarchy.

To compute the system configuration, the Functions Loop has a set of design al-
ternatives, i.e. the Function Designs, and resources, i.e. Component Classes available.
These define a subspace of realisable Functional Hierarchies, each one specifying a
possible system configuration. The problem of computing a desired system configura-
tion is thus that of moving in the subspace of Functional Hierarchies, with the drivers
of the optimality defined above.

At each cycle the Functions Loop departs from a certain extant configuration, and a
state of the Functional Hierarchy that is updated accordingly in the perception process
described in the previous section. The maximization premise dictates that if a root
objective is not CONVERGENT, the part of the hierarchy related to that objective
must be modified so as to make it CONVERGENT. Since any reconfiguration, in the
general case, involves a cost in terms of system resources and performance, at least
transitorily, for the shake of the minimization premise we consider as a reconfiguration
policy to change only the part related to that objective. It could be the case that there
are other Function Designs better realisable in terms of system resources for other parts
of the hierarchy, but as a simplification we consider that that does not compensate the
cost of reconfiguration. The reconfiguration policies determine this selection. Let us
discuss a bit about reconfiguration policies.

A possible reconfiguration policy can be to try to ground a realisable function for
all the objectives that are in error. However, there is no point in grounding a new func-
tion for those that are in error because their current realiser Function Grounding are

196

9.5. Functions Loop

in external error. Simply providing a new Function Grounding for those Objectives
whose current realiser is in failure would suffice. However, even this produces unnec-
essary grounding of functions, since there is no point in providing new realisers for
objectives that are only required for function groundings that are in internal error.

The reconfiguration policies defined in OM are intended to avoid the previous
issues and address the optimality premise. To implement its reconfiguration policies,
the OM metamodel defines evaluation semantics for the system objectives by defining
a relevance function for Objectives, and implements a set of reconfiguration rules.
These are discussed following.

Functions Evaluation: objectives’ relevance

In the Functional Loop, the aim of the evaluation process is to assess the objectives in
the Functional Hierarchy in terms of how relevant they are to the fulfilment of the root
objectives.

ExampleSuppose the estimated state for the hierarchy of functions and objectives showed
in figure 9.22. Two function groundings, f g0 and f g1, are in internal error, and the
perception process at the functional level has updated the state of the functional
hierarchy accordingly, so that the root objective ro and the intermediate objective
o1 are in error. A new realiser for fg0 is needed. However, a reconfiguration
including also a new realiser for o1 would be pointless, since the new realiser for ro
may not require o1. We say that o1 is no longer relevant for ro, since the Function
Grounding that relates them, which is f g0, no longer holds.

fg0

o1

ro

o2

fg1 fg2

internal error

internal error

error

error

Figure 9.22: Hypothetic functional hierarchy in error. Objectives are represented as blobs and
function groundings as boxes.

The ECL evaluation process in the Functions Loop consists of the downstream
propagation of the relevance of objectives, from the topmost root objectives —whose
relevance is fixed— downwards to the bottom objectives in the hierarchy, whose Func-
tions Grounding do not have required Objectives.

The propagation of relevances is specified in the semantics for the TOMASys rel-
evance function for Objectives, which have been included in the OM Metamodel:

197

Chapter 9 The Operative Mind Architecture

• The relevance of a function grounding is that of the objective it is realising that
has the largest relevance.

• All the objectives required by a function grounding that is in internal error have
relevance = 0.

The result of the functional evaluation process is the set of Objectives in the Func-
tional Hierarchy with relevance > 0. These are the objectives that require functions
grounded to address them, because either there are no already grounded functions
realising them, or these functions are in error.

fg1 : FunctionGrounding

get_scans : Objective

localisationv1 :
FunctionGrounding

navigationv1 :
FunctionGrounding

estimated_position : Objective

5. fg1.relevance = get_scans.relevance

1. navigationv1.relevance = navigate.relevance

3. localisationv1.relevance =
 estimated_position.relevance

4. since none of the requiring fgs are in INTERNAL_ERROR:
 gat_scans.relevance =
 max(navigationv1.relevance, localisationv1.relevance)

2. if navigationv1 has INTERNAL_ERROR
 estimated_position.relevance = 0 (not the case)
 else
 estimated_position.relevance = navigationv1.relevance

navigate : RootObjective

Figure 9.23: Example of the evaluation process in the Func-
tional ECL in the previous case of a failure of the laser compo-
nent.

Functions Control: reconfiguration

The Control activity at the Functions Loop produces at each cycle, if required, an
action command consisting of a reconfiguration of components in the domain con-
trol system. This reconfiguration is a set of specifications of components that would
ground the functions required to better fulfil the root objectives, as discussed formerly
in the evaluation process.

To determine the reconfiguration, the following inputs are considered:

198

9.5. Functions Loop

• the evaluation of the hierarchy of functions and objectives, that dictates the set
of objectives that require new function groundings to realise them,

• the function designs’ realisabilities, that establish what design solutions are im-
plementable given the current state of the system.

action :
Set<ComponentSpecification>

Select
FunctionSpecification

required :
Set<Objective>

Generate
FunctionGrounding

Generate
requirements

Generate ComponentSpecs

Merge ComponentSpecs

:FunctionGrounding

Objective
[realiser==null]

Assign extant
FunctionGrounding

:Objective

:Objective

Figure 9.24: UML Activity diagram of the Control process in the Functional
Loop. The computation of the function groundings is a recursive process that is
executed over the set of objectives (symbolised by the array of small squares).

The computation of the reconfiguration action is performed following the reconfig-
uration rules defined in the OM Metamodel, as part of its implementation of TOMASys
ADM. Different rules could be envisioned. The ones we have designed define the fol-
lowing procedure to compute the reconfiguration action (shown in figure 9.24):

1. First, for every objective in ERROR status and relevance greater than zero, an
OMFunctionGrounding that achieves it is produced. This is done by:

(a) selecting the Function Design that solves the function type of the objective
(it must be in REALISABLE status) with the highest confidence, and then

(b) generate a Function Grounding with the parameters resolved to the values
given by the objective.

If there was a previous Function Grounding realising the objective in error, it

199

Chapter 9 The Operative Mind Architecture

is deleted from the Functional Hierarchy. The bindings of the new Function
Grounding are created later, at this stage the objectives required by the new
function groundings are instantiated. This process of instantiation of Functions
Groundings for those objectives with no valid realiser goes on recursively for
the newly created objectives, but for those cases in which there already exists a
Function Grounding that realises the new objective.

2. The new function groundings and required objectives are added to the functional
hierarchy.

3. Now, for each Role in the bindings of the newly created FGs a default OM-
CompSpec is created from its definition. This results in a new set of OMCom-
ponentSpecifications.

4. This new set is added to the extant set of OMCompSpec atoms. The specifi-
cations corresponding to Function Groundings that have been deleted are also
eliminated from this set.

5. The complete set of OMComponentSpecifications is simplified, following the
minimization premise, reducing it to the minimal subset of those specifications
that complies with the complete specifications defined by the initial set.

6. Finally, the resulting specification of components, which represents the control
action produced by the Functional Loop, is sent to the Components Loop to
become its new Components Goal, as was described on page 180.

200

9.6. Operation summary of the OM Metacontroller

9.6 Operation summary of the OM Metacontroller

So far we have detailed each process and activity defined by the OM Architecture to
metacontrol a control system. Let us put all the pieces back together to show how the
operation of an OM-based metacontroller addresses the two basic scenarios presented
at the beginning of the chapter (section 9.1.2):

• S1 – Recoverable component failure.

• S2 – Non-recoverable component failure.

The scenarios are applied to the metacontrol of the localisation subsystem of our
mobile robot. Let us consider the design analysed in the example of page 154, where
there were two different designs for the localisation subsystem, differing on the range
sensor used. We shall start from an initial configuration of the localisation subsys-
tem corresponding to the laser design, because is provides a greater confidence to
achieve the functionality of self-localisation.

Once defined the domain control system, the metacontrol system is defined by the
OM Architecture and the concrete OM model of the former that it exploits. Let us
discuss the contents of the model. The concept atoms that represent the long-term
knowledge in the model are depicted in Figure 9.25.

OM Model long-term knowledge

roles =

fd_loc1 :
OMFunctionDesign

description = "self localisation"

f0 : OMFunction

solves
confidence = 0.95 laser

: OMComponentClass

odometry
: OMComponentClass

map_server
: OMComponentClass

localisation
: OMComponentClass

kinect
: OMComponentClass

roles =

fd_loc2 :
OMFunctionDesign

r13 : laserr12 : odometry

r10 : map_server

 r11 : localisation
config 1

scansodom

map

solves
confidence = 0.7

r23 : kinectr22 : odometry

r20 : map_server

r21 : localisation
config 2

scansodom

map

Figure 9.25: The long-term knowledge in the metacontroller contains two de-
sign alternatives and the properties of the components that can be part of the
control system.

The ultimate goal of the metacontroller is the goal reference for the Functions
Loop, and consists of solving the root objective o0 “self-localisation”.

To achieve its goal, the Functions Loop commands a functional hierarchy that
realises the function design fd_loc1 that uses the laser as the scan sensor, because it
is the one with the highest confidence. The grounding of this function requires the
fulfilment of the goal g1, consisting of a set of specifications of components that fulfil
all the roles in fd_loc1.

201

Chapter 9 The Operative Mind Architecture

Functions Loop goal

type = f0

o0 : OMRootObjective

Figure 9.26: The goal of the
Functions Loop is the achieve-
ment of the root objective
o0, instance of the function f0
“self-localise”.

Components Loop goal

spec1 : OMComponentSpecification
from role r10

spec2 : OMComponentSpecification
from role r11

spec3 : OMComponentSpecification
from role r12

spec4 : OMComponentSpecification
from role r13

Figure 9.27: The specifications
that form the goal for the Com-
ponents Loop correspond to the
definitions of the roles of the
function design fd_loc1.

Considering the departing situation of the localisation subsystem performing well
its function using the laser configuration, the estimated state perceived by the Func-
tions and the Components loops consists of the functional hierarchy and the
components configuration depicted in figure 9.28:

Component Loop
(components configuration)

Functions Loop
(functional hierarchy)

type = f0

o0 : OMRootObjective

bindings =

type = fd_loc1

fg0 :
OMFunctionGrounding

realises

Functional
Hierarchy

type = odometry

odom
: OMComponent

type = map_server

map_server
: OMComponent

type = laser

sicklms
: OMComponent

ports =

amcl_node
: OMComponent

role realiser

laserr13
odom
amcl_node
map_server

r12

r10
r11

estimated states

Figure 9.28: Estimated state of the localisation subsystem using the laser con-
figuration, as modeled by each loop of the the metacontrol.

In the following, the basic actions and the resulting information signals occurring
in the OM metacontrol system are schematized for each scenario, using an UML Ac-
tivity diagram. These behavioural diagrams depict the sequences of actions that are
representative of each scenario. We can consider the diagrams presented as white-
boxes, since they show in different swimlanes which module of the whole system is

202

9.6. Operation summary of the OM Metacontroller

responsible for the actions: the running control system, which can be considered an
UML actor from the standpoint of the metacontroller, and the Meta I/O module, the
Components Loop and the Functions Loop, which are subsystems of the metacontrol
system.

9.6.1 S1: Recoverable component failure

In the first scenario the localisation subsystem is working with the configuration that
uses the laser sensor. The metacontroller is monitoring the system, and no actions
neither at the Component Loop nor the Functions Loop are issued, the estimated states
at both loops fulfiling the respective goals o1 and g1. The contents of the run-time
model are those described in figures 9.25, 9.26 and 9.27.

Meta I/O Components Loop Functions Looprunning control system

process reconf.
feedback

process
action

feedback

log
message

perception :
update estimated

configuration

singularity
processing

evaluation

control

laser.log=[ERROR]
localisation.log=[WARN]

laser.status = ERROR
localisation.status = FAILURE

error = dif(laser.ERROR,laser.OK)

laser
disconnected

execute
action

laser is
restarted

action = RESTART laser

spec4.status = ADDRESSED

a1.effect = SUCCESS

spec4.status =
CONVERGENT

Figure 9.29: Recoverable failure of the laser sensor. The diagram schematises
the operational flow at the different layers of the OM metacontroller. Arrows
represent events with their associated information signal, and rounded boxes the
processes and operations.

203

Chapter 9 The Operative Mind Architecture

9.6.2 S2: Non-recoverable component failure

In this second scenario, the laser suffers a permanent failure, for example because it
is disconnected from the robot’s on-board control computer, due to whatever reason.
The scenario departs from the same state of the localisation system and the metacon-
troller as scenario 1. The same process takes place upon laser failure: the situation
is perceived at the Components loop, where reconfiguration action to restart the laser
sensor is determined and commanded to the Meta I/O module.

However, the flow of events diverges here from that of the first scenario. Because
of the permanent nature of the laser failure, the reconfiguration action issued to restart
the sensor fails. This is detected by the Meta I/O module, which compiles the infor-
mation of the infrastructure about it and sends it to the Components loop in an effect
signal.

g2 : Components Loop Goal

spec1 : OMComponentSpecification
from role r10, same for r20

spec2 : OMComponentSpecification
from role r11

spec3 : OMComponentSpecification
from role r12, same for r22

spec4 : OMComponentSpecification
from role r13

spec5 : OMComponentSpecification
from role r21

spec6 : OMComponentSpecification
from role r23

Figure 9.30: The new goal g2
for the Components Loop rep-
resents the reconfiguration as a
new set of components specifi-
cations.

204

9.6. Operation summary of the OM Metacontroller

Meta I/O Components Loop Functions Looprunning control system

log
message

perception :
update estimated

configuration

singularity
processing

evaluation

control

laser.log=[ERROR]
localisation.log=[WARN]

laser.status = ERROR
localisation.status = FAILURE

error = dif(laser.ERROR,laser.OK)

laser
disconnected

execute
action

perception :
update CClass

availability

process
reconf.

feedback

process
action

feedback

laser restart
fails

perception:
update F. Hierarchy

upwards

evaluation:
update

F. Hierarchy
downwards

control execution

control redesign

reset state and
update goal

controlexecute
actions

New
configuration

action = RESTART laser

action/goal =
 fd_loc2 config.

perception:
update

F. Design
realisability

action = LAUNCH kinect
action = CONFIG localisation_module

spec4.status = ADDRESSED

spec4.status = ERROR

effect a1 = FAILURE

Figure 9.31: Non-recoverable failure of the laser sensor: the failure scales up
to the Functional Loop, where a reconfiguration of the Functional Hierarchy is
generated, which is then grounded and executed.

205

Chapter 9 The Operative Mind Architecture

9.7 OM Architecture overall assessment

The OM Architecture provides a blueprint for building metacontrol systems following
the patterned approach proposed in this thesis for self-aware autonomous systems. Its
reification of the Epistemic Control Loop pattern makes OM a reference architecture
close to RCS in its underlying conceptualisation of the cognitive phenomena.

When compared with cognitive architectures, the OM Architecture aim is not to be
an architecture for general intelligence, as RCS or Soar are, but rather to apply a cog-
nitive structural pattern (ECL) to provide for a specific cognitive trait: metacognition;
and to do it in a control engineering framework.

The OM Architecture could be regarded as a blueprint for the Supervisor level in
the control architecture for fault-tolerance proposed by Blanke et al. discussed in sec-
tion 5.1. OM cognitive approach, with an estimation of the state based on perceived
feedback rather than open-loop proprioceptive information, allows the metacontrol to
deal with higher levels of uncertainty within the system. Incorrect configurations of
components, caused by either human supervisors or other automatic supervisory sys-
tems, can be detected and corrected by the OM metacontroller. This is specially inter-
esting for systems of systems, were federation leads to uncertain interactions between
systems:

Orchestrating a. . . system requires supporting interdependencies and con-
trolling the consequences of local actions with respect to their effect on
the emergent whole, even though each part of a system might be actingto
maximize its utility. [101]

The architectural framework presented, encompassing the OM Architecture and
the TOMASys model, presents some similarities with autonomic computing approaches
such as those discussed in section 5.2. However, OMACS solution focuses on the
metamodel, the architecture that exploits it being more application contingent. OMACS
provides minimal blueprint for an agent architecture, which is a particular design
possible for the control of autonomous systems. On the other hand, OM provides
a complete architecture for the metacontroller, and it is possible to adapt it to any
component-based system, not only multi-agent systems.

9.7.1 Self-awareness and the OM Architecture

Let us now analyse the self-awareness properties of the OM Architecture, under the
prism of the valuable functions related to conscious phenomena discussed in section
3.1.3.

We can argue that the OM Architecture involves meta-representation. These meta-
representations are the OM Model that lies at the core of the OM Metacontroller op-
eration, which can be regarded as a representation of the Self in the pursuit of its
objectives. The OM Model is a (functional) representation of the processes that con-
form the (domain) control system, that is the “mind” of the autonomous system, taking

206

9.7. OM Architecture overall assessment

a cognitive perspective of control.

This model integrates all the monitoring information in a unified vision of the
organisation (self-image) and directiveness (volition) of the control system (the uni-
fied Self [15, pp. 142–153]). The metacontroller performs reasoning and evaluation
activities over this model to assess the performance of the control system and take
appropriate reconfiguration actions if required.

The reconfiguration of the components of the domain control system performed
by the OM Metacontrol can be regarded as a resource allocation function of cogni-
tive resources. Attentional mechanisms associated to self-awareness [16, p. 50] are
attributed a similar role [68], although in relation to access to conscious contents.
Notwithstanding the former, the OM Architecture only configures these resources
to improve the system’s adaptivity, and not to maximise its performance, which is
the fine grained allocation that attentional mechanisms related to self-awareness are
claimed to contribute to.

To organise the operation of the metacontroller, the OM Architecture proposed
makes also use of sequentiality, in the form of an executive cycle that guarantees the
consistency of operation in the two loops that form the metacontroller.

207

Chapter 9 The Operative Mind Architecture

208

Part IV

Implementation and Validation

209

Chapter 10

OM Engineering

This chapter describes the engineering methodology and related assets we have de-
veloped for the application of the OM Architecture. The first section details the en-
gineering methodology envisioned to apply the OM architectural framework to the
development of a self-aware autonomous system. Then the second section discusses
the application of the MDA progressive software refinement in the OM architectural
framework, and the OMJava library developed that provides a platform specific model
of the OM Architecture in Java. The next section explores the possibility of an au-
tomated transformation to obtain the TOMASys model of the autonomous system to
completely realise the Deep Model Reflection Pattern in the engineering of an OM
metacontroller. Finally, the last section discussed how the elements of the OM archi-
tectural framework fit in the ASys vision for the construction of autonomous systems.

10.1 OM Engineering Process

We refer to the complete solution for self-awareness through metacontrol presented in
part III as the OM Architecture Framework, which includes all the elements already
discussed, from the design principles, to the final OM Architecture and its required
TOMASys metamodel, including the Design Patterns for Self-awareness in between.
For the OM Architectural Framework to be of engineering applicability a process or
methodology to apply its design solution is required. A methodology is a set of re-
lated processes and techniques: the process defines what is to be done, the techniques
specify how it is to be done [46]; tools can be provided or suggested to support the
methodology.

The OM Engineering Process (OMEP) described in this chapter defines a method-
ology that can be followed to produce a control system (including both the domain
and the metacontrol subsystems) using the OM Architecture Framework.

OMEP distinguishes two sub-processes: one that addresses the “standard” devel-

211

Chapter 10 OM Engineering

opment of the (domain) control system for the autonomous application, and a “meta”
one to develop the metacontrol subsystem:

1. OMEP Control Development: it is the development of the domain control sys-
tem. OMEP defines constraints on two of the phases:

• Design – the core workproducts are the models of the plant and the control
system, including a functional model.

• Implementation – it takes as input the models, which following a MDE
guided process are converted into the software that implements the control
system.

2. OMEP Meta Development: it is the development of the metacontrol system.
It takes as input the functional model of the control system, and uses the OM
architectural framework to build from them and the OM Architecture the metra-
controller for the autonomous system. This process defines also the design and
implementation stages:

• Design – the design process for the metacontroller has the particularity
of including an initial step to convert the functional model of the control
system into a TOMASys model.

• Implementation – some tools have been developed in the form of software
packages to support the metacontroller implementation. They will be pre-
sented later in sections 10.2.1 and 11.4.

These two sub-processes of OMEP are schematized in figure 10.1, and will be
detailed in the following sections.

runtime

Metacontrol
Subsystem

Functional
Modelrequirements

Plant

OM
ArchitectureMeta Development

Control
Design Implementation

TOMASys
model

Metacontrol
Design Implementation

TOMASys
modelling

Control System

OM Engineering Process

Control Development

Figure 10.1: The OM Engineering Process: the Meta Development process
is incorporated to the control engineering to build the Metacontroller for the
autonomous system.

10.1.1 OMEP Control Development

OMEP does not provides a complete specification for the engineering process of the
domain control subsystem, but rather defines what it must fulfil for the OM Architec-

212

10.1. OM Engineering Process

tural approach to be of applicability. This way, the OMEP methodology imposes two
requirements to the development process of the control system:

• A component-based technology shall be employed to build the control system.
This is a requirement inherited from the OM architectural approach.

• A functional model of the control system must be produced in the process. This
requirement results from the thesis postulates (page 111).

Metacontrol requirement: There is a pervasive pre-requisite, concerning the design
and implementation of the control system, which is the existence of alternative designs
and implementation artifacts, i.e. analytical and/or physical redundancy. The control
system implementation must have the possibility of having organisational alternatives
to support the advantageous exploitation of the multiple configurations by the meta-
control. Redundancies may be necessary. If there is only one possible controller there
is no controller design space to be explored by the metacontroller.

OMEP follows ASys model-based engineering principles, and thus enforces a
strict MDE-based approach for the development of the control system. This guar-
antees the production of the required functional model of the system. The OMEP
subprocess for the development of the control system consists of two phases:

• Control Design, which involves requirement specification, domain analysis and
functional design. It has a final product: the functional model of the controller.

• Control Implementation, when the component platform is used to finally pro-
duce the (domain) control system.

For further guidelines on how to realise this process, OMEP recommends follow-
ing the OASys-based Engineering Methodology [20]. However, other MDE-based
methodologies would also be possible, for example the ISE&PPOOA methodology
proposed by Fernández-Sánchez et al. [47], which include a model of the functional
architecture of the system, or consider also the methodology proposed in [141]. These
methods guarantee the generation of models that conform to formal modeling lan-
guages, and thus the applicability of the Deep Model Reflection Pattern.

The OASys-Based Engineering Methodology proposed by Bermejo-Alonso [18],
aims to provide guidelines to the engineering process of an autonomous system in the
context of ASys. The scope of this methodology is limited to the Analysis phase in
the generic engineering process discussed in page 7. The methodology describes how
to carry out the generic ASys process in terms of phases, tasks and work products . It
uses as guideline the ontological elements in the System Engineering and ASys En-
gineering subontologies of OASys [19]. The two main phases are ASys Requirement
to identify the requirements of the autonomous application, and ASys Analysis (see
table 10.1). This latter is the most relevant for OMEP, since its purpose is to describe
the autonomous system from the structural, functional and behavioural perspectives.
Analysis is divided into:

Structural Analysis: consists of different modelling tasks to analyse the system de-

213

Chapter 10 OM Engineering

composition into subsystems, elements, quantities, etc 1. That is, it characterises
the Components of the system.

Functional Analysis: identifies the Actions and Operations, according to OASys.
That is, it identifies the Roles and the Function Designs in the system.

Behavioural Analysis identifies the dynamical behaviours of the components. It
has not been included in OMEP yet, since TOMASys does not cover dynamical con-
cerns.

Phase Tasks Work Products

ASys Require-
ment

UseCase modelling and Re-
quirement Characterisation

UseCase models and Requirement
specifications

ASys Analysis

Structural Analysis Structure and Topology models

Behavioural Analysis Behaviour Model

Functional Analysis Functional Model

Table 10.1: The main phases of the OASys-Based Methodology, adapted from [18].

10.1.2 OMEP Meta Development

The building of the metacontrol subsystem is the core of this work; the OM Architec-
tural framework has been developed to provide a complete set of assets to support it.
The different phases defined in OMEP for the building of the metacontrol subsystem
are:

1. Build a TOMASys model of the domain control system. The Deep Model Re-
flection Pattern can be applied so that the TOMASys model would be automati-
cally generated from the functional model of the system produced in the design
phase of the domain control system, using a model-to-model transformation.

2. Build the metacontroller that exploits the previous model following the OM
reference architecture. The OM Architecture defines a universal functional de-
sign for the metacontrol system, so there is only the detailed design (for gen-
erating a platform specific model) remaining for the developer of the concrete
autonomous system application.

1note that OASys is rooted in Lopez’s [90] autonomous systems’ conceptualisation, as also is the theo-
retical framework of this work.

214

10.2. MDA in the OMEP methodology

10.2 MDA in the OMEP methodology

The OM Architecture provides a solution to the design phase of the metacontroller in
OMEP. To realise the implementation phase, the OM Engineering Process relies on
the MDA process of progressive refinement of models, according to the MDA model
weaving pattern [11] discussed on page 48.

TOMASys

OM
Architecture Java SE

OMRosmetacontrol(control system)
Platform specific model

Platform
independent model

Computation
independent model

OMJava Platform specific
extension rosjava

Model
weaving

Model
weaving

Platform specific
extension

(implementation platform)
Platform specific model

Figure 10.2: The MDA pattern in OMEP: application of model
weaving to the assets of the OM Architectural Framework.

We can consider the OM assets from an MDA viewpoint (see Figure 10.2). From
this perspective (section 3.2.1), the TOMASys metamodel can be regarded as a computation-
independent model. It contains a domain model, describing the concepts of functions
and components and their interrelations. The OM Architecture could then be consid-
ered as a platform-independent model for the metacontrol system.

Departing from the previous considerations, we have defined for the implementa-
tion phase of the metacontroller a process of progressive platform-specific refinement
as shown in figure 10.2. Several libraries and components have been developed for
the platform-specific models of the OM metacontrol. The Java library (OMJava, dis-
cussed below), specifies the (metacontrol) system in the dimension of the implement-
ing platform technology. A ROS stack (omros, described in the following chapter),
specifies the OM metacontrol for a specific type of control systems, according to their

215

Chapter 10 OM Engineering

component-platform, which is the ROS platform2.

10.2.1 OMJava library

We have developed a Java library that implements the OM Architecture Framework:
the TOMASys metamodel and the OM Architecture. This library constitutes a Plat-
form Specific Model of both TOMASys and OM Architecture in Java.

We have selected Java because it suits our aim of generality. Java is multiplatform:
its vitual machine execution paradigm guarantees that computer programs written in
the Java language must run similarly on any hardware/operating-system platform. Be-
sides, it is most suitable for an MDA approach such as ASys’ and this work; given
that Java is an object-oriented programming language, and many MDA frameworks
provide tools for it.

Following we present a brief rationale about the main packages in the OMJava
library.

System Metacontrol

OMJava

System Meta I/O

«uses»

System OM Model

«implements»

«uses»

Component platform Java
PSM

«uses»

OMMetaInterfaceOMTOMASysOMmetacontrol

Figure 10.3: The relation between the elements in the implementation in Java
of the metacontroller of a system and OMJava and its sub-packages.

2ROS (Robot Operating System) [52] is a component platform for robotics

216

10.2. MDA in the OMEP methodology

OMTOMASys package

The OMTOMASys package contains a Java PSM of the TOMASys metamodel. TOMASys
has been specified in UML; this model constitutes the platform independent model
(PIM) for TOMASys. From that PIM, the TOMASys metamodel has been imple-
mented in one of the packages of OMJava (which is therefore the Java PSM for
TOMASys), in two steps. Firstly, a set of interfaces has been developed from the
PIM to define the elements of TOMASys and the operations that can be performed
over them. However this does not provide a complete specification of the metamodel,
since no semantics are captured. Then, the Java PSM is completed with a set of Java
classes that implement the interfaces. The package containing all these classes is ac-
tually a complete implementation of the OM Metamodel in Java (PSM). It provides
default semantics for the elements in the Application Domain Model (e.g. error mod-
els). The classes also implement the ECL semantics for perception, evaluation and
control operations.

Using inheritance from these Java classes, more refined PSMs can be obtained
for the specific component platform employed in the construction of the autonomous
application. This is demonstrated in section 11.4 of the next chapter for the Robot
Operating System (ROS) platform.

errorModel ()
relevance ()

description : String
confidence : double
solves : Set<OMFunction>
requires : Set<OMFunction>
roles : Set<OMRole>

OMFunction

...

name : String
type : OMComponentClass
Parameters :
Set<OMParameter>
port : Set<OMPort>
status : ComponentStatus
log : Stack<ArrayList>
internalState :
Map<String,Object>

OMComponent

Figure 10.4: Examples of the classes in the OMJava library.

OMmetacontrol package

The OM Architecture has been implemented in a set of Java classes and interfaces.
They implement a metacontroller, and define its connection with the Meta I/O module
through a Java interface (OMMetaInterface). A generic Java implementation of the
Meta I/O module is not provided with the library, since it is platform specific. How-
ever, an example has been developed for the testbed mobile robot application in the
ROS platform (section 11.4.2).

MetaInterface. The MetaInterface has been implemented as a Java interface and a
set of classes for the datatypes to represent in the object-oriented paradigm the

217

Chapter 10 OM Engineering

signals involved in the interface between the metacontroller and the platform of
the running control system.

OMmetacontroller. The OMmetacontroller class implements the OM Metacontroller,
containing instances for the two loops , an initialisation method that instantiates
both with a given model, and implementing methods to control the operation of
the metacontroller: start(), pause(), terminate().

The ComponentsLoop and the FunctionsLoop classes implement the two nested
control loops. Both loops follow the periodic and sequential execution cycle of perceive→
evaluate→ control that are specified in the OM Architecture. Each one is imple-
mented in its own dedicated thread.

10.2.2 OMJava in OM Engineering Process

The OMJava library supports the implementation phase of the metacontroller in OMEP
(see figure 10.5). Firstly, it provides a Java PSM for an application-independent meta-
controller. Secondly, the OMJava MetaInterface can be used to develop the Meta I/O
module specific for the component-platform of the control system. Finally, the OM-
TOMASys package supports the creation of the executable model for the concrete
application.

runtime

Metacontrol
Subsystem

Plant

Control System

Implementation

OMJava.omtomasys

TOMASys
model

Integration

OMJava.metaint
erface

Implement OM
Model

Meta I/O

OMJava

component
platform

Figure 10.5: OMJava and the OMEP methodology. The OMEP Meta process
is simplified with the use of the OMJava library, bacause it allows to directly
implement the metacontrol subsystem from the TOMASys model.

218

10.3. OM model transformation

10.3 OM model transformation

To fully implement the Deep Model Reflection pattern into the OMEP methodology,
the specification of a model-to-model transformation from the functional model of the
control system into the TOMASys model of it is required. Such a possibility requires
the formalisation of TOMASys and the selection of a particular modeling language
and additional semantics for the functional modeling. This task has been left to future
works continuing the development of the OM Architecture approach. However, in the
following we briefly discuss a possible path to follow.

Following the MDA approach, a MOF-based language could be used for the func-
tional model. Reasonable alternatives are UML or SysML. This later seems more ap-
propriate given its orientation to systems engineering, whereas UML is very focused
on software engineering. However, UML is a well established standard in the industry,
with plenty of toolsets and frameworks developed around it, whereas SysML is still in
an exploratory stage regarding its application in industry. Let us assume we selected
UML as the referent metamodel to develop the transformation, most considerations
are translatable to SysML.

TOMASys could then be formalised using MOF as its meta-meta-model. This
would guarantee a feasible transformation, TOMASys and UML sharing their meta-
meta-model.

The model-to-model transformation could be implemented by defining a UML
profile for TOMASys. Stereotypes will be defined for TOMASys elements, so that
the application of such a stereotype to an element in the UML functional model, that
element would be converted in the transformation in a TOMASys element with the
type and properties determined by the stereotype.

10.4 OM Architectural Framework in the ASys vision

The elements of the OM Architecture Framework developed in this work can be easily
integrated in the ASys vision for the engineering of autonomous systems (figure 10.6).

The four design patterns for model-based self-aware autonomous systems are part
of the ASys generative pattern [65]. The OM Architechture is an asset that actually
constitutes the metamodel for the design model of the metacontrol subsystem, in the
sense that the design of the control architecture of a particular system is an instance
of the reference architecture (if it exists). TOMASys is an asset base in the category
of the ontologies, such as OASys, that allows to produce one of the models for the
autonomous system: the self-model.

OMJava library is a package of components in the ASys base that allows the syn-
thesis or implementation of the Autonomous system. The library for implementing
an OM metacontroller in a ROS-based control system, which will be presented in the
next chapter, is also a package of components.

219

Chapter 10 OM Engineering

The OMEP methodology shall be integrated with other ASys processes required
for the design and synthesis of ASys systems.

Asset Base

FMC
Pattern

DMR
Pattern

Views

ICe
Specification

ICe
Documentation

ICe Design

ICe Synthesis

ICe
Asset Management

ICe
Deployment

OM
Model

Metacontroller

ECL
Pattern

OMRosMetacontrol

OMJava

Domain
Ontology

Requirements

Documentation

ICe
Operation

Autonomous
System

MC
Pattern

OMEP

OM
Architecture

Model
controller

Models

Domain Controller
model

TOMASys

Meta-Controller
design

TOMAsys
Metamodel

OMEP

Figure 10.6: The framework and assets developed in this work
in the overall picture of the ASys engineering of autonomous
systems.

220

Chapter 11

Testbed System

For the demonstration of the theoretical and engineering frameworks presented in this
work we have developed a state-of-the-art mobile robotic application, with improved
adaptivity based on self-awareness. For that, a metacontroller has been developed with
the OM Architectural Framework discussed in part III of the dissertation. It has been
implemented and integrated in an autonomous robot following the OM Engineering
Process and using the OMJava library presented in the previous chapter.

11.1 The Autonomous Mobile Robot

To validate the OM architectural framework a testbed autonomous application has
been developed, as advanced in the presentation of the approach of this work (page 35).
It is based on an autonomous mobile robot for navigation in office-like environments.
The mission of the robot is to navigate through an office-like environment passing by
a user-defined set of locations or waypoints, without bumping into obstacles.

This application was selected for a series of reasons. Firstly, it is a challenging
autonomous application: the robot operates in an open-ended uncertain environment.
Although it is assumed that the environment is static, and an initial map of the area
to navigate is provided, deviations of the actual environment from the provided map
are possible, for example due to changes in the location of furniture and appliances
(chairs, packages, etc). In addition, the system involves heterogeneous components,
both hardware and software, and the required control system has the sufficient level of
complexity to be representative of the challenges addressed. The robot autonomous
operation faces different uncertainties: sensors are subject to failure, and algorithms
for navigation can also fail due to scarce and/or noisy input information.

The developed system consists of a mobile platform equipped with different sen-
sors and a control system to perform a navigation task, with a remote station pro-
viding for off-board computation capacity and the operator interface. The control

221

Chapter 11 Testbed System

system includes: i) a state of the art navigation architecture for mobile robots (domain
controller), and ii) the metacontrol subsystem we have developed with the OM Archi-
tecture. The metacontroller purpose is to sense the state of the navigation system and
reconfigure it if required in order to preserve its functionality (see figure 11.1).

Plant

Control System

Navigation Architecture
(domain control subsystem)

Metacontrol Subsystem

reconfigurationmonitoring

sensing acting

Figure 11.1: Overview of the autonomous mobile robot testbed: the Naviga-
tion System is controlled by the Metacontrol System, which provides for self-
awareness and reconfiguration, providing the complete control system of the
autonomous robot with enhanced adaptivity.

11.1.1 Mission and requirements

The mission of the mobile robot is to patrol a certain area. For that a human operator
provides through the OI an occupancy map of the area and the waypoints of the route
to patrol. The robot navigates autonomously following the route, without bumping
into obstacles. The operator can pause and resume the operation at any moment, as
well as manually teleoperate the robot, or command it to go to a destination in the map
different from the waypoints in the provided route. This application can be specified
in the following set of requirements or capabilities using the methodology presented
by Fernández et al. [47]:

1. Teleoperation: at any moment a human operator must be capable of manually
teleoperating the robot by direct command of its speed and direction.

2. Commanded navigation: the human operator can command the robot to go to
a certain location in the area. The robot shall be able to navigate to it without
bumping into obstacles, if possible, or report when it is not feasible.

3. Autonomous patrolling: the robot travels periodically a route with a given set of

222

11.1. The Autonomous Mobile Robot

way points, navigating autonomously.

4. Operation mode switch: at any moment the operator must be able to switch
between the different modes of operation by: i) pausing and resuming the pa-
trolling mode, ii) pausing navigation when a target destination is commanded
by the operator, iii) at any moment teleoperation overrides the other operation
modes.

5. Localisation: at any moment a reasonable estimation of the robot position must
be available for display in a map of the patrolled area, so a human supervisor
can make informed decisions concerning robot operation.

Robust-autonomy and adaptivity requirements

Continuing with Fernández’s methodology for capturing the system’s requirements,
we shall analyse now the non-functional capabilities, related to quality of service and
resilience. In this work we are addressing robustness and adaptivity capabilities and
so the robot testbed focuses on them, in relation to fault-tolerance aspects:

• In the event of a transient failure of one of its components, the system shall
put itself in a safe state, i.e. stop moving but by teleoperation, and recover
autonomously from the failure resuming its operation.

• In the event of a permanent failure in a component, the system shall safely
reconfigure itself to maintain its navigation capabilities, from higher to lower
priority: 1) teleoperation, 2) commanded navigation, 3) autonomous patrolling.

These requirements are the objective of the metacontrol subsystem, and they will
be further refined in section 11.3.1.

11.1.2 The mobile robotic platform

Let us first provide a more detailed description of the plant in our autonomous applica-
tion. It consists of a mobile robotic platform equipped with sensors —a Kinect, a laser
scan, a compass and wheel encoders— and actuators —differential wheel drive— con-
nected through appropriate I/O mechanisms to an on-board computer; and a remote
computer for the human operator.

Here is a summary description of all the hardware elements of the system1:

• Pioneer Robot: the mobile robot is a Pioneer 2AT8, which is a standard platform
for mobile robotics research. It provides the following capacities:

– Differential wheel drive (actuator) for the robot’s motion, with embedded
PID control loop, accepting as command the setpoints for the linear and
angular velocities.

1Only the hardware elements relevant for this thesis are described.

223

Chapter 11 Testbed System

– Odometry sensors (wheel encoders), that provide information of both the
robot’s pose (ded-reckoning) and velocity (linear and angular).

• Laser: it is a SICK LMS200 range sensor providing readings in a range of 180°,
one per degree. Therefore this sensor provides accurate detection of obstacles.

• Kinect: the Kinect camera that provides a matrix of RGB (image) and depth
information in an horizontal and vertical range of 60°. In this application only
the depth information is used to detect obstacles. The information is much more
imprecise and noisy than the laser’s.

• Compass: provides orientation with respect to the magnetic north. Connected
to the on-board computer through an Arduino2 based I/O board. The reading of
the compass is used to obtain a better ded-reckoning localisation estimation, by
integrating this information with the odometry in an extended Kalman filter.

The system also involves a series of computing resources and communication in-
frastructure. A computer on-board the robot provides access to the mobile platform
services and the sensors and actuator devices. The drivers for all the hardware are thus
deployed in this computer. The on-board computer is connected by WiFi to a remote
computer. The remote computer is used for the operator interface with the system and
to execute those components in the navigation architecture that are too resource de-
manding to run in the on-board computer. An exhaustive description of the complete
mobile robotic platform can be found in [66].

11.2 Control Development

To develop the domain control system of our autonomous application, which we shall
refer to as the control or navigation system for simplicity, we have selected the ROS
[118] platform because it fulfils the requirements for the OM Architecture, described
in section 9.1.2. Most important of all, it is a component-based platform that can
be modelled with TOMASys. Its computation model consists of nodes that publish
and subscribe to message channels or topics. This type of loosely coupled compo-
nents fulfils the requirement of the OM Architecture. For the connection between the
metacontrol system and the control system, the interface defined by the MetaControl
pattern, the ROS infrastructure provides an API that possibilitates to implement mech-
anisms for monitoring and reconfiguration. Additionally, there are open-source ROS
implementations of components for navigation of mobile robots available, which has
facilitated the task of developing the testbed.

A ROS-based control system consists of a set of ROS nodes running in parallel and
interacting through message publication and subscription. They are active components
executing with a certain frequency to publish the data they produce. Their reception
of data, in the form of messages, is asynchronous. They all connect through the ROS
middleware infrastructure. This allows them to be seamless distributed amongst the
on-board and remote computers.

2open-source I/O board with microcontroller http://www.arduino.cc

224

http://www.arduino.cc

11.2. Control Development

Instead of developing the navigation system from scratch following a MDE ap-
proach, an extant state-of-the art implementation has been adapted to build it. Con-
cretely we have used the ROS navigation stack that implements the navigation system
developed by Marder-Eppstein et al. [93] at Willow Garage3. This way we have also
validated the applicability of the OM Architecture to enhance extant autonomous sys-
tems by adding self-awareness and adaptivity capabilities.

The ROS navigation stack provides components to build a system that navigates
to a commanded location given an initial occupancy map of the environment and an
initial position of the robot. For that, odometry information is used, as well as infor-
mation about obstacles from different types of sensors, including laser range scanners
and Kinect devices.

11.2.1 Overview of the Navigation System architecture

To develop our patrolling robot we have adapted these ROS components to work with
our mobile robotic platform, and we have built additional ones for the mission control
level. The basic schema of the control architecture is depicted in figure 11.2. Note that
alternative designs have also been developed to provide for the redundancy require-
ment pointed out on page 213. They will be presented in the following section.

Navigation control

laser

amcl

move_base

map_server

pioneer

scans

(v, ω)

odom

mission_manager

est_pos

kinect

teleop

rviz
target_loc

(v, ω)

pcl

map

goal feedback

Figure 11.2: The component architecture of the testbed’s control system. Only
the basic components and signals between them are depicted.

Following we provide a brief description of the main components involved and
their role in the application.

3www.willowgarage.com

225

www.willowgarage.com

Chapter 11 Testbed System

Drivers and I/O processing

A set of components perform as sensory drivers: they access the system sensors to
convert their readings into messages containing sensory information for those other
components that use it.

Pioneer: This package contains the implementation of a ROS node (called pioneer)
that is a ROS wrapper for ARIA, which is the C++ library for the robot’s operation
provided by the manufacturer, MobileRobots. The pioneer node produces odometry
messages and accepts command messages for the robot linear and rotational velocities.

Laser: The ROS package sicktoolbox_wrapper was used to implement the laser
driver. It uses the SICK LIDAR Matlab/C++ toolbox library4 from the laser manufac-
turer. The laser node implemented with this package publishes in a topic the laser
readings as a LaserScan message type.

Kinect: For the connection with the Microsoft’s Kinect sensor, the ROS package
openni_camera was used to implement the kinect component. This package pro-
vides a ROS node that publishes PointCloud (PCL) messages5 containing the image
depth readings. There are other ROS nodes associated to the Kinect deployed in the
testbed, for example those that provide geometric information on the source of the
kinect readings (kinect_base_link... nodes).

It is also possible to obtain range scan readings from the Kinect’s depth image.
This has been used to have analytical redundancy in the system, as will be explained
in the following section. A set of ROS nodes and nodelets from the ROS package
pointcloud_to_laserscan have been used to implement the pcl2scan compo-
nent, which is actually composed of several ROS nodes. A more detailed description
of this component can be found in [31, pp. 68–69].

Compass: The ROS compass node has been developed for publishing the orien-
tation data coming from the compass sensor as IMU (Inertial Measurement Unit)
messages 6. The compass node is a wrapper that connects internally to the CORBA
service for the compass. These CORBA services have been developed for the I/O in-
terface with the sensors connected to an Arduino board in the mobile robot, also part
of other ASys projects [124].

4Available at http://sicktoolbox.sourceforge.net/
5Point Cloud is a data type for 3D sensors [122].
6The IMU message type is defined in the ROS package sensor_msgs and holds orientation data, as

well as angular and linear velocities, with the respective covariance matrices. This message type is used in
ROS to encapsulate data read from digital compasses, accelerometers and gyroscopes.

226

11.2. Control Development

Navigation System Components

Navigation

Mission management

I/O drivers

move_baseamcl

pioneer

map_server

laser

robot_tf

kinect

rviz teleop mission_manager

compass

Figure 11.3: Main logical components of the software of the testbed control system.

World and Robot model

The navigation system uses information about the environment, in the form of an
initial occupancy map, and the robot, in the form of geometric information that situates
its sensory readings in a common frame.

Map server: The map_server ROS node loads the map data of the patrolling area
from a file and publishes it as an occupancy grid map. The map is essential for the op-
eration of the localisation and the navigation components as will be explained below.

Robot tf model: We have developed the robot_tf ROS node for publishing the
static geometric information of the robot and its sensors, using the ROS tf package
for geometric transformations. The information consists of a series of transformations
between the different coordinate frames in the robot. Each sensory reading in the robot
is referred to its sensor’s coordinate frame —the laser, the kinect, the odometry, etc.—.
Publishing the transformations between the different frames in a transformation tree
allows the use of the readings by any other ROS node, allowing the developer not to
need worrying about which coordinate frame the sensory reading is stored in7.

7More information about the ROS tf package can be found at http://www.ros.org/wiki/tf

227

http://www.ros.org/wiki/tf

Chapter 11 Testbed System

Navigation

To implement the navigation subsystem of the patrolling application we have used the
ROS navigation Stack developed by Marder-Eppstein et al. [93] at Willow Garage. It
provides ROS nodes connected in a subsystem that takes in information from odom-
etry, sensor streams, and a goal pose —position+orientation— and outputs safe ve-
locity commands that are sent to a mobile base (pioneer). As a result the robot moves
to the goal pose without bumping into obstacles.

We have configured the Navigation Stack for the shape and dynamics of our robot
platform. The core elements of the navigation system are the localisation and the
navigation control components.

Localisation: This package implements the adaptive Monte Carlo localisation ap-
proach (or KLD-sampling) as described by Dieter Fox in [49]. The localisation com-
ponent, named the acml node, consumes laser scan and odometry readings (in the
form of a tf message provided by the pioneer node), together with a given occu-
pancy map of the environment, and produces an estimation of the robot pose8, which
it publishes as a ROS message.

The amcl ROS node has many parameters that need to be adjusted for each robot,
environment and sensors. They can be divided in three categories:

• Overall filter parameters: These parameters specify the particle filter character-
istics (min/max number of particles), maximum error of the distributions, update
frequencies, the initial pose and covariance of the particle filter, among others.

• Sensor model parameters: These parameters define the model of the range scan
sensory source used. These include the laser maximum and minimum range,
the number of beams and the measure’s covariance.

• Odometry model parameters: These parameters are set accordingly to the robot’s
odometry characteristics. These include the odometry expected noise in the ro-
tation and translation, as well as the frame’s names of the odometry, base_link
and the coordinate frames published by the localisation system.

Navigation control: the central navigation component is the ROS move_base node,
and is the node responsible for the path planning for a given destination point, and also
the immediate movement of the robot to follow that path. It uses a planning approach
based on cost maps: a “cost” value is assigned to each cell in the map depending on
its estimated occupancy state, as observed from the sensors readings. To fulfil its role
the move_base node performs four activities:

• Maintain a local map of the immediate robot surroundings. For this it integrates
the information about obstacles given by sensory sources, which in the testbed

8The pose includes the position and the orientation.

228

11.2. Control Development

Figure 11.4: Performance of the navigation subsystem integrated by the ROS
amcl and the move_base nodes in a simple navigation task. The figure shows
the path computed and followed by the move_base and the evolution of the
particles for the estimation of the robot pose in the amcl, which converges to
the actual pose as the robot moves and more obstacle references are sensed.

are the laser scan readings and the Kinect PointCloud data, and considers the
robot’s dimensions.

• Maintain a global map integrating the information from the initially given occu-
pancy map with that received from sensors.

• Upon reception of the position objective (as a goal message) it produces a tra-
jectory to reach that position according to the global map. An A* algorithm is
used for the search.

• Determine the next velocity commands required to follow the computed tra-
jectory, considering the local costmap, and command the immediate one to the
robot. A breadth-first search is used to calculate the next velocities (local plan).

Mission Control

The control at the mission level and the Operator Interface have been developed im-
plementing a specific component, the mission_manager, and integrating it with the
node rviz from the ROS package for data visualisation and a node for robot teleoper-
ation.

Mission manager: The mission_manager node is responsible for the mission-
level control of the patrolling function. It provides the operator with a simple computer

229

Chapter 11 Testbed System

interface to start, pause and resume the patrolling mission, as well as loading the pa-
trolling waypoint from a file.

RViz: The rviz node is a graphical interface provided by the ROS visualization
packages that displays geometric information of the running system: positions, maps,
sensor readings, etc. It also allows to publish messages using that interface, for ex-
ample selecting a point in the map to provide the robot’s initial position for the lo-
calisation subsystem, or marking another location as the next goal for autonomous
navigation. We have integrated these functions with the mission_manager, so that
manually commanding a new destination goal in rviz pauses the autonomous pa-
trolling, which can be resumed once the manual goal is achieved, or at any moment
after cancelling that goal.

Teleoperation: The teleop node allows to teleoperate the mobile robot using the
remote computer’s keyboard. It publishes messages in the cmd_vel topic, which is
the pioneer setpoint for velocities, at a higher rate than the move_base node, so that
when the operator uses the keyboard to control the robot, she overrides the commands
from the autonomous navigation subsystem.

11.2.2 Functional analysis of the mobile robot

The path we have followed to develop the control system in our testbed is slightly
different from the standard OMEP Control Development process. The reason is that
we have started from the extant ROS navigation stack and other packages. These
components already define a certain control architecture, which we have adapted to
our requirements. This means than instead of beginning by defining the functional
model of the system in design, and then implementing it, we had to realise a functional
analysis from the ROS navigation implementation, and then adapt it to our robot.
The result of this functional analysis and design adaptation is the functional model
of the navigation control of the robot. This model will be the departing point for the
development of the metacontrol system.

The functional decomposition of a system is a design decision. Engineers decide
how to group components into subsystems that perform specific functions, sometimes
depending on the functions realised by other subsystems. Several options are usually
possible, all compliant with the system requirements. However, one is chosen because
it groups and encapsulates the components in a more suitable way according to the
system’s requirements of scalability, maintenance, etc. The same thing applies to the
functional decomposition we have done of the patrolling mobile robot testbed. Figure
11.5 depicts the functional breakdown into subsystems of the control architecture for
the testbed discussed in the previous sections.

MOTION subsystem: contains the pioneer node, which allows control and moni-
toring of the robot’s movement, by accepting the set points for the robot’s ve-
locities, and publishing ded-reckoning information from the robot’s odometry.

230

11.2. Control Development

KINECT

laser

odom

map_server

amcl

scans

move_base

kinect pioneer

mission_manager

teleop

est_pos

rviz

cmd_vel

map

pcl

goal feedback

locationLOC.

PATROL + COMMANDED NAV.

NAV.

MOTION

TELEOP.

LASER

Figure 11.5: Functional decomposition of the mobile robot testbed.

LASER subsystem: is composed of the laser node. Its function is to provide range
scan readings of distances to obstacles in the environment.

KINECT subsystem: includes the kinect node, and its function is to provide a Point
Cloud with 3D information of the environment.

LOCALISATION subsystem: is composed of the map_server and the amcl nodes.
Its function is to provide an estimation of the robot’s position. To realise this
function, it depends on the LASER subsystem, for sensor readings about refer-
ence obstacles, and the MOTION subsystem for odometric information.

NAVIGATION subsystem: consists of the move_base and map_server, and pro-
vides the function of autonomous navigation. For that it relies on the LOCALI-
SATION subsystem, that provides periodically an estimation of the robot’s po-
sition, and the LASER and KINECT subsystems, which provide readings about
obstacles in the environment.

MISSION CONTROL subsystem: it is composed of the rviz and mission_manager
nodes. This subsystem allows the operator to perform mission-level control,
pausing, resuming and cancelling the patrol mission, as well as commanding
navigation to a specific location. It depends on the NAVIGATION subsystem
for the robot to navigate autonomously to the destinations commanded.

TELEOPERATION subsystem: integrated by the teleoperation node for manu-
ally driving the robot.

The previous decomposition of the control architecture results in the functional

231

Chapter 11 Testbed System

dependencies between the different subsystems depicted in figure 11.6.

«function»
NAVIGATION

«function»
LOCALISATION

«function»
TELEOPERATION

«function»
AUTONOMOUS

PATROL

«function»
LASER

«function»
MOTION

«use»«use»
«use»

«use» «use»

«use»

«use»

«function»
COMMANDED
NAVIGATION

«use»

«function»
KINECT

«use»

Figure 11.6: Dependencies between the subsystems in the mo-
bile robot.

Note that we could have decided a different set of subsystems, considering differ-
ent grouping of the components. For example, the map_server could have consti-
tuted a subsystem on its own, the NAVIGATION and LOCALISATION functionally
depending on it, instead of being a role in each of those subsystems. However, hav-
ing no alternative component or design to provide the map functionality, there is no
need for functionally encapsulating it to have a point for variance in the functional
architecture. The case of the sensors is just the opposite, we need to encapsulate their
functionality to have that function as a point of variance, since the system is to be
designed so as to adapt to faults in its sensors, as defined in the scenarios.

11.2.3 Design alternatives

The functional architecture of the domain control system is not unique and static.
There are design alternatives for some of the functions or subsystems identified in
11.6. This is necessary to have redundancy in the system, be it physical or analytical.
Each alternative design for a function (a TOMASYs FunctionDesign) is a variance
point in the functional architecture of the system, so that the different alternatives for
the complete control system is the product of the numbers of alternatives in these
variance points. Following we describe the alternative designs we have developed to
address the requirements of robust autonomy and adaptivity presented in page 223.

LASER subsystem

The laser node, implemented using the sicklms_toolbox package, can be de-
ployed in the system to obtain scan readings from the SICK laser sensor of the robot.
This is a straight-forward design for the LASER subsystem.

There is an alternative to obtain laser-like scan readings when there is no laser sen-
sor available (figure 11.7a). The pcl node, implemented using the pcl ROS package,

232

11.2. Control Development

laser

scans

Laser 1

(a) The laser node directly provides
scan readings.

Laser 2

pcl2scan

scans

pcl

(b) Laser-like scan readings can be
obtained also using the kinect and
pcl nodes.

Figure 11.7: Two different configurations of ROS nodes that provide laser-like scan readings
of obstacles in the environment.

allows to obtain LaserScan (scan) messages from the PointCloud (pcl) data published
by the kinect (figure 11.7b). However, the scan readings obtained with this alterna-
tive design are of a narrower span angle (60° of horizontal span in the Kinect sensor,
compared to the 180° of the laser), and lower quality (they are noisier and less accu-
rate).

LOCALISATION subsystem

The amcl node uses scan readings to match reference obstacles as explained in the
previous section. As shown above, these can be easily obtained the SICK LMS laser
sensor using the laser node. This is the default laser design for the LOCALISATION
subsystem in figure 11.8a.

However, when these scan readings are obtained from the Kinect’s PoinCloud, us-
ing the LASER 2 subsystem, they have different characteristics (noise) as discussed
above. The algorithm’s parameters regarding the sensor model must be adjusted ac-
cordingly. However, this is not enough to achieve a LOCALISATION subsystem re-
liable enough, due to the poor quality of the sensory readings available. This can be
overcome by improving the quality of the other sensory source: the ded-reckoning es-
timation obtained from the robot’s odometry. The ekf node from the ROS packages,
which implements an Extended Kalman Filter, can be used to obtain a better ded-
reckoning estimation of the robot position by integrating the odometry information
from the pioneer with the orientation information provided by the compass. This
kinect design of the LOCALISATION subsystem is shown in figure 11.8b.

Although the robot can operate with this later design for the localisation, as has
been previously commented it is less reliable than the design that uses the laser read-
ings for the mapping of reference obstacles. The obstacles mapped with the scans
obtained from the Point Cloud information are fewer and with a greater covariance,
given the already commented much narrower span angle of the Kinect sensor and the
noise of its readings. This results in a poorer performance of the localisation algorithm

233

Chapter 11 Testbed System

Localisation 1

odom

map_server

amcl
scans

est_pos

map

config 1

(a) The standard configuration of
the LOCALISATION subsystem us-
ing laser scan readings and odometry
information from the robot.

Localisation 2

odom

map_server

scans

est_pos

map

compass

imu

ekf

ded_reck

amcl

config 2

(b) The alternative design of the lo-
calisation subsystem that uses an Ex-
tended Kalman Filter to improve the
ded-reckoning input to the Monte
Carlo algorithm.

Figure 11.8: Two alternatives for the LOCALISATION function, depending on the availability
of the laser sensor.

234

11.2. Control Development

than when the laser scans, which include a larger quantity of obstacles detected, are
used.

NAVIGATION subsystem

The move_base node can use different sensory sources to map obstacles to the robot’s
navigation. There are different configurations for the NAVIGATION subsystem de-
pending on the sensory sources used. In our mobile robot testbed there are two sources
available: the laser scan readings and the kinect’s PointCloud. This way we have de-
signed three alternative NAVIGATION systems, depending on which source is used,
or if it is both, as explained in figure 11.9.

The main navigation design (fig. 11.9a) uses both the laser scan readings and the
Kinet’s Point Cloud information to update the information about obstacles, the laser
navigation design (fig. 11.9b) uses only the laser scan readings, and finally, the kinect
navigation design (fig. 11.9b) uses only the Point Cloud information to map obstacles.
In addition to the previous differences between the three configuration for the naviga-
tion subsystem, the parameters for the control law applied by the move_base that
constrain the robot’s movement are tuned differently in each of the alternatives. For
example, given the much more limited span angle covered by the Kinect sensor (60°
against 180° for the laser readings), and the lower update frequency, the move_base
commands lower velocities for a more safe and smooth movement of the robot.

Overall alternative functional designs

Considering the previous alternative designs for the Localisation, Navigation, and
Laser functions, we have two alternative control architectures for the complete testbed
system, as depicted in figure 11.10, in addition to the main design of figure 11.5 that
makes use of the laser and the Kinect sensors. The laser design (fig. 11.10a) main-
tains the good performance of the main design, although it is less safe due to the more
complete 3D information provided by the Kinect that is missing, whereas the kinect
design (fig. 11.10b) has a poorer performance.

The design alternatives have different performances. The laser configuration pro-
vides a better and more reliable performance than the kinect design, for the reasons
already explained. Some quantitative measurements of this has been obtained in ex-
perimental works [31] conducted in relation to this research (see table 11.1).

235

Chapter 11 Testbed System

Navigation 1

map_server

scans

est_pos cmd_vel

map

goal

pcl

move_base

config 1

(a) The navigation subsystem using both scan readings
from a laser sensor and PointCloud information from a
Kinect to map obstacles.

Navigation 2

map_server

scans

est_pos cmd_vel

map

goal

move_base

config 2

(b) The navigation subsystem using
only the laser readings for obstacle
mapping.

Navigation 3

map_server

est_pos cmd_vel

map

goal

pcl

move_base

config 3

(c) The navigation subsystem using
only the Kinect’s PoinCloud informa-
tion for obstacle mapping.

Figure 11.9: Three alternative designs for the NAVIGATION subsystem, depending on the
availability of sensors for obstacle perception.

Lap 1 Lap 2 Lap 3 Lap 4 Lap 5 Lap 6 Lap 7 mean ± std. dev.

Laser 180.5 198.5 158.9 202.0 153.0 211.6 135.9 177.2 ± 26.4

Kinect 224.9 302.0 346.2 536.4 489.5 331.7 422.2 379.0 ± 101.3

Table 11.1: Time measures, in seconds, of the robot navigation through the rectangular cor-
ridors of the patrolling area using the different design configurations. The mean time of each
lap when using the laser is less than half the time when the robot uses the Kinect. Besides,
the system is much more reliable with the laser design: the standard deviation obtained is 26.4
seconds, versus 101.3 seconds of deviation for the kinect configuration.

236

11.2. Control Development

laser

odom

map_server

amcl

scans

move_base

pioneer

mission_manager

teleop

est_pos

rviz

cmd_vel

map

goal feedback

locationLOC.

MISSION CONTROL

NAV. 3

MOTION

TELEOP.

LASER

kinect

config 3

(a) Design of the testbed control architecture that does not use the
Kinect sensor.

KINECT

MOTION

odom

map_server

amcl

scans

move_base

kinect

pioneer

mission_manager

teleop

est_pos

rviz

cmd_vel

map

pcl

goal feedback

location

pcl2scan

compass

imu

ekf

dead_reck

laser

LOC.

MISSION CONTROL

NAV. 2

TELEOP.

LASER
config 2

config 2

(b) Design of the testbed control architecture that does not use the laser
sensor.

Figure 11.10: Two alternative designs for the testbed control architecture that realise the same
functionality to address the system’s requirements.

237

Chapter 11 Testbed System

11.3 Metacontrol System Development

For the development of the metacontrol system in the mobile robot the OMEP Meta
Development process has been followed. This way, the metacontroller has been devel-
oped by first obtaining the TOMASys model of the testbed control system, and then
implementing a metacontroller that uses it to adapt the patrolling system if required
by the circumstances. Following the MDA approach for OMEP described in section
10.2, the OM Java library has been used for the implementation of the metacontroller,
as described on page 218. According to this process, a ROS Java package has been de-
veloped, in order to deploy the OM Architecture in a ROS system such as the testbed.
This package has been developed to be general for any ROS-based control system, and
not just for our mobile robot testbed.

For the building of the metacontrol system, the specific resilience and adaptivity
requirements for this autonomous application, which have been introduced on page
223, have been considered. Following they are further analysed.

11.3.1 Metacontrol System Requirements Analysis

The requirements for the Metacontrol System derive from those of the complete testbed
that refer to fault-tolerance and adaptability issues, which were presented in page 223.
In this section we analyse them in detail, using the method proposed by Fernández et
al. [47], in order to check the validity of the OM Framework to address them.

Following Fernández at al. method, we have performed the following tasks in
order to elaborate the requirements for the Metacontrol System:

1. envisioned the operational scenarios or use cases,
2. identified operational needs that can be extracted from the previous scenarios,
3. gathered the functional requirements in a tree of capabilities and listed the non-

functional requirements.

Operational Scenarios (Use Cases) and needs

These are the operational scenarios envisioned for the Metacontrol System in the mo-
bile robot testbed:

1. S0 – No failure in the testbed system: the Metacontrol receives monitoring in-
formation from the patrolling system and maintains a representation of its state.
The Metacontrol does not take any action because the patrolling system is work-
ing as desired.

2. S1 – Laser transient failure: during regular operation, the robot’s laser driver
fails and no laser information is received by the patrolling system. The Meta-
control observes this and re-starts the laser’s driver.

238

11.3. Metacontrol System Development

3. S2 – Laser permanent failure: same incident with the laser’s driver than above,
but this time re-starting the driver does not solve the problem. The Metacon-
trol reconfigures the patrolling system so as to use the Kinect sensor input data
instead of the laser’s for navigation (kinect configuration).

Tables 11.2, 11.3, 11.4 describe the scenarios S0 to S2 in terms of the expected
behaviour of the complete system, considering its initial and final states.

The previous scenarios have been proposed to demonstrate the adaptivity capabil-
ities that the OM architecture gives to the control system of the robot. Let us consider
them in relation with the metacontrol scenarios envisioned for the OM Architecture in
section 9.1.2:

• Scenario 1 requires the usual functionality in active fault-tolerance, that is com-
ponent recovery. The system detects the failure of one of its components and
fixes it. In this case a structural mismatch between the specified (designed)
system and the running system is detected and fixed.

• Scenario 2 demands a reconfiguration, since the initial design is no longer real-
isable; it corresponds to a function recovery. The metacontrol reconfigures the
system according to the best alternative functional design that is available.

Operational needs Note that the previous operational scenarios demand the follow-
ing functionality from the metacontrol system:

• maintain a representation of the functional design for the patrolling system that
is running at any instant.

• maintain an updated state of the functions for the currently instantiated func-
tional design.

• produce a new instance of a functional design according to the available com-
ponents for the patrolling system.

• memory of past reconfiguration actions.

These requirements can be addressed by the OM Architecture (See 9.1.2)

Metacontrol System Requirements

We can apply for the metacontrol system requirements the same analysis that we have
performed for the control system:

Functional requirements: they are a particular instance of those specified for any
autonomous system in the OM Architecture. We have also added the following
requirement regarding the operator interface for the metacontroller:

• the metacontroller is user-controllable, independently of the patrolling system,
for example to switch in between operational modes: start, stop, sensing-only
mode (in which the Metacontrol System monitors the patrolling system, but
does not actuate upon it).

239

Chapter 11 Testbed System

Table 11.2: Regular operation of the patrolling system with no failures.

Name S0: No failure in patrolling system

Description

The metacontroller receives monitoring information from the
patrolling system and maintains a representation of its state.
The metacontroller does not take any action because the pa-
trolling system is working as desired.

Preconditions The patrolling system is up and running, the metacontroller
system is also running.

Periodic The patrolling system works properly with the configuration
desired.

Basic Flow

The metacontroller monitors the state of the patrolling sys-
tem, by periodically updating the model it maintains of its
components and functions. Since that state complies with the
desired design, no action is needed.

Postconditions The patrolling system works as desired without the metacon-
troller’s intervention.

Table 11.3: Laser transient failure scenario.

Name S1: Laser transient failure

Description

During regular operation, the robot’s laser sensor fails and no
laser information is received by the patrolling system. The
metacontroller detects this abnormal situation and actuates
to recover from it by re-starting the laser driver.

Preconditions The patrolling system is up and running with the main con-
figuration, the metacontroller system is also in operation.

Triggering event The laser driver fails and stops providing laser data to the
patrolling system.

Basic Flow

1. Detect errors in the components of the patrolling system.
2. Update the state of components observed: the laser driver

is in error.
3. Re-start the laser driver.

Postconditions

The patrolling system resumes its mission and continues mov-
ing to the waypoint it targeted when the scenario was trig-
gered, operating with the main configuration, as it was before
the triggering event. The metacontroller continues operating
as previously, monitoring the state of the patrolling system.

240

11.3. Metacontrol System Development

Table 11.4: Laser permanent failure scenario.

Name S2: Laser permanent failure

Description

The laser driver stops working and re-starting it does not solve
the problem. The Metacontrol reconfigures the patrolling sys-
tem so as to use the Kinect sensor input data instead of the
laser’s for navigation (kinect configuration).

Preconditions

The patrolling system is in laser configuration, but not running
because of a laser driver failure, which has caused the system
to undergo the laser transient failure scenario, not having re-
turned to the normal operation scenario.

Triggering event The laser component class ceases to be available.

Basic Flow

1. Detect errors in the components of the patrolling system.
2. Update the state of components observed: several func-

tions are in failure, but the origin is an internal failure of
the function to provide laser readings.

3. Update the functional status of the system: the function
to obtain laser readings is no longer available.

4. The patrolling system is reconfigured to the kinect config-
uration.

Postconditions

The patrolling system resumes its mission by navigating to the
waypoint it targeted when this scenario triggered, but now in
the kinect configuration. The metacontroller continues op-
erating as previously, monitoring the state of the patrolling
system.

Includes The laser transient failure scenario up to its postconditions,
which do not hold in this case.

241

Chapter 11 Testbed System

Non-functional requirements: are those defined for the OM Architecture:

• minimal intrusion in the performance of the patrolling system for monitoring,

• minimal reconfiguration time,

• safe transition between design configurations,

• minimal impact on the patrolling system’s performance between functional con-
figurations.

• failure in the metacontrol must not affect operation of the patrolling system.

• economy – performance-resilience trade-off 9.

11.3.2 Metacontrol Design for the Testbed

An OM-based metacontroller has been developed for the testbed patrolling system that
addresses the previous metacontrol requirements. Note that this metacontroller could
have been developed from scratch, departing just from the OM reference architecture
provided in chapter 9. However, the objective of the testbed was to validate not only
the thesis abstract principles, but also the framework and assets produced for their
reification and application in the practical engineering of autonomous systems. It is
for this reason that we have used the OMJava library to develop the metacontroller for
the testbed robot.

Using the OMJava library simplifies the design and implementation of the meta-
controller, since the library already contains an implementation for a generic OM-
based metacontroller, requiring only:

a) the integration of the OMJava implementation of the OM metacontroller in the
ROS component platform of the testbed,

b) the implemenattion of a Meta I/O module that complies with the MetaInterface
be provided, in order to connect the metacontroller to the running control sys-
tem,

c) a OM-TOMASys model of the testbed control system, embedding it in the meta-
controller for its run-time exploitation.

Instead of developing a testbed specific implementation in order to address the
previous requirements for the testbed, we have developed a general ROS stack10 that
addresses them for any ROS-based application. This is possible thanks to the MDA

9We could have the metacontrol system apply two design policies: i) have several function groundings
realised for a single objective (both the laser and the kinect to obtain range scan reading), which is more
expensive but improves resilience and performance (no need to reconfigure when one of them fails), or
ii) have only one function grounding instantiated, and reconfigure the system to a different one if it fails.
This second option is more economic in terms of resources, but hampers system performance because of
the reconfiguration needed. Despite we have configured the OM Architecture functional reconfiguration
according to the second option, it would be interesting to explore the possibility of a more sophisticated
decision mechanism capable of optimizing a joint function of performance, economy and resilience

10A ROS stack is a set of related libraries, or packages in ROS terminology.

242

11.3. Metacontrol System Development

Pl
an

t

C
on

tr
ol

 S
ys

te
m

Im
pl

em
en

ta
tio

n

O
M

Ja
va

.to
m

as
ys

TO
M

AS
ys

m

od
el

In
te

gr
at

io
n

O
M

Ja
va

.m
et

ai
nt

er
fa

ce

O
M

 M
od

el
im

pl
em

en
ta

tio
n

M
et

a
I/O

im
pl

em
en

ta
tio

n

O
M

Ja
va

ro
sj

av
a

O
M

Ja
va

.o
m

m
et

ac
on

tro
lle

r

N
av

ig
at

io
n

Fu
nc

tio
na

l
m

od
el

m
et

ac
on

tr
ol

re

qu
ire

m
en

ts

M
et

ac
on

tr
ol

R

eq
ui

re
m

en
s

A
na

ly
si

s

TO
M

A
Sy

s
m

od
el

lin
g

re
qu

ire
m

en
ts

M
ET

A
D

EV
EL

O
PM

EN
T

N
av

ig
at

io
n

Te
st

be
d

M
et

ac
on

tr
ol

Im
pl

em
en

ta
tio

n

Te
st

be
d

M
et

ac
on

tr
ol

Su

bs
ys

te
m

N
av

ig
at

io
n

A
rc

hi
te

ct
ur

e

R
O

S
na

vi
ga

tio
n

st
ac

k

R
O

S
se

ns
or

 p
ac

ka
ge

s

In
te

gr
at

io
n

«u
se

»

«u
se

»
«u

se
»

«u
se

»

«u
se

»

«u
se

»

R
O

S
no

de
s

fo
r t

he

te
st

be
d

«u
se

»
«u

se
»

C
O

N
TR

O
L

D
EV

EL
O

PM
EN

T

Fi
gu

re
11

.1
1:

T
he

O
M

E
ng

in
ee

ri
ng

Pr
oc

es
s

ap
pl

ie
d

to
th

e
m

ob
ile

ro
bo

t.

243

Chapter 11 Testbed System

approach taken in the definition of the OMEP methodology and the extensibility char-
acteristics of the OMJava library that support it. Figure 11.12 schematizes this 2-step
weaving process. In the first step, the model of the OM Architecture is OMJava, which
is specific for the Java implementation platform. This model is woven with rosjava,
which is the extension of the ROS component platform for Java, resulting in the omros
, which is a model of the OM Architecture specific for the Java implementation plat-
form and the ROS component platform.

11.4 ROS implementation of the OM Architecture

Following we describe the ROS stack omros, which is the set of software libraries that
have been developed for the application of the OM Architecture Framework in ROS-
based systems. It implements the OMEP methodology and allows the integration of
OMJava metacontrollers in control systems implemented with the ROS component
framework. The omros stack was initially developed for the Electric version of ROS,
but it has recently been updated to work in ROS Fuerte too.

omrosROS Platform
specific model

OMJava ROS Platform
specific extensionrosjava

model
weaving 1

Java Platform
specific model

model
weaving 2

testbed metacontrol
application

testbed functional
model

application
model

Figure 11.12: The MDA model weaving applied to the testbed. In the first
step “model weaving 1”, the OMJava library is woven with the rosjava ROS
library to obtain omros, the implementation of OM for the ROS component
platform. The final step“model weaving 2” consists in obtaining, from omros
and the functional model of the control application, the metacontroller for the
testbed application.

The omros stack provides a ROS node that includes an instance of the OMMeta-
controller, to allow its deployment in a ROS system, and implements a Meta I/O mod-
ule to connect it with the rest of the system for metacontrol purposes. Additionally,
omros includes a library of Java classes that implements a TOMASys model of the

244

11.4. ROS implementation of the OM Architecture

generic ROS node. This way, we have separated the generation of the OM Model for
the testbed application in two steps, the first one, involving the building of this library,
specific for the ROS platform, which can be reused for other ROS systems, and a sec-
ond one, application-specific, implemented in this case for our concrete testbed robot.
This reifies the MDA model weaving strategy for the ROS platform (see figure 11.12),
as defined for the OMEP methodology in the previous chapter (page 215).

omros

OMROSMetacontrol

OMJava

«implements» «implements»«uses»
rosjava

«uses»

OMMetaInterface OMTOMASysOMmetacontrol

OMRosAPIOMROSMetacontroller

OMROSModel

meta_actuator_node meta_sensor_node

«uses»«uses»

OMROSNode«uses»

Figure 11.13: The elements of the omros stack, and their relations to the OM-
Java library.

11.4.1 OM-based ROS Metacontroller

The ROS package omrosmetacontrol contains all the classes needed to instantiate an
OM metacontroller in a ROS system. It is basically a wrapper for the OMJava library
in ROS.

The OMROSMetacontroller class in the package implements the meta_controller
ROS node, which includes an instance of the OMMetacontroller class of OMJava, i.e.
the metacontroller. OMROSMetacontroller uses the OMRosAPI class to connect to
the ROS system for monitoring and reconfiguration. This class is an implementa-
tion of the OM Meta I/O described below. The OM Model for the metacontroller
is dynamically loaded upon initialisation. Its implementation will be described later.
Additionally, OMROSMetacontroller includes a basic console interface for the human
operator to supervise and manage the operation of the metacontroller.

245

Chapter 11 Testbed System

OMROSMetacontroller

metaio : OMRosAPI

meta_actuator_nodemeta_sensor_node

metacontroller :
OMMetacontroller

model :
OMModel

Figure 11.14: The metacon-
troller connects to the metacon-
trol infrastructure developed for
ROS through OMRosAPI.

11.4.2 ROS Meta I/O module

The ROS component platform does not provide a standard monitoring and manage-
ment infrastructure that could directly serve for the OM Architecture. However, we
have developed a simple one making use of the ROS system libraries. It consists of
two ROS nodes, to which the OMROSMetacontroller connects through the OMRos-
API class, which implements the Meta I/O module (see figure 11.14).

Monitoring and reconfiguration infrastructure

ROS offers a Python API for internal development that allows access to the running
ROS system. We have used it to implement a basic infrastructure for metacontrol
purposes. In order to integrate it with our Java-based implementation of the OM meta-
controller, we have developed two ROS nodes that encapsulate the access to the ROS
system with this Python API:

The meta_sensor_node implements the monitoring mechanisms. It periodically ac-
cesses the ROS Master and the Parameter Server11 to gather information about
the running nodes that form the control application, and publishes messages
with that information (meta_singularities topic/signal in fig. 11.15).

The meta_actuator_node implements a limited set of the reconfiguration actions
defined by the OM Architecture, because there is no infrastructure for online re-
configuration of individual components in ROS at the time of this research. This
way, the node can only perform atomic operations to KILL a node or LAUNCH
another with a given configuration. These commands are received through the
meta_action topic.

ROS message types12 have been defined for each of the topics involved in the
operation of these two nodes.

11The ROS Master and the Parameter Server are at the core of the ROS infrastructure, and contain the
information of the nodes and their properties in the running system. More information can be found at
http://www.ros.org/wiki/Master

12ROS message types are the data structures for the information flowing through the ROS topics.

246

http://www.ros.org/wiki/Master

11.4. ROS implementation of the OM Architecture

/meta_controller

/meta_sensor_node /meta_actuator_node

/m
eta
_re
fer
en
ts

/m
eta
_si
ng
ula
ritie
s /meta_action

/meta_action_result

Figure 11.15: The ROS nodes that compose the metacontrol
system for the testbed.

OMRosAPI

The OMRosAPI class implements the Meta I/O module. It connects to the meta
_sensor_node for obtaining monitoring information about the ROS node in the sys-
tem by subscribing to its meta_singularities. OMRosAPI performs a mapping
from the information in the message ROS type NodeState, which is ROS-dependent,
into the platform independent ComponentObservation data type defined by the OM
Architecture. Additionally, OMRosAPI converts the filtering signal into the ROS
message type FilterNodes to command to the meta_sensor_node the nodes from
which obtain information.

Regarding the configuration of components, OMRosAPI provides a mapping from
the action vocabulary defined in OM (page 172). For each action in the reconfigu-
ration signal it receives from the metacontroller, a ROS Task Executor is dynam-
ically instantiated in its own thread. The executor decomposes the component ac-
tion into the available ROS reconfiguration actions and commands them by publishing
ROSaction messages in the meta_actions topic. The commands for a component
action form an action plan: they must be executed orderly because of dependencies.
For example, to change the configuration of a node, its state has to be saved, then it
can be killed and finally re-launched with the given configuration and the saved ini-
tial state. The executors monitor the execution status of the commands through the
meta_actions_results topic. Upon termination, they send the result of the execu-
tion of their corresponding component actions in the effect signal to the metacontroller.

11.4.3 OM-TOMASys model of a ROS system

In order to easily build the OM Model of any ROS-based system, a mapping between
the ROS component model and the OM-TOMASys metamodel has been defined. The
omrosmodel Java library has been developed to implement this mapping. It can be
considered the result of the model weaving of the Java specific model of TOMASys
given by the OMTOMASys Java package and the ROS component model.

247

Chapter 11 Testbed System

TOMASys representation of the ROS component model

There does not exist a formal specification of the ROS component model. This com-
plicates the application of our MDA modelling approach in the construction of auto-
matic transformations. However, we have defined the mapping between the ROS and
TOMASys metamodels as follows:

ROS nodes are modeled as TOMASys components. Their ROS parameters can be
represented as TOMASys parameters, the definition corresponding to the TOMASys
concept of a Parameter Profile. The subscriber and publisher elements of a node,
each one publishing or subscribing to a type of ROS message, can be represented
as port profile. The instantaneous connection of a ROS node to a topic is thus
represented by a TOMASys port.

ROS does not include a functional modelling methodology or any special consid-
erations in that respect, so the functional part of the TOMASys model of a ROS system
can be obtained from the functional model obtained in the design of the system, as will
be illustrated for the testbed in section 11.5.

omrosmodel library

The omrosmodel library has been developed to facilitate the building of the OM-
TOMASys model of any ROS-based control system. The library provides default
constructors for the elements in the OM Metamodel, so they can be directly used in
the implementation of the OM Model of the concrete application, for example the
testbed system described in this chapter.

The OMROSnode class, which inherits from the OMComponentClass in OM-
Java, implements the OM-TOMASys representation of a standard ROS node, and is
the main class in the library. To represent the components of a particular ROS sys-
tem, classes inheriting from OMROSNode provide with default properties that can be
overridden with those particular to the component if needed. This is described in the
following section.

OMComponentClass

ifm()
fm()
availability()

name : String
parameterProfiles : Set<OMParameterProfile>
portProfiles : Set<OMPortProfiles>

OMROSnode Figure 11.16: The OM-
ROSnode class developed to
implement the OM-TOMASys
representation of ROS compo-
nents.

248

11.5. OM-TOMASys model of the testbed

11.5 OM-TOMASys model of the testbed

The provision of the previously described omros stack simplifies the OMEP imple-
mentation of the metacontroller for a ROS control system in the generation of the
OM-TOMASys Model of it. In this section the model implemented for the testbed
robotic system is described.

The OM-TOMASys model of the testbed must include all the knowledge required
to address the metacontrol requirements. This includes the long-term knowledge
atoms necessary to represent the functional model of the testbed control system and
the available alternatives, as described in previous section 11.2.2, as well as the knowl-
edge about the system’s components that play the necessary roles in those functions,
described in section 11.2.1.

To build the OM Model of the Testbed, the omrosmodel library has been used, in
addition to the OMJava.tomasys classes. Java classes have been implemented extend-
ing the classes in these libraries to represent the knowledge atoms required. Following
we describe the implementation of all these atoms that compose the OM-TOMASys
model initially provided to the metacontroller for its operation. This model is main-
tained and updated by the metacontroller according to the state of the control system
observed.

11.5.1 Components

The TOMASys component classes that represent the knowledge about components
in the testbed system have been obtained almost directly from the ROS node types
involved in the application. The mapping defined in section 11.4.3 has been used.
Some of the nodes, however, have been grouped into a single component class,
since they work as a single unit and no finer level of granularity was required; this is
the case for example of the nodes involved in the operation of the Kinect sensor.

In order to produce the knowledge atoms about components the OMROSnode
class of the library has been extended to model each of the components in the testbed.
For example, specific internal error models have been obtained for the compo-
nents and implemented in the corresponding classes by overriding the default ifm
defined in the OMROSnode class. Additionally, specific factory methods have been
implemented in these classes. For example the Laser class includes a method to pro-
duce atoms that represent components of type laser, with the parameters and port
profiles characteristics of the laser node in the testbed control system.

249

Chapter 11 Testbed System

OMROSnode

Laser()
componentFactory()
ifm()
fm()

name : String
parameterProfiles : Set<OMParameterProfile>
portProfiles : Set<OMPortProfiles>

Laser

Figure 11.17: The Laser class
implements the OM-TOMASys
model of the laser sensor of the
testbed.

11.5.2 Metacontrol goal for the testbed

The goal of the metacontroller, as defined in the OM Architecture, is a set of TOMASys
root objectives that represent the requirements about robustness and adaptivity
concerning the high level functions of the system. In the case of our mobile robot
testbed, it is the realisation of the navigation function13.

description = "navigate"

o1 : OMRootObjective

description = "navigate"

f11 : OMFunction

type

Figure 11.18: The goal of the testbed’s metacontroller.

11.5.3 Functions

Figures 11.19, 11.20 and 11.21 depict the long-term knowledge of functions in the
OM Model of the testbed, considering only the navigation function14. It consists of
the TOMASys representation of the functional analysis and the design alternatives
described in section 11.2.2.

13Note that we could have considered a metacontrol of all the high level functions of the testbed identified
in section 11.2.2.

14The model of the rest of the high level functions can be found in annex V in page 291.

250

11.5. OM-TOMASys model of the testbed

solves
confidence = 1

description = "localisation"

f12 : OMFunction

roles =

fd_loc1 : OMFunctionDesign

r_loc12
: map_server scans

est_pos

r_loc11 : amcl

config 1

map

type = f22

description = "obtain laser scans"

: OMObjective

solves
confidence = 0.9

roles =

fd_loc2 : OMFunctionDesign

r_loc 22
: map_server scans

est_pos

r_loc 21 : amcl

config 2

map

type = f22

description = "obtain laser scans"

: OMObjective

type = f24

description = "obtain odometry
 information"

: OMObjective
description = "obtain odometry
 information"

type = f24

: OMObjective

odom

r_loc 24:
compass

imu

r_loc 23: ekf

ded_reck

odom

Figure 11.19: TOMASys representation of the alternative designs for the local-
isation function.

description = "obtain laser scans"

f22 : OMFunction

roles =

fd_scans :
OMFunctionDesign

solves
confidence = 1

r_scans : laser

scans

description = "obtain PointCloud
 information"

f23 : OMFunction

roles =

fd_pcl :
OMFunctionDesign

solves
confidence = 1

r_pcl : kinect

pcl

description = "robot motion"

f21 : OMFunction

roles =

fd_motion :
OMFunctionDesign

solves
confidence = 1

r_m : pioneer

cmd_vel

Figure 11.20: TOMASys model of the low level functions in the patrolling
robot.

251

Chapter 11 Testbed System

solves
confidence = 1

description = "navigate"

f11 : O
M

Function

roles =

fd_nav1 : O
M

FunctionD
esign

r_nav12
: m

ap_server

scans

est_pos

cm
d_vel

goal

pcl

r_nav11 : m
ove_base

config 1

m
ap

solves
confidence = 0.9

roles =

fd_nav2 : O
M

FunctionD
esign

r_nav22
: m

ap_server

scans

est_pos

cm
d_vel

goal

r_nav21 : m
ove_base

config 2

m
ap

type = f22

description = "obtain laser scans"

: O
M

O
bjective

type = f23

description = "obtain PointC
loud

 inform
ation"

: O
M

O
bjective

solves
confidence = 0.7

roles =

fd_nav3 : O
M

FunctionD
esign

r_nav32
: m

ap_server

est_pos

cm
d_vel

goal

pcl

r_nav31 : m
ove_base

config 3

m
ap

description = "localisation"

type = f12 : O
M

O
bjective

description = "robot m
otion"

type = f21 : O
M

O
bjective

type = f22

description = "obtain laser scans"

: O
M

O
bjective

description = "localisation"

type = f12 : O
M

O
bjective

description = "robot m
otion"

type = f21 : O
M

O
bjective

type = f23

description = "obtain PointC
loud

 inform
ation"

: O
M

O
bjective

description = "localisation"

type = f12 : O
M

O
bjective

description = "robot m
otion"

type = f21 : O
M

O
bjective

Figure
11.21:

TO
M

A
Sys

representation
ofthe

alternative
designs

fornavigation.

252

11.6. Testbed metacontrol operation and results

11.6 Testbed metacontrol operation and results

The metacontrol system described in the previous section has been validated in the
failure scenarios defined in section 11.3.1. In order to do that the complete mobile
robotic system has been deployed to execute a pre-defined patrolling mission in au-
tonomous navigation mode (see figure 11.22) in several trials. During each trial one
of the envisioned failures was simulated.

Figure 11.22: The robot’s path and waypoints for its patrolling
mission.

To integrate and deploy the metacontroller with the rest of the components of the
ROS navigation system one has simply to execute the ROS node defined by the OM-
ROSMetacontroller class, passing it as a parameter the Java class that contains the
initial OM-TOMASys model of the system, defined in section 11.5.

An interesting property of the OM metacontroller is that, in order to deploy and
start the whole system, only the metacontroller needs to be launched, apart from the
physical infrastructure of the robotic system. The rest of the software components of
the control system will be automatically launched by the metacontroller, because it
will detect the absence of components to fulfil the roles in the functional hierarchy
that is its goal. The metacontroller will bootstrap the whole system.

The initial conditions are the same for all the scenarios: the robot’s navigation
architecture is already up and running as specified, as well as the metacontrol sys-
tem, and the OM-TOMASys estimated state contains the component and function
grounding atoms that represent the instantiation of the main design, schematized in
figures 11.23 and 11.24.

In the following we describe the operation of the metacontroller in each of the
scenarios, discussing how it results in different reconfigurations of the control system
to adapt it to the circumstances.

253

Chapter 11 Testbed System

type = f11 (navigate)

o0 : OMObjective

type = fd_nav1

fg1 :
OMFunctionGrounding

realises

type = fd_loc1

fg2 :
OMFunctionGrounding

type = f12 (localisation)

o1 : OMObjective

type = f22 (scans)

o2 : OMObjective

type = f23 (PointCloud)

: OMObjective

requires

realises requires

requires

requires

type = fd_scans

fg3 :
OMFunctionGrounding

realises

type = f21 (motion)

: OMObjective

requires

type = f24 (odom)

: OMObjective

requires

type = fd_odom

: OMFunctionGrounding

realises

type = fd_pcl

: OMFunctionGrounding

realises

type = fd_motion

: OMFunctionGrounding

realises

Figure 11.23: The state atoms of the functional hierarchy in the initial state of
the run-time OM-TOMASys model of the testbed.

254

11.6. Testbed metacontrol operation and results

Functional Hierarchy
Estimated State

 ...

Components Configuration
Estimated State

 ...

Components Goal

 ...

bindings =

fg3 : FunctionGrounding

fg2 : FunctionGrounding
bindings =

b2 spec2r_loc12

spec3

realiserrole
r_loc11b1

role
spec4r_scansb4

realiser

move_base

spec1 : OMCompSpec

: MapServer

: Laser

: AMCL

fg1 : FunctionGrounding
bindings =

role

r_nav12

r_nav11 spec1

spec2

realiser

b3

b1

map_server

spec2 : OMCompSpec
: MoveBase

amcl

spec3 : OMCompSpec

laser

spec4 : OMCompSpec

Figure 11.24: Some of the roles, component specifications and components state atoms
in the initial state.

11.6.1 Scenario 1: Laser temporary failure

In this scenario, only the Components Loop of the metacontroller actuates to recover
the system from a temporary failure in the laser component. The sequence of activity
in the system proceeds as follows. While the robot is navigating, the laser sensor is
disconnected. This produces an error in the laser ROS node, which stops publishing
scan readings. The error is logged in the ROS system, and the meta_sensor_node
of the metacontrol system gathers that information, so the Meta I/O sends it to the
metacontroller in the Component Observation monitoring signal about the laser com-
ponent.

At the Components Loop, during the update of the estimated state of the compo-
nents, the error in the log of the laser component is mapped to an ERROR status of the
component by the TOMASys ifm. The evaluation phase does not detect any other
deviations from the desired goal of component specifications that this ERROR status
of the laser component. A RESTART action (A1) over the laser node is therefore
computed and executed through the Meta I/O, where an executor is instantiated that
produces the ROS commands to first KILL the previous laser node, and then, upon
success of the execution of the previous, LAUNCH a new laser node with the same
configuration.

The final state of the robot’s control system, of the metacontroller and of the run-
time OM-TOMASys model of the system, is exactly the same than those at the begin-

255

Chapter 11 Testbed System

Components Configuration
Estimated State

 ...

Components Goal

 ...

STATUS=ERROR

log={"cannot connect..."}

: Laser

STATUS = ERROR

compliant = laser

spec4 : OMCompSpec

Figure 11.25: State atoms representing the laser failure in the
estimated state and the goal of the Components Loop.

ning of the scenario.

It is interesting to note that the internal failure of a component is a particular case
of the general scenario of a component non complying with its specification and thus
not fulfilling its role. Other such scenarios are those in which the component is in a
different configuration from the specification, e.g. because of a wrong parameter value
or an undesired connection to other component. Some trials were also successfully
performed for this scenarios, in which the metacontroller successfully reconfigured
the robot’s control system when it was incorrectly initialised.

11.6.2 Scenario 2: Laser permanent failure

The flow of activity in the metacontroller is the same as in the first scenario, from the
laser failure to the execution of the metacontrol RESTART action A1 to reconfigure
the system by re-starting the laser node. Then it diverges, when that action fails.

This failure is identified by meta_actuator_nodewhen the command to LAUNCH
the laser node produces an initialisation error. This information is sent to the OM-
RosAPI instance, where the executor in charge of action A1 interprets the command
failure and sends a Meta I/O effect signal to the metacontroller with the FAILURE of
A1.

At the metacontroller the previous information is interpreted by the model of the
laser component class, which establishes that a failure in a configuration action over
a component of laser type implies that the component class is no longer available.

a. The component subgoal (specification atom) of having the laser becomes in
ERROR.

b. The component class representing the laser becomes UNAVAILABLE.

The failure then scales up to the metacontroller’s Functional Loop. The perception
process updates the state of the functional hierarchy. Firstly, the UNACHIEVED status
of spec4 (the laser component specification) triggers the error of fg3, the grounding of
the scan function.

The TOMASys failure models for the objectives and functions update the objectives
and function groundings that require downwards fg3, as depicted in figure 11.26.

256

11.6. Testbed metacontrol operation and results

status = ERROR

type = f11 (navigate)

o0 :
OMRootObjective

status = FAILURE

type = fd_nav1

fg1 :
OMFunctionGrounding

realises

status = FAILURE

type = fd_loc1

fg2 :
OMFunctionGrounding

status = ERROR

type = f12 (localisation)

o1 : OMObjective

status = UNACHIEVABLE

type = f22 (scans)

o2 : OMObjective

type = f23 (PointCloud)

: OMObjective

requires

realises

requires

requires

requires

status =
PERMANENT_FAILURE

type = fd_scans

fg3 :
OMFunctionGrounding

realises

type = f2? (motion)

: OMObjective

requires

type = f24 (odom)

: OMObjective

requires

type = fd_odom

: OMFunctionGrounding

realises

type = fd_pcl

: OMFunctionGrounding

realises

type = fd_motion

: OMFunctionGrounding

realises

Components Configuration
Estimated State

 ...

Components Goal

...

STATUS = UNAVAILABLE

: LaserClass

STATUS = UNACHIEVABLE

compliant = laser

spec4 : OMCompSpec

role
spec4r1b4

realiser

Figure 11.26: State atoms representing the laser permanent failure in the esti-
mated state and the goal of the Components Loop, and its effect on the func-
tional hierarchy perceived at the Functions Loop.

257

Chapter 11 Testbed System

Additionally, the UNAVAILABLE status of the Laser component class makes
the function design that uses a role of that class also unavailable (availability=
0). This is the case of the functions fd_nav1 and fd_loc1 currently instantiated, and
fd_nav2 in the knowledge atoms.

Given that the functional perception results in the ERROR of the o0 navigation
root objective, a functional reconfiguration of the system is required. It is com-
puted by the Functional Loop of the metacontroller as follows.

Firstly the evaluation process updates the relevance of the currently instantiated
objectives, following the procedure described in page 197. This results in all the
objectives in the hierarchy but the single root objective being updated to relevance=
0, since all the hierarchy is devoted to comply with the requirements of the function
fg1, which is in FAILURE and no longer available. Then, a new design that realises
o1 is computed using the available alternatives and following the algorithm described
in page 198. This results in the generation of functional state atoms to represent the
desired kinect design alternative for the testbed navigation system.

The functional hierarchy is updated with all the generated groundings and required
objectives, whereas the component specifications corresponding to the re-
quired roles are sent as the new Goal of the Component Loop (see figure 11.27).

New Components Goal

 ...

move_base (config2)

: OMCompSpec

map_server

spec2 : OMCompSpec

amcl (config2)

spec3 : OMCompSpec

kinect

: OMCompSpec

ekf

: OMCompSpec

compass

: OMCompSpec

pcl2scan

: OMCompSpec

pioneer

: OMCompSpec

Figure 11.27: The new goal of the Components Loop. Some
of the specifications (on the right), correspond to the new roles
required.

Finally, the Components Loop, following its regular operation launches all the
components that are required for the new specifications, deactivating those no longer
needed.

258

11.7. Analysis

Figure 11.28: The navigation of the robot before (a) and after (b) the laser per-
manent failure (an X marks the moment in the robot’s path when it occurred)
and the reconfiguration from the main design to the kinect. The red dots corre-
spond to the range scan reading of obstacles. Note the lack of lateral references
due to the narrower angle span when in the kinect configuration.

11.7 Analysis

The testbed developed and tested in experimental scenarios, which has been described
along this chapter, has demonstrated the validity of the approach for the engineering
of self-awareness and adaptivity properties in autonomous systems. The OM-based
metacontroller developed for the autonomous mobile robot has provided it with the
capacity to detect a malfunctioning of the operation of its control system at both the
component and the functional levels, and overcome it by adapting through reconfigu-
ration. However, some improvements for the OM Architectural Framework have been
identified that can be ilustrated with the previous scenarios. Following we discuss the
results achieved and these further considerations.

In relation to the engineering of the metacontrol system, the OMEP model-weaving
methodology has demonstrated its validity not only to build the final metacontroller
for an autonomous application, but also to produce reusable intermediate assets. The
OMJava library, applicable to the development of OM-based metacontrollers for any
component-based control application suitable to embed a Java component, and the
omros ROS stack, directly applicable to any ROS system with no more than defining
its OM-TOMASys model, are proofs of this.

The OM model-based and architectural approach has a clear positive impact on
the properties of the autonomous system, such as its scalability and maintainability.
The Meta I/O is an interface that decouples the metacontroller and the control system,

259

Chapter 11 Testbed System

so that each one can be developed independently. This way, the internal architec-
ture (OM) of the metacontroller and its implementation can be optimized, extended
or improved, without affecting the implementation of the control system. But more
importantly, the ECL pattern model-centric design of the OM metacontroller decou-
ples its operation from the information about the (meta-)controlled system. This way,
the control system of the autonomous operation can be completely modified without
affecting the metacontroller. To maintain the metacontrol system it is only needed to
update the OM-TOMASys model of the control system.

Regarding the online operation of the metacontrol system, the success of the tri-
als performed according to the scenario of the transient laser failure demonstrates that
the developed OM metacontroller provides the system with fault-tolerance capabilities
based on component-recovery. But furthermore, the second scenario of a permanent
laser failure, in which a simple yet actual on the fly system re-design is required in or-
der to maintain the robot’s functionality, proofs that the OM Architecture also purveys
this capability.

Notwithstanding, the OM Architecture can be improved in many aspects. For
example, in the first scenario, the final state of the robot’s metacontroller and, more
importantly, the run-time OM-TOMASys model of the system are exactly the same
as at the initial time. This is one point where the TOMASys metamodel and the OM
Architecture could be extended and improved: the model of a component class could
be further extended to include reliability information. The metacontroller could then
learn from an episode such as that of scenario 1 and update the model of the laser,
by modifying the failure model of the Laser component class, or a new numeric
attribute representing its reliability.

260

Chapter 12

Conclusions and Future Work

This work is of a deep exploratory nature: a diversity of fields have been analysed,
which deal with a variety of themes ranging from engineering frameworks, to philo-
sophical concepts, and including scientific theories and models; all this in order to in-
vestigate the possibility of building general self-awareness capabilities into machines,
so that they become more robustly autonomous.

This concluding chapter analyses the accomplishment of the objectives initially
addressed in this thesis. The benefits and novelty of the solution proposed, the OM Ar-
chitectural Framework, are discussed. Shortcomings and difficulties are also pointed
out. Finally, possible extensions and improvements of the work are identified, and
future research lines to address them are proposed.

12.1 A universal framework for self-awareness in au-
tonomous systems

There is a need for building more autonomous technical systems, with a special fo-
cus on dependability issues, as was discussed in the first part of the dissertation. In-
telligence and cognition have been thoroughly researched for solutions to improve
autonomy in artificial systems. In the recent decades, the value of self-awareness
capabilities is also being explored for technical systems, for example in the fields of
autonomic computing and machine consciousness. The main purpose of this work was
to explore self-awareness in the context of developing control systems for autonomous
applications, concretely the ASys’ model-based approach to engineering autonomy, in
the line of López [90]. The ultimate objective is to move the responsibility of sys-
tem’s adaptivity from engineers at design time to the self-aware system at run-time.
Formulating this goal as a question: (page 2.3):

How can we enhance control systems with self-aware capabili-
ties so as to robustly improve their autonomy?

261

Chapter 12 Conclusions and Future Work

This thesis argues that we can do that by incorporating a metacontroller to the con-
trol architecture of the autonomous system, capable of understanding the functional
state and reconfiguring its organisation at run-time if required. To do that it exploits
the engineering knowledge of the system, captured in an explicit functional model of
the system.

The aim of this work has been to provide a universal, yet of practical engineering
applicability, solution. For that purpose, we have considered and developed elements
at different levels of abstraction and engineering resolution:

Theoretical foundation. The extension and adaptation of Lopez’s theoretical frame-
work for autonomous systems came forth naturally during the analysis phase of
the research, because the need for a formal basement to develop a consistent and
coherent framework became clear.

Engineering postulates. The three thesis postulates extend the ASys principled ap-
proach for the building of cognitive autonomous systems. They represent a path
to self-awareness through our metacontrol vision based on functional modelling.

OM Architectural Framework. To reify the previous design principles, a complete
architectural framework was developed: the OM Architectural Framework. Rel-
evant elements include:

Patterns for Self-awareness. Four design patterns develop the thesis postu-
lates and the model-based cognitive control principle into reusable design
guidelines for the engineering of control systems. The Epistemic Control
Loop pattern provides guidelines to develop a controller that exploits an
explicit model of the plant. The Metacontrol and Functional/Structural
Metacontrol patterns define the integration of a metacontroller in the con-
trol architecture of the system, and the organisation of the internal of the
metacontroller, respectively. The Deep Model Reflection pattern speci-
fies the modelling process to produce a functional model that is usable at
run-time for metacontrol.

TOMASys. The TOMASys metamodel was developed to define the functional
self-model that an autonomous system could exploit for self-awareness.
It provides a conceptualisation of the organisation in components and the
functions of an autonomous system. The elements of the metamodel are
based in a theoretical framework rooted in the general systems theory.

Reference Architecture. The OM Architecture is an engineering blueprint for
the metacontrol. It defines the model-centric processes involved in the
meta-control loops that allow the observation of the functional state of a
control system and its eventual reconfiguration.

Engineering methodology. The OM Engineering Process suggests a method-
ology to apply the OM Architectural framework in the construction of the
metacontroller for an autonomous system.

Software assets validated in a testbed. In order to demonstrate the validity of the
proposed framework, a software library was developed and applied to the con-

262

12.1. A universal framework for self-awareness in autonomous systems

struction of a self-aware autonomous system. The library implements an OM-
based metacontroller, and interfaces to integrate it in component-based control
systems.

12.1.1 Review of the Objectives of the Work

Let us review how the work developed has contributed to achieve the different objec-
tives in which we had decomposed the purpose of this thesis:

1. Analyse mechanisms for adaptivity both from biological cognition centered on
self-awareness, and extant technical approaches. Biologically inspired approaches,
such as cognitive architectures, are more focused on high-level cognitive capa-
bilities, and validating scientific models of intelligence, rather than structural
mechanisms for robust autonomy. On the other hand, engineering approaches
closer to industry, such as fault-tolerant control and autonomic-computing, are
still missing to leverage the model-based vision of cognition.

The following paper was contributed in the preliminary stages of the research,
related to the analysis of intelligence as an adaptivity mechanism, in terms of
the framework for autonomous systems:
[91]

2. Explore the relation between self-awareness and models. The subject of mod-
elling has been thoroughly explored, the results were presented in sections 3.3
and 3.2. The representation of function, in its relational sense between the or-
ganisation of a system and its directiveness, seems to play a vital role in the
engineering of self-awareness in technical systems.

The following journal article presented the results of studying the value of self-
awareness/consciousness:
[68].
It contains some preliminary ideas for the OM Architecture, although focusing
on the preliminary idea of the metacontrol in the operating system metaphor:
providing the infrastructure and orchestration for the cognitive processes in an
autonomous system to perform.

3. Elaborate control design principles. The three postulates of this thesis (section
6.2) extend the ASys model-based-cognition principled approach to engineer-
ing autonomy. They provide guidelines for implementing self-awareness in
autonomous systems as a functional meta-control that exploits at runtime the
engineering models of the system.

4. Develop an architecture for self-aware control systems. A complete Architectural
framework has been developed. At its core is the OM Architecture and the
TOMASys metamodel. But the framework also integrates the four design pat-
terns for self-aware autonomous systems, the OM Engineering Process and ac-
companying assets.

263

Chapter 12 Conclusions and Future Work

5. Build reusable software assets. The OMJava library implements the OM Archi-
tecture and can be used to develop domain-independent metacontrol systems
in Java. In addition, a ROS stack has been developed for the Robot Operating
System [52] component framework that allows to integrate OM-based metacon-
trollers in ROS systems.

6. Validate the research with a testbed. The OMJava library has been applied to the
development of a mobile robot application, where the value of the self-awareness
provided by the OM metacontroller has been validated.

A paper presenting the initial version of the principles developed as reusable de-
sign patterns, and introducing the OM Architecture and the OMJava library, with its
application to the mobile robot testbed, has been recently published [65].

12.1.2 The OM Architectural framework and the engineering of
autonomous systems

The OM Architectural framework has much in common with the other approaches for
the construction of autonomous systems that have been analysed. It has to be so, given
the fact that it was inspired by them. This work could be viewed as an attempt to
integrate the adequate principles and techniques from them into the ASys foundation,
to develop the envisioned self-awareness for the adaptivity goal.

The TOMASys metamodel was initially conceived to allow the representation of
the functionality of the system, capturing the relation between its structure and its
objectives or functions, as the functional modelling approaches analysed in section 3.3
do. However, TOMASys defines models that are to be exploited by the system itself at
runtime for reconfiguration, whereas the methodologies in the literature analysed are
aimed at their use by engineers for design analysis, diagnosis or supervisory control.

The solution provided by the OM Architecture, with a metacontrol system exploit-
ing a functional model conforming to the TOMASys metamodel is more similar to the
fault-tolerant control approach with a supervision level including diagnosis and recon-
figuration modules defined in [21, pp. 612-618]. While sharing a common pattern of
decomposing the control system in a domain/control and metacontrol/supervision lev-
els with the proposal by Blanke et al. proposal, the OM Architecture is not limited to
fault-tolerance. The control architecture presented in this work addresses the achieve-
ment of the system’s functionality as explicitly defined by its objectives. It does not
distinguish whether the behaviour of the system diverges from them due to internal
faults, external disturbances or unforeseen circumstances.

The architectural solution proposed in OM - i.e. to have a subsystem, the meta-
controller, to control the correct performance of the rest of the control system- is sim-
ilar to the autonomic manager in self-managed software systems. However, whereas
the autonomic initiative considers a self-management of individual autonomous com-
ponents, inspired in the regulatory homeostatic mechanisms in living organisms, our
metacontrol approach considers a more centralised operation based on the exploitation

264

12.1. A universal framework for self-awareness in autonomous systems

of explicit knowledge (models), inspired by cognitive architectures and the high-level
functions of the brain.

12.1.3 Novelty and major Contributions of the Research

A major novelty of this work is its multidisciplinar character, integrating ideas and
considerations from a great variety of fields, and yet arriving at a very specific solution
of immediate practical applicability for the engineering of autonomous systems. This
way, the thesis integrates philosophical and biological ideas about cognition and self-
awareness, with industrial-oriented methods and technical standards, such as MDE or
fault-tolerant techniques.

Other approaches to machine consciousness focus on the cognitive properties of
the system that result from the application of a scientific model of consciousness, in
comparison with natural systems. Our OM Architectural Framework is more focused
on the engineering of the self-properties, as it is also the case of the work by Chella et
al. [33].

We argue that, all in all, the OM Architectural Framework is universal and com-
plete:

Domain general. The work developed is rooted in the General Systems Theory to
guarantee a solution applicable to any autonomous system, independently of its
domain. This general character has been maintained in every further specifica-
tion of the solution, from the more abstract concepts to the implementation of
the platform specific models in the engineering framework.

Technology independent. The OM Architectural Framework is applicable to any
control system that can be represented with a component model, no matter its
particular implementation technology.

Implementation independent. The metacontrol solution has been developed in an
architectural form, so that it can be applied at the design stage without con-
straints on the technology used for the implementation of the metacontroller.

Engineering applicability: from design principles to implementation. This work pro-
vides a complete solution to the building of self-aware autonomous systems
because the OM Architecture Framework provides assets to guide their engi-
neering covering all the development phases, and a methodology to follow. The
basic principles proposed have been formalised into reusable design patterns,
with which different control architectures can be developed. The OM Archi-
tecture is one of the possibilities, and provides a blueprint to design the control
architecture of a particular system. The OMJava library is an implementation
of the OM Architecture that can be applied in the final implementation of an
autonomous system.

The patterns, as instantiated in the OM Architecture, were easily applicable thanks
to the construction of a domain neutral implementation (OMJava). From it, the pro-
duction of the ROS platform-specific model was straightforward, and only slightly

265

Chapter 12 Conclusions and Future Work

hampered by the lack of a formal Platform Definition Model for ROS. Considering
strictly only the development of the testbed application, the addition of our reference
architecture produced only a minor extra-effort when compared with a standard devel-
opment of the control architecture for the mobile robot.

12.2 Future Work

The work developed in this thesis tried to address a huge quest covering a very wide
scope, because it intended to address the engineering of autonomous systems consider-
ing all its aspects. It is for this reason that a deep and advanced solution for all of them
has not been possible, and it was not the objective. Therefore, there are many ideas
for future improvements or even complete research lines that have been identified.

The design patterns for self-aware systems could be further formalised, and a more
complete analysis of the implications and considerations for each pattern is possible.
For example, the MetaControl pattern is defined at the system level. It could be inter-
esting to explore the possibility of a distributed metacontrol, the pattern being applied
at the component level, as it is in the Autonomic Computing approach, so that each
component has self-awareness and adaptivity capabilities.

An specially important ongoing work is the self-closure of the MC pattern: the ap-
plication of the MetaControl pattern to the metacontrol subsystem itself, so it becomes
also a subject of monitoring and reconfiguration for adaptation. This could face the
problem of infinite regress, so characteristic of the self-consciousness phenomena, but
could also open the door to the emergence of the Self in artificial systems.

A more advanced topic for future work is the federation of OM agents to gener-
ate societies of controllers. They could interchange or share models and collaborate,
promoting mutual awareness.

Additionally, some ideas and open issues have appeared during the development
of the TOMASys metamodel, which are relevant for the whole OM framework:

• Currently, the TOMASys metamodel only models basic structural aspects of a
control system. It is necessary to incorporate behavioral aspects to our current
metamodel so that the Metacontrol could be able to handle function-centric,
dynamical issues in the domain control system.

• It would be interesting to weave the functional and ontological views in the de-
composition of a system into components. As with UML components or SysML
blocks, components can be considered as composed of other components inter-
connected. This nesting of components is not modeled in the current version of
TOMASys, in which it is a function design the element that nests compo-
nents performing roles. We could conceive a function design associated to
a component, or rather to the role of the component. This can be conceived as
an extension of the current TOMASys functional view. It would be a modelling
of Functional Decomposition different from the present one, which consists of

266

12.3. Concluding remarks

the function design requiring an external objective. In this new model a
Function Design would realise a role in a parent function design, so we can have
the component composition of the system directly modeled as a composition of
function designs. In the lowest/deeper level in the decomposition the role
is performed by a component.

• Enhance components with generalisation, so we can have more general types of
components, such as a range sensor. Describe implications with definition of
roles, that we can now refer to (virtual) instances of the more general/abstract
classes, so that it is possible to select an instance of the best concrete Compo-
nentClass of that general type.

• Complete improvement of TOMASys extending with ECL concepts to account
for cognitive autonomous systems, and integration with OASys. It is necessary
to improve the metamodel by including the full ECL and OASys [18] concepts
to further specify functionality.

Regarding the engineering process that accompanies the OM Architectural solu-
tion, The OMEP methodology should be completed to cover all the steps in the engi-
neering process, and integrated with the OASys-based Methodology, formally defin-
ing the views of interest related to the metacontrol development. An important step
towards MDA would be to fully develop the application of the Deep Model Reflection
pattern, building a transformation model from UML or SysML (as engineering lan-
guages) to TOMASys. This would probably require the definition of a UML Profile
with stereotypes to adapt this engineering languages to the functional representation
required by our OM framework. The eventual result of this line of work would be the
integration of all these tools in the ICe tooling for ASys.

12.3 Concluding remarks

The pattern-based, model-centric approach to the construction of self-aware autonomous
controllers proposed by ASys can offer possibilities —both for engineering and run-
time operation— that go well beyond current capabilities of intelligent autonomous
robots. In this direction, the application of our OM Architecture, rooted on the four
design patterns described in chapter 7, has provided the robot with deep run-time
adaptivity based on a functional understanding, hence demonstrating enhanced robust
autonomy through cognitive self-awareness.

The metamodelling specification of the model exploited by the metacontroller al-
lows for its re-usability in different phases of the engineering process and by different
mechanisms. The conformance of the OM Model to TOMASys allows to obtain it
from the functional specification of the system. Tools can be defined according to
TOMASys to produce, analyse or transform the model of the autonomous system for
design activities. On the other hand, conformance to the ECL knowledge pattern of-
fers a standard interface to exploit the model for online metacontrol. Algorithms and
methods for cognitive control can be developed according to the ECL pattern and thus

267

Chapter 12 Conclusions and Future Work

be applicable also to metacontrol tasks, without needing to conform to the domain of
components and functions defined by TOMASys, at the architecture level.

Every particular aspect of the work developed in this thesis may present some
flaws, and surely they all can be improved, by consolidating their formalisation and
improving their realisation with extant state of the art techniques. However, it is the
holistic consideration of the complete theoretical and engineering frame developed
that we consider provides an interesting novelty. Despite the long road ahead, we
argue the work developed in this thesis is a small, yet substantial, step in the quest for
a solution for the engineering of dependable autonomous systems.

268

Part V

Reference

269

Bibliography

[1] James Albus, Alexander Meystel, Anthony Barbera, Mark Del Giorno, and
Robert Finkelstein. 4D/RCS: A Reference Model Architecture For Unmanned
Vehicle Systems Version 2.0. Technical report, National Institute of Standards
and Technology, Technology Administration U.S. Department of Commerce,
2002.

[2] James S. Albus. Outline for a theory of intelligence. IEEE Transactions on
Systems, Man and Cybernetics, 21(3):473–509, 1991.

[3] James S. Albus and Anthony J. Barbera. Rcs: A cognitive architecture for
intelligent multi-agent systems. Annual Reviews in Control, 29(1):87–99, 2005.

[4] Igor Aleksander and Barry Dunmall. Axioms and tests for the presence of
minimal consciousness in agents. Journal of Consciousness Studies, 10(4-5):7–
18, 2003.

[5] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Lan-
guage: Towns, Buildings, Construction. Oxford University Press, 1977.

[6] François Anceau. Vers une étude objective de la conscience. Hermes, 1999.

[7] J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere, and Y. Qin.
An integrated theory of the mind. Psychological Review, 111(4):1036–1060,
2004.

[8] Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku. A software platform for
component based RT-system development: OpenRTM-Aist. Simulation, Mod-
eling, and Programming for Autonomous Robots, pages 87–98, 2008.

[9] Raúl Arrabales. Evaluación y Desarrollo de la Conciencia en Sistemas Cog-
nitivos Artificiales. PhD thesis, Universidad Carlos III de Madrid, Leganés,
February 2011.

[10] Raúl Arrabales Moreno and Araceli Sanchis de Miguel. Applying machine con-
sciousness models in autonomous situated agents. Pattern Recognition Letters,
29(8):1033–1038, 2008.

[11] Uwe Aßmann, Steffen Zschaler, and Gerd Wagner. Ontologies, Meta-Models,
and the Model-Driven Paradigm. Springer, 2006.

271

Chapter 12 Bibliography

[12] Colin Atkinson, Matthias Gutheil, and Kilian Kiko. On the Relationship of
Ontologies and Models, volume 96, pages 47–60. GI, 2006.

[13] Colin Atkinson and Thomas Kühne. Profiles in a strict metamodeling frame-
work. Sci. Comput. Program., 44(1):5–22, 2002.

[14] Bernard J. Baars. In the theatre of consciousness: Global workspace theory, a
rigorous scientific theory of consciousness. Journal of Consciousness Studies,
4(4):292–309, 1997.

[15] Bernard J. Baars. In the Theater of Consciousness: The Workspace of the Mind.
Oxford University Press, oct 2001.

[16] Bernard J. Baars. The conscious access hypothesis: origins and recent evidence.
Trends Cognitive Science, 6(1):47–52, January 2002.

[17] Laurent Balmelli, David Brown, Murray Cantor, and Michael Mott. Model-
driven systems development. IBM Systems journal, 45(3):569–585, 2006.

[18] Julita Bermejo. OASys: Ontology for Autonomous Systems. PhD thesis, Depar-
tamento de Automática, Universidad Politécnica de Madrid, October 2010.

[19] Julita Bermejo-Alonso, Ricardo Sanz, Manuel Rodríguez, and Carlos Hernán-
dez. An ontological framework for autonomous systems modelling. Interna-
tional Journal on Advances in Intelligent Systems, 3(3):211–225, 2010.

[20] Julita Bermejo-Alonso, Ricardo Sanz, Manuel Rodriguez, and Carlos Hernan-
dez. Ontology-based engineering of autonomous systems. In M. Bauer, J. Lloret
Mauri, and O. Dini, editors, Proceedings of the The Sixth International Con-
ference on Autonomic and Autonomous Systems, volume 0, pages 47–51, Los
Alamitos, CA, USA, 2010. IEEE Computer Society.

[21] Mogens Blanke, Michel Kinnaert, Jan Lunze, and Marcel Staroswiecki. Diag-
nosis and Fault-Tolerant Control. Springer-Verlag Berlin, 2006.

[22] Ned Block. Consciousness, Function, and Representation, volume Collected
Papers, Volume 1. The MIT Press, 1 edition, may 2007.

[23] B Boehm. A spiral model of software development and enhancement. SIG-
SOFT Softw. Eng. Notes, 11(4):14–24, August 1986.

[24] R.A. Brooks. Intelligence without representation. Artificial intelligence, 47(1-
3):139–159, 1991.

[25] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14–23, March 1986.

[26] D. Brugali and P. Scandurra. Component-based robotic engineering (part i).
Robotics & Automation Magazine, IEEE, 16(4):84–96, December 2009.

[27] Davide Brugali, editor. Software Engineering for Experimental Robotics.
Springer, 2007.

272

[28] Davide Brugali and Katia Sycara. Frameworks and pattern languages. ACM
Computing Surveys, March 2000.

[29] Alan Burns and Andy Wellings. Real-Time Systems and Programming Lan-
guages. Addison-Wesley, 1997.

[30] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland, and
Michael Stal. A System of Patterns. John Wiley & Sons, 1996.

[31] Arturo Bajuelos Castillo. Improving robustness in robotic navigation by using
a self-reconfigurable control system. Master’s thesis, FACULTAD DE INFOR-
MÁTICA UNIVERSIDAD POLITÉCNICA DE MADRID, September 2011.

[32] David J. Chalmers. The Conscious Mind: In Search of a Fundamental Theory.
Oxford University Press, USA, 1 edition, sep 1997.

[33] Antonio Chella, Massimo Cossentino, and Valeria Seidita. Self-Conscious
Robotic System Design Process - from Analysis to Implementation, chapter Self-
Conscious Robotic System Design Process - from Analysis to Implementation,
pages 209–222. Springer, July 2010.

[34] Antonio Chella, Marcello Frixione, and Salvatore Gaglio. A cognitive ar-
chitecture for robot self-consciousness. Artificial Intelligence in Medicine,
44(2):147–154, 2008.

[35] Luca Chittaro and Amruth N Kumar. Reasoning about function and its appli-
cations to engineering. Artificial Intelligence in Engineering, 12(4):331–336,
1998.

[36] John Collier. What is autonomy? International Journal of Computing Antici-
patory Systems, 12:212–221, 2002.

[37] Roger C. Conant and W. Ross Ashby. Every good regulator of a system must be
a model of that system. International Journal of Systems Science, 1(2):89–97,
1970.

[38] James O. Coplien and Douglas C. Schmidt. Pattern Languages of Program
Design. Addison-Wesley Professional, 1995.

[39] K. Craik. The Nature of Explanation. Cambridge University Press, 1943.

[40] Krzysztof Czarnecki and Ulrich Eisenecker. Generative programming: meth-
ods, tools, and applications. Addison Wesley, Boston, 2000.

[41] Antonio R. Damasio. The Feeling of What Happens. Vintage, new ed edition,
october 2000.

[42] Jose Luis De la Mata and Manuel Rodriguez. Abnormal situation diagnosis
using d-higraphs. In 20th European Symposium on Computer Aided Process
Engineering ESCAPE20, pages 1477–1482. Elsevier B. V., 2010.

[43] Scott A. DeLoach, Walamitien H. Oyenan, and Eric T. Matson. A capabilities-
based model for adaptive organizations. Autonomous Agents and Multi-Agent
Systems, 16:13–56, February 2008.

273

Chapter 12 Bibliography

[44] Geir E. Dullerud and Fernado Paganini. A Course in Robust Control Theory: a
Convex Approach. Texts in Applied Mathematics. Springer, 1999.

[45] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T. Longstaff, and N. R.
Mead. Survivable network systems: An emerging discipline. Technical Report
CMU/SEI-97-TR-013, Software Engineering Institute, Carnegie Mellon Uni-
versity, 1997.

[46] J. A. Estefan. Survey of model-based system engineering (mbse) methodolo-
gies. Technical Report INCOSE-TD-2007-003-01, ModelBased Systems Engi-
neering (MBSE) Initiative, INCOSE, 2008.

[47] José Luis Fernandez-Sánchez, Mario García-García, Jesús García-Muñoz, and
José Patricio Gómez-Pérez. La ingeniería de sistemas y su aplicación a un ve-
hículo aéreo no tripulado. DYNA Ingeniería e Industria, 87(4):456–466, August
2012.

[48] José Luiz Fiadeiro and Antónia Lopes. A model for dynamic reconfiguration in
service-oriented architectures. In Proceedings of the 4th European conference
on Software architecture, ECSA’10, pages 70–85, Berlin, Heidelberg, 2010.
Springer-Verlag.

[49] Dieter Fox. Adapting the sample size in particle filters through kld-sampling.
International Journal of Robotics Research, 22:2003, 2003.

[50] S. Franklin, A. Kelemen, and L. McCauley. Ida: a cognitive agent architecture.
In Systems, Man, and Cybernetics, 1998. 1998 IEEE International Conference
on, volume 3, pages 2646 –2651 vol.3, oct 1998.

[51] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1995.

[52] Willow Garage. Robot operating system, 2011.

[53] David Garlan, Shang-Wen Cheng, and Bradley Schmerl. Increasing system
dependability through architecture-based self-repair. In Rogério De Lemos,
Cristina Gacek, and Alexander Romanovsky, editors, Architecting dependable
systems, pages 61–89. Springer-Verlag, Berlin, Heidelberg, 2003.

[54] Anne-Lise Gehin, Hexuan Hu, and Mireille Bayart. A self-updating model
for analysing system reconfigurability. Engineering Applications of Artificial
Intelligence, 25(1):20 – 30, 2012.

[55] Cesar Gonzalez-Perez and Brian Henderson-Sellers. Metamodelling for Soft-
ware Engineering. John Wiley & Sons, 2008.

[56] T. Gruber. A translation approach to portable ontologies. Knowledge Acquisi-
tion, 5(2):199–220, 1993.

[57] Erico Guizzo. How google’s self-driving car works, 2011, 18 Oct.

274

[58] Pentti O. Haikonen. Qualia and conscious machines. International Journal of
Machine Consciousness, 1(2):225–234, 2009.

[59] Grant Hammond. The Mind of War: John Boyd and American Security. Smith-
sonian Books, 2012.

[60] Stevan Harnad. Symbol-grounding problem, June 2003.

[61] David Hästbacka, Timo Vepsäläinen, and Seppo Kuikka. Model-driven de-
velopment of industrial process control applications. Journal of Systems and
Software, 84(7):1100–1113, July 2011.

[62] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and M. Balabanovic. A
domain-specific software architecture for adaptive intelligent systems. Software
Engineering, IEEE Transactions on, 21(4):288–301, Apr 1995.

[63] B. Henderson-Sellers. Bridging metamodels and ontologies in software engi-
neering. Journal of Systems and Software, 84(2):301 – 313, 2011.

[64] Carlos Hernández. Adding consciousness to cognitive architectures. Master’s
thesis, Dpto. Automática, Ing. Electrónica e Informática Industrial, Universidad
Politécnica de Madrid, March 2008.

[65] Carlos Hernández, Julita Bermejo-Alonso, Ignacio López, and Ricardo Sanz.
Three patterns for autonomous robot control architecting. In Alfred Zimmer-
mann, editor, PATTERNS 2013, The Fifth International Conferences on Perva-
sive Patterns and Applications, pages 44–51. IARIA, May 27 2013.

[66] Carlos Hernández, Adolfo Hernando, Ricardo Sanz, and Francisco Arjonilla.
Higgs Manual. Autonomous Systems Laboratory, UPM - ETS Ingenieros In-
dustriales José Gutierrez Abascal 2 28006 Madrid SPAIN, 2011.

[67] Carlos Hernandez, Ignacio Lopez, and Ricardo Sanz. The operative mind: a
functional, computational and modeling approach to machine consciousness.
International Journal of Machine Consciousness, 1(01):83–98, 2009.

[68] Carlos Hernández, Ricardo Sanz, and Ignacio López. Attention and conscious-
ness in cognitive systems. In ESF-JSPS Conference Series for Young Re-
searchers: Cognitive Robotics. ESF-JSPS, March 2008.

[69] Owen Holland, editor. Machine Consciousness. Imprint Academic, April 2003.

[70] H. Huang, E. Messina, Robert Wade, Ralph English, Brian Novak, and James
Albus. Autonomy measures for robots. In Proceedings of the 2004 ASME
International Mechanical Engineering Congress & Exposition, Anaheim, Cali-
fornia, pages 1–7, 2004.

[71] Pankaj Jalote. Fault Tolerance in Distributed Systems. Prentice-Hall, Engle-
wood Cliffs, NJ, 1994.

[72] Nicholas R. Jennings and Michael Wooldridge. Agent-oriented software engi-
neering. Artificial Intelligence, 117:277–296, 2000.

275

Chapter 12 Bibliography

[73] Ralph E. Johnson. Frameworks = (components + patterns). Commun. ACM,
40(10):39–42, October 1997.

[74] P.N. Johnson-Laird. The Computer and the Mind: An Introduction to Cognitive
Science. Harvard University Press, 1988.

[75] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41 – 50, jan 2003.

[76] George C. Klir. An approach to General Systems Theory. Litton Educational
Publishing, Inc., 1969.

[77] Markus Klotzbücher, Nico Hochgeschwender, Luca Gherardi, Herman Bruyn-
inckx, Gerhard Kraetzschmar, and Davide Brugali. The BRICS component
model: a model-based development paradigm for complex robotics software
systems. In Proceedings of the 28th Annual ACM Symposium on Applied Com-
puting, SAC ’13, pages 1758–1764, New York, NY, USA, 2013. ACM.

[78] Charles W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131–183,
1992.

[79] Thomas Kühne. Matters of (meta-)modeling. Software and System Modeling,
5(4):369–385, July 2006.

[80] Thomas Kühne. Contrasting classification with generalisation. In APCCM,
pages 71–78, 2009.

[81] Benjamin Kuo. Automatic Control Systems. Prentice-Hall, Englewood Cliffs,
NJ, 1991.

[82] John E. Laird. The Soar Cognitive Architecture. The MIT Press, May 2012.

[83] Christopher Landauer and Kirstie L. Bellman. Meta-analysis and reflection as
system development strategies. In Metainformatics. International Symposium
MIS 2003, number 3002 in LNCS, pages 178–196. Springer-Verlag, 2004.

[84] Rolf Landauer. Information is physical. In Workshop on Physics and Compu-
tation, PhysComp ’92., pages 1–4, 1992.

[85] Nancy G. Leveson. Engineering a Safer World: Systems Thinking Applied to
Safety. The MIT Press, 2012.

[86] Williams S. Levine, editor. The Control Handbook. CRC Press, 1996.

[87] Morten Lind. Modeling goals and functions of complex industrial plants. Ap-
plied Artificial Intelligence: An International Journal, 8(2):259–283, 1994.

[88] Morten Lind. The what, why and how of functional modelling. In Proc. of
the 1st International Symposium on Symbiotic Nuclear Power Systems for 21st
Century (ISSNP), pages 174–179, 2007.

[89] Barbara Liskov. Abstraction and specification in program development. MIT
Press, Cambridge, MA, USA, 1986.

276

[90] Ignacio López. A Foundation for Perception in Autonomous Systems. PhD
thesis, Departamento de Automática, Universidad Politécnica de Madrid, May
2007.

[91] Ignacio López, Ricardo Sanz, and Carlos Hernández. Architectural factors for
intelligence in autonomous systems. In Gal A. Kaminka and Catherina R.
Burgart, editors, Evaluating Architectures for Intelligence, Papers from the
2007 AAAI Workshop, number WS-07-04, pages 48–52, Vancouver, British
Columbia Canada, July 2007. AAAI, AAAI Press.

[92] Ignacio López, Ricardo Sanz, Carlos Hernández, and Adolfo Hernando. Gen-
eral autonomous systems: The principle of minimal structure. In Adam Grzech,
editor, Proceedings of the 16th International Conference on Systems Science,
volume 1, pages 198–203, 2007.

[93] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige. The office
marathon: Robust navigation in an indoor office environment. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on, pages 300 –307,
may 2010.

[94] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon. A Proposal for
the Dartmouth Summer Research Project on Artificial Intelligence, 1955. AI
Magazine, 27(4):12–14, 2006.

[95] M.S.P. Miller. Patterns for cognitive systems. In Complex, Intelligent and
Software Intensive Systems (CISIS), 2012 Sixth International Conference on,
pages 642–647, 2012.

[96] Mohammad Modarres. Functional modeling.

[97] Mohammad Modarres and Se Woo Cheon. Function-centered modeling of en-
gineering systems using the goal tree–success tree technique and functional
primitives. Reliability Engineering & System Safety, 64(2):181 – 200, 1999.

[98] David J. Musliner, Jeffrey M. Rye, Dan Thomsen, David D. McDonald,
Mark H. Burstein, and Paul Robertson. Fuzzbuster: A system for self-adaptive
immunity from cyber threats. In Eighth International Conference on Autonomic
and Autonomous Systems (ICAS-12), March 2012.

[99] T. Nagel. What is it like to be a bat? The Philosophical Review, 83(4):435–450,
1974.

[100] Pavol Návrat. Hierarchies of programming concepts: abstraction, generality,
and beyond. SIGCSE Bull., 26(3):17–21, September 1994.

[101] L. Northrop. Ultra-Large-Scale Systems: The Software Challenge of the Future.
Carnegie Mellon Software Engineering Institute, 2006.

[102] OMG. Robotic technology component specification. OMG Adopted Specifica-
tion formal/2008-04-04, Object Managemnt Group, 2008.

[103] OMG. Robotic technology component specification. Technical Report
formal/2008-04-04, Object Management Group, April 2008.

277

Chapter 12 Bibliography

[104] OMG. OMG unified modeling language (OMG UML), infrastructure. Techni-
cal report, OMG, February 2009.

[105] OMG. OMG Unified Modeling Language (OMG UML), Superstructure. Tech-
nical report, OMG, February 2009.

[106] OMG. Documents associated with dynamic deployment and configuration for
rtc (ddc4rtc) 1.0 - beta 1. Spec. ptc/2012-08-33, OMG, August 2012.

[107] Frans P.B. Osinga. Science, Strategy and War: The Strategic Theory of John
Boyd. Routledge, 2007.

[108] Walamitien H. Oyenan and Scott A. Deloach. Towards a systematic approach
for designing autonomic systems. Web Intelli. and Agent Sys., 8:79–97, January
2010.

[109] G.J. Pappas, G. Lafferriere, and S. Sastry. Hierarchically consistent control sys-
tems. IEEE Transactions on Automatic Control, 45(6):1144–1160, June 2000.

[110] M. Parashar and S. Hariri. Autonomic computing: An overview. Unconven-
tional Programming Paradigms, pages 257–269, 2005.

[111] Alessandro Pasetti. Software Frameworks and Embedded Control Systems, vol-
ume 2231 of Lecture Notes in Computer Science. Springer, 2002.

[112] Donald Perlis and V. S. Subrahmanian. Meta-languages, reflection principles
and self-reference. In Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 2, pages 323–358. Oxford University Press, 1994.

[113] Jean-Marc Perronne, Laurent Thiry, and Bernard Thirion. Architectural con-
cepts and design patterns for behavior modeling and integration. Math. Comput.
Simul., 70(5-6):314–329, February 2006.

[114] Woody Pidcock. What are the differences between a vocabulary, a taxonomy, a
thesaurus, an ontology, and a meta-model?, January 2003.

[115] A.W. Pike, M.J. Grimble, A.W. Ordys M.A. Johnson, and S. Shakoor. The
Control Handbook, chapter Predictive Control, pages 805–814. CRC Press,
1996.

[116] Michael J. Pont. Patterns for Time-Triggered Embedded Systems. Addison-
Wesley, 2001.

[117] Wolfgang Pree. Design Patterns for Object-Oriented Software Development.
ACM Press / Addison-Wesley, 1995.

[118] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

[119] Ansgar Radermacher, S. Robert, C. Wigham, V. Seignole, and R. Sanz. State
of the art in embedded commponent technology. IST COMPARE Project De-
liverable 1.1, 2005.

278

[120] Laurent Rioux and Charles R. Robinson. A standards based architecture using
JAUS and RTC. In Proceedings of SiMPAR 2010 Workshop on Simulation,
Modeling and Programming for Autonomous Robots, Darmstadt (Germany),
November 15-16 2010.

[121] Rosen Robert. On models and modeling. Applied Mathematics and Computa-
tion, 56(2-3):359–372, July 1993.

[122] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL).
In IEEE International Conference on Robotics and Automation (ICRA), Shang-
hai, China, May 9-13 2011.

[123] A. Saffiotti, M. Broxvall, M. Gritti, K. LeBlanc, R. Lundh, J. Rashid, B.S.
Seo, and Y.J. Cho. The PEIS-ecology project: vision and results. In Proc of
the IEEE/RSJ Int Conf on Intelligent Robots and Systems (IROS), pages 2329–
2335, Nice, France, 2008.

[124] Marcos Salom-García. Fusión sensorial en plataforma robótica móvil. Master’s
thesis, Escuela Técnica Superior de Ingenieros Industriales de Madrid (UPM),
2009.

[125] R. Sanz, A. Yela, and R. Chinchilla. A pattern schema for complex controllers.
In Emerging Technologies and Factory Automation, 2003. Proceedings. ETFA
’03. IEEE Conference, volume 2, pages 101–105. IEEE, Sept. 2003.

[126] R. Sanz, A. Yela, and R. Chinchilla. A pattern schema for complex controllers.
In Emerging Technologies and Factory Automation, 2003. Proceedings. ETFA
’03. IEEE Conference, volume 2, pages 101 – 105, sept. 2003.

[127] R. Sanz and J. Zalewski. Pattern-based control systems engineering. Control
Systems, IEEE, 23(3):43 – 60, june 2003.

[128] Ricardo Sanz. Arquitectura de Control Inteligente de Procesos. PhD thesis,
Universidad Politécnica de Madrid, 1990.

[129] Ricardo Sanz, Carlos Hernández, Jaime Gómez, and Manuel G. Bedia. Against
animats. In Proceedings of CogSys 2010 - 4th International Conference on
Cognitive Systems, Zurich, Switzerland, January 2010.

[130] Ricardo Sanz, Carlos Hernández, Adolfo Hernando, Jaime Gómez, and Julita
Bermejo. Grounding robot autonomy in emotion and self-awareness. In Ad-
vances in Robotics. FIRA RoboWorld Congress 2009, Incheon, Korea, August
16-20, 2009. Proceedings, volume 5744/2009 of Lecture Notes in Computer
Science, pages 23–43. Springer Berlin, 2009.

[131] Ricardo Sanz, Carlos Hernández, and M. G. Sánchez-Escribano. Conscious-
ness, action selection, meaning and phenomenic anticipation. International
Journal of Machine Consciousness, 04(02):383–399, 2012.

[132] Ricardo Sanz, Ignacio López, Julita Bermejo-Alonso, Rafael Chinchilla, and
Raquel Conde. Self-x: The control within. In Proceedings of IFAC World
Congress 2005, July 2005.

279

Chapter 12 Bibliography

[133] Ricardo Sanz, Ignacio López, and Carlos Hernández. Self-awareness in real-
time cognitive control architectures. In Proc. AAAI Fall Symposium on Con-
sciousness and Artificial Intelligence: Theoretical foundations and current ap-
proaches, Washington DC, November 2007. AAAI, AAAI Press.

[134] Ricardo Sanz, Ignacio López, Manuel Rodríguez, and Carlos Hernández. Prin-
ciples for consciousness in integrated cognitive control. Neural Networks,
20(9):938–946, November 2007.

[135] Ricardo Sanz, Fernando Matía, Ramón Galán, and Agustín Jiménez. Integra-
tion of fuzzy technology in complex process control systems. In Proceedings
of FLAMOC’96, Sydney, Australia, 1996.

[136] Ricardo Sanz, Fernando Matía, and Santos Galán. Fridges, elephants and the
meaning of autonomy and intelligence. In IEEE International Symposium on
Intelligent Control, ISIC’2000, Patras, Greece,, 2000.

[137] Ricardo Sanz, Fernando Matía, and Santos Galán. Fridges, elephants and the
meaning of autonomy and intelligence. In IEEE International Symposium on
Intelligent Control, ISIC’2000, Patras, Greece, 2000.

[138] Ricardo Sanz and Manuel Rodríguez. The ASys vision. engineering Any-X
autonomous systems. Technical Report R-2007-001, Universidad Politécnica
de Madrid - Autonomus Systems Laboratory, 2007.

[139] Ricardo Sanz and Manuel Rodríguez. The asys vision. Technical report, Au-
tonomous System Laboratory, February 2008.

[140] Douglas C. Schmidt. Pattern Oriented Software Architecture: Patterns for Con-
current and Distributed Objects. Wiley, Chichester, 2000.

[141] Miguel Segarra. CORBA Control Systems. PhD thesis, Escuela Técnica Supe-
rior de Ingenieros Industriales de Madrid (UPM), 2005.

[142] Azamat Shakhimardanov, Nico Hochgeschwender, and Gerhard K. Kraet-
zschmar. Component models in robotics software. In Proceedings of the 10th
Performance Metrics for Intelligent Systems Workshop, PerMIS ’10, pages 82–
87, New York, NY, USA, 2010. ACM.

[143] M. Shanahan. A cognitive architecture that combines internal simulation with
a global workspace. Consciousness and Cognition, 15(2):433–449, 2006.

[144] M. Shaw and D. Garlan. Software Architecture. An Emerging Discipline.
Prentice-Hall, 1996.

[145] Wolf Singer. Phenomenal awareness and consciousness from a neurobiological
perspective, pages 121–137. The MIT Press, 2000.

[146] Aaron Sloman and Ron Chrisley. Machine Consciousness, chapter Virtual Ma-
chines and Consciousness, pages 133–172. Imprint Academic, 2003.

[147] Gerd Sommerhoff. Understanding Consciousness: Its Function and Brain Pro-
cesses. Sage Publications Ltd, 1 edition, nov 2000.

280

[148] Frank Svoboda. The three "r’s" of mature system development: Reuse, reengi-
neering, and architecture. In Fifth Systems Reengineering Technology Workshop
(SRTW5), Monterey, California, February 7-9 1995.

[149] Clemens Szypersky. Component Software. Beyond Object-Oriented Program-
ming. ACM Press / Addison-Wesley, Reading, MA, 1998.

[150] John G. Taylor. Paying attention to consciousness. TRENDS in Cognitive Sci-
ences, 6(5):206–210, May 2002.

[151] Alan M. Turing. Computing machinery and intelligence. Mind, 59(236):433–
460, 1950.

[152] Andrea Valerio, Giancarlo Succi, and Massimo Fenaroli. Domain analysis and
framework-based software development. SIGAPP Appl. Comput. Rev., 5(2):4–
15, September 1997.

[153] Paul M.J. van den Hof, Carsten Scherer, and Peter S.C. Heuberger. Model-
Based Control: Bridging Rigorous Theory and Advanced Technology. Springer,
2009.

[154] D. Vernon, G. Metta, and G. Sandini. A survey of artificial cognitive systems:
Implications for the autonomous development of mental capabilities in compu-
tational agents. Evolutionary Computation, IEEE Transactions on, 11(2):151
–180, april 2007.

[155] L. Von Bertalanffy. General System Theory: Foundations, Development, Appli-
cations. The international library of systems theory and philosophy. Braziller,
2003 edition, 1968.

[156] ALFUS working group at NIST. Autonomy levels for unmanned systems.
http://www.nist.gov/el/isd/ks/autonomy_levels.cfm, 2012.

[157] Janusz Zalewski. Real-time software architectures and design patterns: funda-
mental concepts and their consequences. Annual Reviews in Control, 25(0):133
– 146, 2001.

281

http://www.nist.gov/el/isd/ks/autonomy_levels.cfm

Chapter 12 Bibliography

282

Acronyms

MDA Model-Driven Architecture. 48

MDE Model-Driven Engineering. 47

OM Operative Mind. 161

OMEP OM Engineering Process (see also OMEP in the glossary). 211, 212

PIM Platform-independent Model (see also platform-independent model in the glos-
sary). 48

PSM Platform-specific Model (see also platform-specific model in the glossary). 48

TOMASys Teleological and Ontological Metamodel for Autonomous Systems (see
also TOMASys in the glossary). 138

283

Chapter 12 Acronyms

284

Glossary

A

activity — the activity of the system is the time series of values of the system quanti-
ties over a specific period of time. 70
adaptivity — adaptivity enables systems to change their own configuration and way
of operating in order to compensate for disturbances and the effects of uncertainty in
the environment, while preserving convergence to their objectives (adapted from [90]).
83, 223
application — a concrete realisation of a system, eps. software, to fulfil the needs of
a set of specific stakeholders. 3
architecture — is the structure that identifies, defines, and organizes components,
their relationships, and principles of design; the assignment of functions to subsystems
and the specifications of the interfaces between subsystems. 25

reference architecture — a reference software architecture is a software architec-
ture where the structures and respective elements and relations provide templates
for concrete architectures in a particular domain or in a family of software systems.
26, 114, 162
software architecture — the term software architecture intuitively denotes the high
level structures of a software system. It can be defined as the set of structures needed
to understand the software system, defining the software elements, the relations
between them, and the properties of both elements and relations. 94, 159

autonomy — the quality of a system of behaving independently while pursuing the
objectives it was commanded to. 12, 13
availability — the proportion of time a system is in a functioning condition. 17, 286

B

behaviour — the behavior of the system is usually considered to be the series of
values of the observable system quantities over a period of time. In more formal
terms, the behaviour of a system is the set of all time-invariant relations of the system.
71

C

component — a modular, encapsulated part of a system, esp. reusable software im-
plementations that can be used to play the roles specified by design patterns. 138

285

Chapter 12 Glossary

component model — a generic description of the system architecture, as a set of
components and their interconnections. 162
configuration — the realized structural organization of the system or a subsystem,
e.g. of a function version. 151
connector — a realized relation between two components. 144
consciousness — a cluster concept that refers to a collection of loosely-related and ill
defined phenomena like awareness, self-awareness, introspection, attention or experi-
ence. 43
control system — a control system is a set of devices —sensor, controller, actuator—
that manages, commands, directs or regulates the behavior of other device(s) or sys-
tem(s). 3
controller — the part of the control system that determines the action to be generated
and exerted into the plant. 5–8
coupling — a group of quantities that are shared by two or more elements of a system,
or by the system and its environment (adapted from [76]). 71

D

dependability — in systems engineering, dependability is a measure of a system’s
availability, reliability, and its maintainability. 17, 18, 288
directiveness — (of an autonomous system) quality —usually behavioural— of the
system, derived from a particular organisation, to behave in a convergent evolution
towards its objectives (adapted from [90]). 74

purposive directiveness — reconfiguration of parts of the organization of the sys-
tem through processes which operate with an explicit representation of the objective
of the system (adapted from [90]). 74
structural directiveness — refers to the intentional behaviour of the system which
derives from a particular organization or structure (adapted from [90]). 74

E

element — any of the entities listed in a universe of discourse and couplings model
of a system. 71
environment — the rest of the universe which is not the system object of interest. 4,
70
error — the part of the system in wrong state which potentially leads to a failure. 62

F

failure — a deviation of the system behavior from the specification. 62
fault — the cause of an error, something that changes the behaviour of a system such
that the system no longer satisfies its requirements (adapted from [21]). 62
function — a conceptualisation of how the system’s directiveness is implemented in
the system’s organisation. Roles the designer intended a subsystem should have in the
achievement of the goals of the system of which it is a part. The relation between the
purpose of the component and the behaviour rendered by its structure.

abstract function — a function as solely defined by the objective i.e. independent
of the algorithms used or the components configurations. 79, 151

286

Glossary

function definition — a conceptual entity that represents a complete specification
of a functional decomposition in the current scenario of the running system. 78
function design — a triplet <objective, algorithm, configuration> that specifies a
function. 79

G

General Systems Theory — the interdisciplinary study of all kinds of systems, with
the goal of elucidating principles that can be applied to all types of them at all nesting
levels in all fields of research. It may also refer specifically to a concrete approach as
Klir’s or Bertalanffy’s. 70
goal — the outcome or objective toward which certain activities of a system or its
parts are directed. 53

M

maintainability — refers to the ease with which the system may undergo repairs and
changes during its life-time evolution. 17, 286
metacontrol — the control of the function of a control system. 29, 111

metacontroller — a controller that controls the function of another controller. 112,
162, 259

mission — (of a system) the functionality demanded from a system, which is techni-
cally specified into a series of requirements, plus the constraints it must satisfy. 4
model — a representation of a system. 48

meta-model — a representation of the entities used in creating a model of a system.
48

O

objective — a desired state of the system, of the environment, or both. 75
objectives hierarchy — a organised structure of objectives. A dependency graph,
usually a tree, between the different objectives of a system. 141
root objective — a root or generative objective is an objective that does not con-
tribute to realise any other objectives. In an autonomous system, they are typically
the objectives with the longest scope and higher abstraction (adopted from [90]). 76

OM Architecture — reference architecture for the design of the metacontrol subsys-
tem in an OM-based autonomous system. 115, 135, 162, 163, 166, 167, 201, 206,
211, 212, 216, 217, 219, 246, 260, 265
OM Architecture Framework — architectural framework for the design of autonomous
systems with self-awareness and adaptivity capabilities. 115, 211, 216, 219, 244, 265,
287, 289
OMEP — the OM Engineering Process is a methodology to apply the OM Architec-
tural Framework to the construction of autonomous systems (see also OM Architecture
Framework in the glossary). 211, 212, 219, 220, 283
organisation — the set of all the properties —structural, relational— of a system
(adapted from [76]). 71

P

287

Chapter 12 Glossary

performance — the effectiveness of the temporary behaviour of the system. Directly
related to requirements (adapted from [90]). 3, 18, 64, 83, 156, 207
platform — the computing infrastructure that supports the deployment and execution
of a control system. 48

platform-independent model — a model of a software system or business system,
that is independent of the specific technological platform used to implement it. 283
platform-specific model — a model of a software system or business system, that
is tailored to the specific technological platform used to implement it. 283

program — the set of system properties of local scope. 73
property — an attribute of a system. 71

Q

quantity — an observed attribute of a system (adopted from [76]). 70

R

reconfiguration — a change in the organisation of a system. 29, 31, 162
reliability — is the ability of a system or component to perform its required functions
under stated conditions for a specified period of time. 17, 286
requirement — a statement that identifies a necessary attribute, capability, character-
istic, or quality of a system for it to have value and utility to a particular stakeholder.
10, 17, 24, 28, 47, 213, 222–224
robustness — the degree to which a system or component can function correctly in
the presence of invalid inputs or stressful environmental conditions (from the IEEE
Standard Glossary of Software Engineering). 3, 16, 64, 74, 223
role — a set of connected behaviours, rights, obligations, beliefs, and norms imposed
to a component as conceptualised by patterns. 54

S

safety — refers to the personal harm and equipment damage that can arise due to a
system failure. 17
scalability — is the ability of a system to be enlarged, i.e. by incorporating new com-
ponents, to accommodate growth either quantitatively or qualitatively in performance
or in the functionality serviced. 17
scenario — a scenario is a synoptical description of an event, situation or series of
actions and events that is relevant for the behavioural analysis of a system. 232, 238
space-time resolution level — the instants of time and the locations in space where
quantities are observed. 70
state-transition structure — a form of system representation that is based on the
identification of system states and transitions between them. 71
structure — the system’s physical parts and their interconnections in the physical
topology. 73

hypothetic structure — the part of the system structure responsible for the gener-
ation of the relatively permanent behaviour. 73
real structure — the part of the system structure responsible for the generation of
the permanent behaviour. 73

288

Glossary

survivability — it is the aspect of system dependability that focuses on preserving
system core services, even when systems are faulty or compromised. 17
system — part of all the possible entities from the universe, which is isolated from the
rest for its analysis (adapted from [76]). 4, 70

subsystem — in general systems theory, a subsystem or element is part of a system
that is analysed separated from the rest as if it were a system of its own. 71

T

time–invariant relations — relations between the quantities of a system that do not
change. 71
TOMASys — the Teleological and Ontological Metamodel for Autonomous Systems
is a general model for representing an autonomous system’s designed functions and
structure (see also OM Architecture Framework in the glossary). 139, 141, 156, 158,
159, 162, 175, 211, 216, 217, 219, 247, 283
trait — features used by the observer in the selection of a system. 70

U

uncertainty — epistemic possibility of deviation from expectations. 8, 9
intensive uncertainty — uncertainty in the values of the magnitudes of the system
that is observed and/or modelled. 8, 14
qualitative uncertainty — refers to uncertainties that cannot be quantified. Oc-
currence of unexpected events that qualitatively change the behaviour of the system
(adapted from [90]). 8, 14

universe — the system plus its environment. The set of all entities of relevance for a
systems problem. 70

universe of discourse and couplings — a form of system representation that is
based on the identification of elements and relations between them. 71

289

Chapter 12 Glossary

290

Mobile robot testbed additional
figures

12.4 TOMASys model of the complete mobile robot testbed

Following the TOMASys model for the complete testbed system is presented in UML-
like diagrams, including all the high-level functions in the system.

description = "teleoperation"

f01 : OMFunction

roles =

fd_teleop :
OMFunctionDesign

solves
confidence = 1

r_tel2 : pioneer

r_tel1 : teleop

cmd_vel

description = "commanded
 navigation"

f02 : OMFunction

roles =

fd_com :
OMFunctionDesign

r_com1 : rviz

location

description = "navigate"

o1 : OMObjective

requires

description = "navigate"

f11 : OMFunction

description = "autonomous
 patrol"

f03 : OMFunction

roles =

fd_com :
OMFunctionDesign

solves
confidence = 1

r_patrol
: mission_manager

goal feedbackr_tcom2
: mission_manager

goal feedback

solves
confidence = 1

requires

Figure 12.1: TOMASys model of all the high level functions in the patrolling
robot. The localisation and autonomous navigation functions are shown in fig-
ures 12.2 and 12.4.

291

Chapter 12 Mobile robot testbed additional figures

solves
confidence = 1

description = "localisation"

f12 : OMFunction

roles =

fd_loc1 : OMFunctionDesign

r_loc12
: map_server scans

est_pos

r_loc11 : amcl

config 1

map

type = f22

description = "obtain laser scans"

: OMObjective

solves
confidence = 0.9

roles =

fd_loc2 : OMFunctionDesign

r_loc 22
: map_server scans

est_pos

r_loc 21 : amcl

config 2

map

type = f22

description = "obtain laser scans"

: OMObjective

type = f24

description = "obtain odometry
 information"

: OMObjective
description = "obtain odometry
 information"

type = f24

: OMObjective

odom

r_loc 24:
compass

imu

r_loc 23: ekf

ded_reck

odom

Figure 12.2: TOMASys model of the alternative designs for localisation.

description = "obtain laser scans"

f22 : OMFunction

roles =

fd_scans :
OMFunctionDesign

solves
confidence = 1

r_scans : laser

scans

description = "obtain PointCloud
 information"

f23 : OMFunction

roles =

fd_pcl :
OMFunctionDesign

solves
confidence = 1

r_pcl : kinect

pcl

description = "robot motion"

f21 : OMFunction

roles =

fd_motion :
OMFunctionDesign

solves
confidence = 1

r_m : pioneer

cmd_vel

Figure 12.3: TOMASys model of the low level functions in the mobile robot.

292

12.4. TOMASys model of the complete mobile robot testbed

so
lv

es
co

nfi
de

nc
e

=
1

de
sc

rip
tio

n
=

"n
av

ig
at

e"

f1
1

: O
M

Fu
nc

tio
n

ro
le

s
=

fd
_n

av
1

: O
M

Fu
nc

tio
nD

es
ig

n

r_
na

v1
2

: m
ap

_s
er

ve
r

sc
an

s

es
t_

po
s

cm
d_

ve
l

go
al

pc
l

r_
na

v1
1

: m
ov

e_
ba

se

co
nfi

g
1

m
ap

so
lv

es
co

nfi
de

nc
e

=
0.

9

ro
le

s
=

fd
_n

av
2

: O
M

Fu
nc

tio
nD

es
ig

n

r_
na

v2
2

: m
ap

_s
er

ve
r

sc
an

s

es
t_

po
s

cm
d_

ve
l

go
al

r_
na

v2
1

: m
ov

e_
ba

se

co
nfi

g
2

m
ap

ty
pe

 =
 f2

2

de
sc

rip
tio

n
=

"o
bt

ai
n

la
se

r s
ca

ns
"

: O
M

O
bj

ec
tiv

e

ty
pe

 =
 f2

3

de
sc

rip
tio

n
=

"o
bt

ai
n

Po
in

tC
lo

ud

 i
nf

or
m

at
io

n"

: O
M

O
bj

ec
tiv

e

so
lv

es
co

nfi
de

nc
e

=
0.

7

ro
le

s
=

fd
_n

av
3

: O
M

Fu
nc

tio
nD

es
ig

n

r_
na

v3
2

: m
ap

_s
er

ve
r

es
t_

po
s

cm
d_

ve
l

go
al

pc
l

r_
na

v3
1

: m
ov

e_
ba

se

co
nfi

g
3

m
ap

de
sc

rip
tio

n
=

"lo
ca

lis
at

io
n"

ty
pe

 =
 f1

2: O
M

O
bj

ec
tiv

e
de

sc
rip

tio
n

=
"ro

bo
t m

ot
io

n"

ty
pe

 =
 f2

1: O
M

O
bj

ec
tiv

e

ty
pe

 =
 f2

2

de
sc

rip
tio

n
=

"o
bt

ai
n

la
se

r s
ca

ns
"

: O
M

O
bj

ec
tiv

e

de
sc

rip
tio

n
=

"lo
ca

lis
at

io
n"

ty
pe

 =
 f1

2: O
M

O
bj

ec
tiv

e
de

sc
rip

tio
n

=
"ro

bo
t m

ot
io

n"

ty
pe

 =
 f2

1: O
M

O
bj

ec
tiv

e

ty
pe

 =
 f2

3

de
sc

rip
tio

n
=

"o
bt

ai
n

Po
in

tC
lo

ud

 i
nf

or
m

at
io

n"

: O
M

O
bj

ec
tiv

e

de
sc

rip
tio

n
=

"lo
ca

lis
at

io
n"

ty
pe

 =
 f1

2: O
M

O
bj

ec
tiv

e
de

sc
rip

tio
n

=
"ro

bo
t m

ot
io

n"

ty
pe

 =
 f2

1: O
M

O
bj

ec
tiv

e

Fi
gu

re
12

.4
:T

O
M

A
Sy

s
m

od
el

of
th

e
al

te
rn

at
iv

e
de

si
gn

s
fo

rn
av

ig
at

io
n.

293

	List of Figures
	List of Tables
	I The Context
	Autonomous Systems
	Control Technology
	Control Systems
	Control Engineering Life-cycle
	Limits of Conventional Control

	Autonomy
	Levels of Autonomy

	Intelligence for Autonomy
	Artificial Intelligence

	Present Challenges to Autonomous Control Systems
	Robust autonomy: focus on non-functional requirements
	Run-time adaptation

	Structure of the Dissertation
	Notation
	Examples

	Approach and Objectives
	Engineering Autonomy: the ASys Project
	ASys Vision
	Model-based Autonomy
	Architectural Approach
	An integrated approach to engineering autonomy

	Scope of this thesis
	Self-awareness for Run-time Adaptivity
	Architecture for Self-aware Control Systems
	Dimensions of generality

	Objectives
	Research methodology
	Mobile Robot Testbed
	Basic elements of this work

	II Foundations and State of the Art
	Core Themes
	Biological Self-Awareness
	The Conscious Phenomena
	Models of Biological Consciousness
	Analysis of the functions of consciousness

	Models
	Model-Driven Engineering
	MDE and control applications
	Models and metamodelling
	Ontologies
	Ontologies vs Models & Metamodels

	Functional Modelling
	Functional concepts
	Uses of functional modelling
	Functional Modelling Techniques

	Patterns
	Design Patterns
	Pattern Schemata
	Patterns for Control Systems
	Pattern Examples

	Fault-tolerant systems
	Fault-tolerant software systems
	Fault-tolerant control

	Components for Control Systems
	Rationale for Components
	Advantages of Component Technology

	Theoretical Framework
	Introduction
	General Systems Theory
	Fundamental concepts
	System Behaviour and Organisation

	Autonomous Systems
	Directiveness
	Objectives
	Functions

	Cognitive Autonomous Systems
	Conceptual Operation

	Analysing Cognitive Autonomous Systems
	Autonomous operation: performance and adaptivity
	Principles of Autonomy
	Cognitive operation

	State of the Art of Self-Aware Systems
	Autonomous Supervisor for fault-tolerant control
	Fault Diagnosis
	Controller re-design
	Analysis

	Self-adaptive software
	Dynamic architectures
	Autonomic Computing
	OMACS and adaptive multi-agents organisations

	Cognitive Architectures
	Classification of cognitive architectures
	RCS
	Soar
	Machine Consciousness Architectures
	Analysis

	III The OM Architectural Framework
	Model-based Self-Aware Cognitive Control
	Guidelines for Developing Autonomous Systems
	Self-engineering for autonomy
	Model-based Cognitive Control
	Baseline principles for the engineering of autonomous systems

	Thesis
	Engineering Roadmap
	A Pattern-based Strategy
	Architectural Solution: a Reference Architecture
	Engineering Solution

	Design Patterns for Self-Aware Autonomous Systems
	Design Patterns for Self-Aware Autonomous Systems
	Pattern Schema
	Context

	Epistemic Control Loop (ECL)
	Introduction
	Core
	Detailed Considerations

	MetaControl (MC)
	Introduction
	Core
	Detailed Considerations

	Deep Model Reflection (DMR)
	Introduction
	Core
	Detailed Considerations

	Functional/Structural Metacontrol (FSM)
	Introduction
	Core
	Detailed Considerations

	TOMASys Functional Metamodel
	Rationale
	Requirements and Scope
	Relation to other functional models and specifications

	Teleological and Ontological Model of an Autonomous System
	Model of an autonomous system with TOMASys
	Organisation of the Metamodel

	Organisation Elements
	Components and connectors
	Internal Structure of Components
	Component Classes

	Function Elements
	Objectives and Functions
	Functional Hierarchy: instantaneous state of the system's directiveness

	Overall analysis of TOMASys
	TOMASys and other functional metamodels

	The Operative Mind Architecture
	An Architecture for Metacontrol
	A Reference Architecture
	Scope of the OM architecture
	OM-based metacontrol overview
	Integration of patterns for self-aware autonomous systems

	Instrumenting the Domain Controller
	Meta I/O Operation
	MetaInterface
	Component Action Vocabulary

	OM Metacontroller
	Epistemic Control Loops for metacontrol
	OM Model

	Components Loop
	Components Model
	Components Perception
	Component Evaluation
	Components Control

	Functions Loop
	Functions Knowledge
	Functions Perception
	Evaluation and Reconfiguration of the Functional Hierarchy

	Operation summary of the OM Metacontroller
	S1: Recoverable component failure
	S2: Non-recoverable component failure

	OM Architecture overall assessment
	Self-awareness and the OM Architecture

	IV Implementation and Validation
	OM Engineering
	OM Engineering Process
	OMEP Control Development
	OMEP Meta Development

	MDA in the OMEP methodology
	OMJava library
	OMJava in OM Engineering Process

	OM model transformation
	OM Architectural Framework in the ASys vision

	Testbed System
	The Autonomous Mobile Robot
	Mission and requirements
	The mobile robotic platform

	Control Development
	Overview of the Navigation System architecture
	Functional analysis of the mobile robot
	Design alternatives

	Metacontrol System Development
	Metacontrol System Requirements Analysis
	Metacontrol Design for the Testbed

	ROS implementation of the OM Architecture
	OM-based ROS Metacontroller
	ROS Meta I/O module
	OM-TOMASys model of a ROS system

	OM-TOMASys model of the testbed
	Components
	Metacontrol goal for the testbed
	Functions

	Testbed metacontrol operation and results
	Scenario 1: Laser temporary failure
	Scenario 2: Laser permanent failure

	Analysis

	Conclusions and Future Work
	A universal framework for self-awareness in autonomous systems
	Review of the Objectives of the Work
	The OM Architectural framework and the engineering of autonomous systems
	Novelty and major Contributions of the Research

	Future Work
	Concluding remarks

	V Reference
	Bibliography
	Acronyms
	Glossary
	Mobile robot testbed additional figures
	TOMASys model of the complete mobile robot testbed

