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Resumen

Resumen en Español
La tesis presenta un nuevo marco teórico parta estudiar la estructura de

sistemas complejos basado en la teoŕıa de categoŕıas. El concepto de estruc-
tura es clave en la tesis y se explora formalmente. La estructura no reside
tanto en los objetos sino en las relaciones con otros objetos. Las relaciones
en la teoŕıa de categoŕıas vienen definidas como morfismos o flechas y la
estructura se representa con el diagrama de una categoŕıa.

La teoŕıa de categoŕıas es un reciente campo dentro del álgebra cuyo ob-
jetivo es capturar la estructura que prevalece cuando se hacen corresponder
distintos objetos matemáticos. Dicha teoŕıa se aplica en la tesis para describir
formas generales de equivalencias entre categoŕıas matemáticas y categoŕıas
pertenecientes al cerebro y psicológicas, es decir emergentes de la estructura
neuronal.

La tesis demuestra que la estructura del cerebro puede estudiarse conve-
nientemente con dicha álgebra. En el hipocampo se encuentran las “place
cells” o neuronas que se disparan cuando un agente visita un lugar, y las
“grid cells”, células que codifican la métrica del espacio en que el agente se
encuentra.

El caṕıtulo 8 detalla como la relación entre estos dos tipos de neuronas
puede ser explicada formalmente mediante el concepto de “colimit”. En el
caṕıtulo 9 se presenta una teoŕıa de la memoŕıa declarativa y se establece la
relación entre la memoria semántica y declarativa basads en los conceptos de
“pullback”, “product” y “colimit”.
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x Resumen

Summary in English
The thesis establishes correspondences between mathematical structures

and brain structures. The virtue of such a correspondence is that it makes
available the powerful tools of the latter for the deduction of hypotheses for
structure and function in neuropsychology. Such an approach is relatively
free from the vagaries of purely verbal reasoning and can offer novel insights
into the intrinsic nature of cognitive phenomena.

It is unreasonable to think that purely linear mathematics can be the killer
tool to model the complex interactions that take place in the brain. We may
indeed, need a new mathematical language for describing brain activity.

It sets the agenda of category theory as the appropriate methodology
that provides the necessary theoretical framework in order to understand
the structure of complex systems, like the brain, in mathematical terms.
Although category theory at first sight may seem too pure and universal,
in contrast with the spurious biological realm, where the particular prevails
over the universal; it may lead to a new and deeper insight into the structure
and the representational power of the brain. The thesis paves the way for
a more synthetic methodology in cognitive science, the scale free dynamics
hypothesis is studied with a new “categorical” light.

In addition, it provides a theory of hippocampus structure and function
based on category theory. In particular, it demonstrates that the co-operation
of the grid fields may give rise to a “colimit” which is a place field.
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Preface

Home is where one starts from. As we grow older The world becomes stranger, the

pattern more complicated Of dead and living. Not the intense moment Isolated, with
no before and after, But a lifetime burning in every moment And not the lifetime

of one man only But of old stones that cannot be deciphered. T.S. Elliot [1].

Manichaeanism, which explains facts based on two opposite poles, is a ha-
bitual practice in politics and the media today. With this kind of explanation,
we always find there two clearly separated sides, one is good and the other
bad; of course the manichean placed himself on the one good side.

Following Jeannerod [2], this polemic way of seeing the world is hardwired
in the human brain, so as this thesis has been entirely conceived of and written
by a human -no hermeneutical algorithm à la Sokal here- I ask everyone to
forgive me for starting with such dichotomic differentiation to make my point.

In a manichaean stance, there are two ways of modeling cognitive systems.
One is meant to demonstrate that we understand some particular aspects of
the system, and the other tries to discover new structural and functional
relationships in the system. The former allows numerical simulation while
the latter attempts to capture the organising principles that mediates the
behavior of the system. In conclusion the former is data-driven while the
second is driven by the creative act of the modeler and ultimately endorsed
by the experimental data.

This thesis is an attempt to help in the transition, from a purely descriptive
biology to a strongly mathematical one in his methods but also conceptually.
Such a transformation has just started and seemingly will keep going on.

The moon-earth system can give us a nice historical introduction to the
problem. Ptolomeic´s model was able to predict the position of the planets, so
it was a good model in simulating data, which were scarce. The trouble came
when the data set became abundant; the experimentalist Tycho Brahe comes
to mind. In this new scenario, the Ptolomeic model, in order to keep pace
with the new influx of data, became more and more complex, even baroque.

Copernicus and Kepler´s revolution means the substitution of the Ptolomeic
model that was unmanageable by a less complex model.
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Newton later came up with the law of universal attraction of two bodies
in mathematics; this achievement is well known to be based on what was
already known on the moon earth position relationships.

The conclusion we can take from this is as follows. Ptolomeic model was
able to deal with data, until a certain point, but it was necessary for Coper-
nicus and especially Newton to strive for mathematical structure, to discover
the underlying principles or laws that govern the attraction of any two bodies,
moon and earth included. Thus, Newton happily solved the two-body prob-
lem analytically, but if we include just a single body to our system which
now has three bodies, finding a solution becomes impossible! This was true
for three hundred years, until Poincaré’s breakthrough which consisted in
re-thinking the problem with the question, “Is the solar system stable for
ever?”

Focusing on stability, a systemic property that can not be found in the
individual planets but in the system as a whole, allowed Poincaré to succeed
where many brilliant minds before him had failed. To predict the position at
any time, of any of the three celestial bodies; sun, moon and earth, was possi-
ble only when looking into the organisational principles of the system, rather
than in the correlation between the properties of its subsystems. This case is
a brilliant antecedent of what will come much later, systems biology, which
is the science that studies how functional properties arise in the interaction
of the components, and in doing so, it reveals the organisational principles
of biological networks.

In biology, “law” sounds too strong, biologists prefer use habits or organ-
isational principles. Thus in biology we content ourselves with the search
for the organisational principles of a system and we leave the search of big
words like laws to the natural science, for example- Newton laws of dynamics
or Maxwell’s laws of electromagnetic field. There is a radical difference be-
tween biology and physics; while physics deals with stable objects (of course
there are exceptions like the radioactive substances), in biology, systems are
always getting ready to change to a new state. Biological systems have a
certain purposiveness, an arrow in the temporal direction.

In physics, if we represent the transition between two states with the map-
ping A - B, the uncertainty is usually in the final state B, particular
boundary conditions for A are imposed in order to get an unique solution for
B. On the other hand, in biology, the uncertainty is in the arrow itself. Thus,
we can predict that from A that the system will evolve to B, but there is
a multiplicity of ways to do so. For example, the output of gene expression,
the proteins, may vary substantially depending on the different cells in which
they occur, even if they are in the same tissue. In precise mathematical terms,
gene expression is a stochastic process.

Degeneracy and redundancy are two characteristics of biological systems
that are at the core of the scarcity of laws in biology. For Sydney Brenner,
a pioneer of gene sequencing, the prime intellectual task of the future lies in
constructing an appropriate theoretical framework for biology.
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D’Arcy Thompson, Nicolai Rashevsky or Alan Turing are notable pioneers
in the building of such a missing theoretical framework that could put biology
and physics at a similar epistemic level. The elegant prose and harmonious
sense of aesthetic beauty of the drawings in Thompson’s On growth and
form [3], should not distract us from the fact that his examples only apply
to objects with symmetries and clear morphological regularities. Thus, his
theory can not be universal. For example the three-dimensional structure of
proteins may have a total lack of symmetries. This was discovered in 1958, 51
years after the first edition of Thompson’s book, by John Kendrew [4] who
determined the first atomic structure of the protein myoglobin.

Rashevsky’s relational biology focused on the search of general princi-
ples in biology. Rashevsky and later Rosen, attempt to re-think the theo-
retical biology in mathematical terms, but in practice they failed, because
the experimentalists simply did not know what to do with the mathematical
abstractions[5].

Turing’s search for recursive patterns of organisation is in need of a new
paradigm more powerful than the classical computational models that he
himself made possible. Super-Turing computation, nanocomputation or ana-
log computing are already on the market [6].

However, we must be prudent when talking about paradigm shifts or Kuh-
nean revolutions. Mayr suggests that maybe they are not possible in biology,
pointing out at the lack of universal laws as the reason [7].

The precise and colourful three dimensional structure of the proteins now
obtained in laboratories, does not tell us its function inside the cell. In biology,
function is not used as it is in the natural sciences. For example, in engineering
the function of a system does not pose a problem because it is the engineer
who gives to the system a particular function; the function of an end-effector
in a manipulator arm is not to grab things, it is the engineer who confers such
power to an object with properties that more or less make it suitable with that
task. On the other hand , in biology function is the result of evolution, the
function of myoglobin is to store oxygen in muscle cells and that of protease
to decompose other proteins.

Francis Crick is known for his discovery of DNA, but this achievement is
due in part to his theoretical recognition that in order to study the func-
tion of a system, one must first determine its structure. But the structure
that Crick had in mind, can not be the morphological configuration that
is provided, for example, in the static picture of X-ray crystallography that
Kendrew obtained for the myoglobine. If that were the case, the mapping
Genotype - Phenotype would have been already resolved. Of course, we
are far from that scenario.

The structure must encompass the dynamic relationship of the components
that pre-configure the system as well as its evolving patterns and preferably
has to be defined in mathematical terms. The strictly linear causal scheme
Genotype - Phenotype must be replaced by another that encapsulates
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the multi-level interactions of the system’s components and also the changes
the environment produces in the system.

Bearing this in mind, we should be able to uncover the structure of the
neural system where behavior lies, as we did with the DNA. But this kind of
linear reasoning fails because the brain is an infinitely more complex system
than a DNA molecule. It might be emphasized that a DNA molecule has to be
simple, it is the origin of life, while the brain is the extremely elaborated result
of a long history of changes and evolution. The devil is in every detail. But we
can always get rid of the devil, by choosing a system not so overwhelmingly
complex as the human brain. For example, a simple organism like the soil
worm C.elegans, has been cracked down and a complete map of the mere 900
cells that this organisms has, of which 302 are nerve cells, is available to the
scientific community.

In science, many problems are still unsolved, otherwise there would not be
scientists, but technicians. And many questions that we want to solve today
will never have an answer, and not necessarily because they are too complex
to be solved, but because they will just disappear from irrelevance.

For example, whether differentiation was a state or a process kept biologists
busy for many years. Today it seems completely foolish to pose a question
in those terms. There is a major question being posed today that will likely
leave us without an answer, this thesis tries in to shed some light on this. The
question is as follows: given i) the complexity of of the brain; ii) that this
complexity has been the result of a very long period of evolution, starting
from very simple means; iii) the major anatomical features of the brain are
known, the nervous system is a complex system of neurons that transduce,
transmit and process information; how are we going to put this together and
understand the brain and its cognitive powers?

This is a too wide question that can not be solved here, we need to narrow
the focus. How does the neural system encode mental objects, in particu-
lar spatial representation and memory? This is the question that this thesis
addresses, and in doing so, it borrows concepts form the mathematical the-
ory of categories. In the end, brain function and behaviour depend upon the
interaction of elements (cells, networks, brains). The neural and cognitive
sciences, deal with complex components (assemblies of cells, brains) and out
of necessity will follow a mathematical strand.

Science moves in little steps, but also makes its progress with revolution-
ary discoveries and concepts that sweep away whole and entire edifices of
thinking and replace them with new theories that explain more with less.
However, there is a constant in this march, the strive for mathematisation
and unification.

The dynamic nature of biological organisms has to be understood, not in
the well-known evolutionary sense of organisms changing over time, but in
terms of the persistence of patterns at the different levels of description, from
molecular transcriptional networks up to cells, tissues, organisms and ecosys-
tems. Even the socio-economical system (this pair of words is what politics
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has been transformed into) has an invariance of patterns to be discovered by
scientists and exploited for the common good.

When Schöringer wrote in 1944 What’s life? [8], the biology at that time
could be explained without mathematics. He argued that this was not because
biology was simpler than physics or chemistry, but quite contrary to this,
biology was too complex to be mathematised.

In 2010, it seems foolish to deal with such complexity without mathemat-
ics. The new science of complex systems has exploded in the last 50 years.
Network science, non linear dynamics, chaos, statistical physics. . . are now
part of the academic curriculum.

Before I conclude, I have to confess a final weakness here, which is that of
being a dilettante. But in my defense, I can say that knowing too much about
a topic can sometimes be an impediment to doing creative work, discouraging
us to take the adventurous hidden road rather than the well signalled route
that the majority is taking.
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Chapter 1

Introduction

In what follows I address the following two questions. Why has biology not
yet attained the same status of physics in terms of rigour and predictability?
And in the domain of neuroscience, and why do we still lack a unified theory
of cognition? Indeed, we have not even begun to understand the mechanisms
that govern critical features of brain function, for example, learning or mem-
ory. Walter J. Freeman has addressed this succinctly stating that “Brain
science is still in adolescence [26]”. We must stay far from far overarching
responses; instead we must setup the basis of a new way of understanding
the biological organisation. A conceptual breakthrough in biology is imper-
ative; as a result, a new and deeper insight to the organisational principles
of living systems will emerge. The mathematical articulation of a theoreti-
cal framework will encourage a new way of thinking in life sciences. The so
called medicine based on evidence or the anecdotal accumulation of data in
neuroscience will benefit from the new paradigm.

1.1 Introduction

Biology in the 21st century will be for Mathematics, what Physics was in
19th and 20th centuries. This is a well accepted belief among scientists with
mathematical training. Some physicists can go even further and deplore the
pre-Newtonian stage, in which biology and in particular neuroscience find
themselves. Biology may be perceived as descriptive and qualitative, in op-
position to physics, which is quantitative and explanatory, thanks to the use
of mathematics. Thus, the language of physics is mathematics. Galileo put it
memorably, ”Nature’s great book is written in mathematical language”.

However, the postulate that states that biology is descriptive and qual-
itative, while physics is mathematical and quantitative is a dichotomy too
simplistic to be true (as the dichotomies usually are). Undoubtedly, biology
is quantitative in its models and results. Indeed, maybe too much. The pace
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2 1 Introduction

at which new experiments and data are being produced in the life sciences is
overwhelming for the specialist and disconcerting for the non-specialist. We
simply can not continue throwing more complexity into a literature that is
already almost illegible. This can be only detrimental.

It is easily noticeable that in the top scientific journals, for example Nature
or Science, though they are not devoted to any particular field, the articles
dealing with biology, specifically molecular biology, make up a huge majority.
The very dissimilar rate of production that these publications display between
biology and physics, for example, is such that one starts wondering if the non-
life science community is getting something done? But the actual reason for
this is rooted in the conceptual poorness of biology compared to physics.
Physics is built on formal theories embedded in universal laws, rendering
particulars and details unnecessary; while in Biology, particular cases are
relevant. Here I share the view of the Oxford biologist Denis Noble, “the
next stage in the development of biological science will be revolutionary in
its conceptual foundations and strongly mathematical in its methods [27]”.

However, we must admit that meeting the expectations of the two tra-
ditions, the mathematical-logical and empirical-biological, is not a realistic
goal, at least in the short term. The goal we are seeking is not to find the
theory that explains everything, this ideal is rooted in the naive assumption
that there can be an unique valid view of a biological system.

This thesis is a search of better ways of understanding brain structure,
dynamics and function, introducing new tools and concepts that will aim to
the construction of better models of cognition.

1.2 YAPS! Yet another paradigm shift?

Understanding that biology is rich in proper names but poor in concepts is
key. Indeed, biology textbooks abound with accurate descriptions of thou-
sands of molecules, organelles and cells, each with their own names and pur-
poses. In contrast, the same books give little or no account for the laws or
general principles that govern the interactions between those molecules, or-
ganelles or cells.

Mendel’s law of inheritance is one, if not the only law, expressed in formal
terms in biology. It ought to be noted that Mendel law is not universal but
general, because it only applies to eukaryotic and sexuate organisms. This
rarity of universal laws in biology marks a clear distinction with physics and
poses questions that need to be addressed.

Biology has historically focused on experiments, in order to a posteriori de-
duce theories and models underlying the phenomena under study; in physics,
it is the theory that has lead its development and progress. For example,
Newton built a model that captured the relationship between the moon and
the earth in the movement of the former around the latter. Thus, through
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an abstraction Newton was able to understand the structure of the natural
phenomena, i.e. the movement of bodies around each other.

It is important to remark here that Newton’s theoretical work precedes
the recollection of data. As a matter of fact, he built the model not to fit
the data; rather the mathematical abstraction that he constructed made it
possible to understand the phenomenon, capturing its structure and putting
it in mathematical terms[28].

The renowned evolutionary biologist, Ernst Mayr, makes an important
observation in [29]. In biology there are not scientific revolutions; at least not
in the Kuhnean interpretation of the irruption of quantum mechanics and
general relativity in physics. In order to have revolutions or paradigm shifts
we need first to have universal laws to be surpassed by new ones, and in
biology we lack the kind of the universal laws that exist in physics. Thus, the
criterion of falsability of Popper, would apply to physics but not to biology.

For Sydney Brenner, a pioneer of gene sequencing, the prime intellectual
task of the future lies in constructing an appropriate theoretical framework
for biology[30]. The task is ambitious and precaution is in order; we must
first acknowledge the obstacles that we are facing here.

Each scientific community uses its own language, the same word may mean
very different things depending on which domain of discourse in which we
are. By way of illustration, some examples of words with different meanings
between biologists, mathematicians and physicists follow:

i to differentiate: in physics is to find the slope of a function; in biology
means the changing of function of a cell.

ii to divide: in mathematics is the operation that gives us the ratio of two
numbers. For a biologist, division is the process of duplication by which a
cell replicates its content and split into two, the characteristics transmitted
by the mother cell are preserved in the duplicated cells. Division is a key
process in biology because all cells, with the exceptions of neurons and
cardiac cells, duplicate.

iii function: in mathematics -set theory- a function is a relation between a
domain and a codomain, each element of the original set or domain corre-
sponds only one element of the target set or codomain. The most extended
notation for function is f : X → Y where f is a function, X the domain
and Y the codomain. In biology, molecules have associated functions, for
example, the function of the ribosome is to synthetize proteins, or that
of a protease is to decompose other proteins. This interpretation does not
apply in physics. In fact, a superconductor does not have a function, but
properties. The function of a superconductor is given by the engineer in his
strive to operate in optimal conditions of conductancy. Using the words of
John Hopfield, the creator of the associative neural networks, “The word
function doesn’t exist in physics, but physicists are going to have to learn
about it”[31]

iv cell in mathematics, topology, means edges that connect vertices. The most
common use of cell comes from physiology, cells are the smallest living
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things and they have all the properties of life, including reproduction,
response to environmental signals, a need for energy, and the release of
waste products.

It might be emphasized that having identical words that express dissimilar
concepts, depending on the context in which the word being used, is not
intrinsically bad nor good. The trouble is, that the scientific disciplines, when
missing a common framework, can hardly understand each other. For Kuhn,
such framework is possible within the context of evolutionary epistemology
of theories [32],[33].

In contemporary academic science, “interdisciplinary” has become a buzz
word. Nevertheless the current traditional academic culture does not reward
interdisciplinary, rather it is often viewed with suspicion or disdain. Perhaps
not without reason, expanding interdisciplinary science prior to build a com-
mon epistemological culture, is not the strategy that will drive us to the
obtention of important scientific results.

It is important to note here that the paradigm shift or scientific revolution
as conceived by Kuhn can not be applied to biology. The paradigm shifts
require that laws be challenged, like in the removal of Ptolemaic laws by
Copernicus, and biology lacks universal laws.

The two most important revolutions in biology are two, Darwin’s theory
of evolution and molecular biology outbreak in the 1950’s. The former is not
a scientific theory in Popper’s view, but metascientific; the fittest is only
known after it has survived. Molecular biology, on the other hand, has pro-
duced dogmas not laws, for example the so-called central dogma in moder
biology which forbids the passage of information from the organism and the
environment to the DNA [34]. This dogma has been challenged by Stanley
Prusiner’s work on mad cow disease, in which he demonstrated that the flow
of information may go directly form protein to protein. This is contrary to
the central dogma in Molecular Biology, which states the unidirectionality in
the information flow sequence [35]:

DNA→ ARN → protein (1.1)

1.3 Mathematics as a language and as a modelling tool

In physics, as Galileo pointed out, the language of nature is a mathematical
one. The concepts themselves are mathematical objects and therefore are
meaningful only when written in mathematical formulae. For example, the
concept of field can not be understood outside the Maxwell equations. On the
other hand, in biology, natural language -e.g: plain English, is predominant
and the equations marginal. In a biological context, mathematics is “just” a
tool to model biological phenomena.
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This is a subtle but very significant difference in the use of mathematics
that usually goes unnoticed: while the language of physics is mathematics,
in biology mathematics is just a tool that may be used to build quantitative
models.

Data Information VisualizationMeasurement Understanding

Fig. 1.1 The diagram displays the small part dedicated to the understanding of the

principles compared to those tasks related with the obtention and visualisation of data
from the measurement techniques [9].

Biology is considered “impure” while mathematics is “pure”. This is a
common misunderstanding rooted in the fact that in biology, there is a large
number of special cases with no analytical solution, because they are too
complex or too non-linear.

Formalisation allow us to discover the general principle mechanisms. A
mathematical formulation of life itself is open to philosophical and theoretical
examinations, suggesting new challenges in both directions, from biology to
mathematics and the other way around.

Already in the first paragraph of the popular book “What is life?”,
Schrödinger announced that mathematics would hardly be utilized in bi-
ology. The reason for this, he goes on, was not that the subject was simple
enough to be explained without mathematics, but rather that it was much
too involved to be fully accessible to mathematics [8].

Thus, life was too complex to be described in mathematical terms. This
idea, since the book was written in 1944, has prevailed as a credo that does
not need to be discussed, especially if one wants to avoid being accused of
reductionism with a flawed vision about what life is.

Rudolf Carnap, the Vienna Circle’s philosopher, was the champion of phys-
icalism whose main tenet is that all sciences, including human sciences, were
reducible to physics, because every sentence of psychology, biology . . . may
be formulated in physical language [36].

The extreme reductionism of Carnap is untenable. It is true that the uni-
versal laws of physics necessarily apply to living systems, thus physics and
chemistry, of course, are valid in biology. But this only proves that nature
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is ordered and probably hierarchically structured, that being so, a predicate
of level i is irrelevant, though true, at superior the levels i+ 1, i+ 2. . . . For
example, the chemical composition of the ink with which the book is printed,
is completely irrelevant for the literary critic, or the ideal gas equation is of
not relevance for an environmental biologist. In a similar fashion, as physi-
cists do, system biologists have started asking if there are general physical
principles at work in biology.

This is the engineering approach, which does not commit itself with any
particular level of description or set of details, rather it focuses in the neces-
sary functional level of description that aims to figure out the general prin-
ciples that explain why the system behaves in the way it is.

We need to understand the general principles that rule biological organi-
sation. In physics or chemistry, given a system, one may conjecture about its
structure. It should be possible to make predictions, experimentally tested,
about the future states of the system. Thus, the structure conjectured for the
system is refutable as Popper required for a theory in order to be scientific.
But in biology, for example when we study proteins, knowing the 3D struc-
ture of the protein, is clearly not enough to understand its role played inside
the cell. If we modify an enzyme expecting to block its function, another
protein could take that role [37]. This is due to redundancy, one of the key
organisational principles in biological systems. This principle, together with
degeneracy will be conveniently explored in chapter 4.

The historical dimension of biological systems need to be take into account.
In biology, each phenomenon is the result of multiple causes, thus history is
relevant, unless we summon a Laplacian world, in which the current state of
the system completely define its future.

I agree with the oncologist Robert Gatenby when he says,

Existing mathematical models may not be entirely correct. But they do represent

the necessary next step beyond simple verbal reasoning and linear intuition. As

in physics, understanding the complex, non-linear systems in cancer biology will
require ongoing interdisciplinary, interactive research in which mathematical mod-

els, informed by extant data and continuously revised by new information, guide
experimental design and interpretation.[38]

The same can be said about mind and brain. The cognitive and brain
sciences must necessarily follow the systemic, integrative and mathematical
based undertaking referred above. What is needed now in cognitive and brain
sciences is to be able to be as successful and rigorous in putting together the
pieces that reductionists were able to separate. Such an achievement requires
an understanding of the brain at system level.

The time is ripe to take a step back from the details and try to see the big
picture.
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1.4 Plan of the thesis

I now proceed to give a chapter-by-chapter overview of the topics covered in
this thesis.

In this initial chapter 1 we explored the question, why has biology not yet
attained the same status of physics in terms of rigour and predictability? and
whether we can expect a Kuhnean revolution in brain and cognitive sciences.

In chapter 2 we describe different mathematical tools to model brain struc-
ture and dynamics. The microscopic, mesoscopic and macroscopic levels are
covered in this review. The spirit of the chapter is to provide the reader with
a mathematical toolbox which is able to deal with the non-linearity in brain
dynamics.

In chapter 3, category theory is introduced. I will provide a formal intro-
duction to this mathematical theory, including applications in the domain
of brain and cognitive science. A new and original theoretical framework in
which different tools and approaches can be used in conjunction with one
another, will naturally arise in this chapter.

Chapter 4 studies crucial philosophical topics like formalisation, reduc-
tionism and emergence from a transversal and systemic perspective. It paves
the way for the formulation of structure and representation in the next two
chapters.

Chapter 5 is devoted to structured systems. The concept of structure is
rigorously explained here. In addition, I use category theory to introduce
the concept of cat-system, which is a categorical formulation for structured
system.

In chapter 6, I present a general framework for representation based on
category theory. The idea is to bring this mathematical formalism into the
domain of neural representation of physical spaces, setting the basis for a
theory of mental representation, able to relate empirical findings, uniting
them into a sound theoretical corpus.

Up to Chapter 6, we have treated the key issues of this thesis, i.e. structure
and representation, in a general setting. In the last part, the focus is shifted to
the brain, in particular the hippocampus. The structure of the hippocampus,
and the mechanisms by which mental representation and memories arise from
its interactions will be conveniently covered.

Chapter 7 explores two main issues. The first concern is to point out the
flawed use of mathematical and philosophical concepts, in our attempts to
understand how the brain works. More specifically, I draw attention to the re-
stricted, yet inconclusive quarrel between the different schools of brain organ-
isation and functioning. This chapter, based on empirical evidence, examines
the scale-free nature of brain connectivity and activity, and provides a the-
oretical framework, which is able to model the dynamic nature of biological
systems. The second concern is the introduction in brain theory of mathe-
matical descriptions of key concepts, such as pattern or structure, which are
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at the core of the natural sciences, and should occupy a preeminent position
in the neural science.

Chapter 8 describes the effect in injecting the concepts of coproduct and
colimit from category theory into the problem of place cell formation in the
hippocampus. The hypothesis that will be explored here is that the colimit is
the mathematical structure that allow us to encode the emergence of mental
concepts related with space such as position, orientation or distance. The
main point is that this theoretical postulate will shed light on how populations
of grid cells contribute to the formation of one place cell.

In 9 it is described a mathematical formalism based on the theory of cate-
gories for modeling declarative memory. The categorical concepts of product
and pullback will be explored and mapped onto psychological structures re-
lated with semantic memory.

Finally, chapter 10 presents the conclusions and some future works. It
ought to be remarked that although this thesis may sometimes embrace over-
simplifications and wild speculations. However it is worth further investiga-
tion, and its relevance to understanding brain structure and function should
be closely examined.



Chapter 2

State of the Art: Mathematical
approaches in brain science

As in any other experimental science, in neuroscience, we build models in
order to attain a structural match with the natural phenomenon that we
want to understand. Models, of course, are made up of data.

In neuroscience, as neuronal mechanisms and processes are not directly
observable, models become essential. Indeed, neuronal function is explored
through inferences on models or on their parameters, rather than automati-
cally deduced from direct observation. In neuroscience, models not only cap-
ture phenomena, they also generate data [39].

2.1 Introduction

I will start this chapter by trying to demonstrate the inescapable use of
mathematical tools for the modeling of the physical world (brain included).

It goes without saying that with the following example, I am not reducing
the brain to the kind of solid rigidity that is usually depicted in the textbooks
of physics. The rationale here is to emphasize the colossal difference having
a mathematical model makes in natural science 1.

In particle physics, the angular momentum of a particle with mass m and
velocity v, about a rotation axis z at distance r, is given by the formula

Lz = r ×mv.

By substituting the angular velocity v = wr where w is the rotational
velocity in the axis, one obtains

Lz = r ×mwr = wmr2.

1 I use the term natural science here in the original sense of the German word “Naturwis-
senschaft”, that is, the study of nature by the rigorous and formal investigations as it is
prescribed in the scientifc method.

9
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Fig. 2.1 Particle mi rotating about the z-axis with the angular velocity w

The term mr2 is called momentum of inertia of mass m in figure 2.1.

I = mr2.

Now, in order to calculate the momentum of inertia of a multi-particle system
rotating with identical angular velocity w, we need to sum up the momentum
of each particle and the result is the momentum of the system:

Lz = Σiri ×mivi = wΣimir
2
i

Thus, the resulting momentum of inertia of the multi-particle system is now:

I = Σimir
2
i

The question that now arises, is as follows; what happens if we are deal-
ing with an extended continuum system and therefore we can not positively
separate its different particles?

In this case, we can not just sum the different particles as we did with
the example shown above of particle physics. There are systems in which the
particles may not be that easily differentiable, or maybe they are, but to
count them all poses problems of computability.

The solution to this deadlock is given by the construction of a mathemat-
ical model, only in this case we can licitly assume that we can count all the
particles even though we actually do not do it, the trick is that mathematics
does this for us.

Accordingly, for a body with a homogeneous mass distribution and density
ρ, the differential of the mass is dm = ρdV . The momentum of inertia about
a known axis can be calculated by integrating the square of the distance,
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weighted by the mass density, from a point in the body to the rotation axis:

I =
∫∫∫

m

mr2 =
∫∫∫

V

ρr2dV (2.1)

Thus, by integration it is possible to summarize important features of
the system without having a complete description of it. The assumption that
there is a homogeneous distribution in the system, makes it possible. However,
this premise does not apply in most of the real systems. For example, the
different cells within a tissue are not interchangeable, they have indeed a
variable structure and function that evolve over time.

To deal with such systems we need to understand the global dynamics of
a number of elements, strongly coupled between them and with highly non-
linear dynamics. This is the essence of complexity science, which aims
to investigate increasingly complex systems where the relevant features are
both local and global in a way that is intrinsically not reducible. It might be
remarked here that this science is still in its infancy and is therefore more an
amalgamate of methods and ideas than an unified corpus.

This chapter explores some of the most relevant mathematical structures
used by brain researchers to unravel brain’s structure, function and dynamics.
It starts by looking into the concept of brain state. The concept of the state
of a system is key in engineering and physics, but maybe it is a not very
well understood concept in other relevant fields of brain science like cognitive
psychology.

In this chapter, three different levels of the brain are introduced, micro-
scopic, mesoscopic and macroscopic. If we accept that there are different levels
of description in the brain (synapses, neurons, columns, modules, etc), each
with their own dynamical systems and time flow, then we would expect that
there are possibly different mathematical structures at each of the relevant
levels.

A concise exploration of the different mathematical structures and how
they apply to the different levels in the brain: microscopic, mesoscopic and
macroscopic, are sketched in sections 2.4, 2.5 and 2.7.

2.2 Brain state

The brain is a dynamical system of unprecedented complexity, its intricate
organisation, is a product of thousands of years of evolution and social inter-
action.

The state space approach is used by engineers and physicists, and roughly
consists of considering the system as a collection of its different states. The
states are represented as points or regions in a dimensional space. The dimen-
sionality of the state space is given by the number of independent variables
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that define the system. Thus, engineers study the behavior of a system based
on the trajectory followed by its possible states. The phase space can be also
be called state space, and is the space with all possible states of a system.
For simple systems, like for example a particle moving along one direction,
the phase space is two dimensional. As it is shown in the figure 2.2, the vari-
ables position and velocity of the particle are the axis, each state is a pair
(position,velocity) for a given instant, and the succession of points represents
the evolution of the system over time.

Fig. 2.2 A phase portrait is a geometric representation of the trajectories of a dynamical

system in the phase plane. The figure depicts the phase space of a simple pendulum, each

set of initial conditions is represented by a different curve. The x axis is the phase θ and
the y axis the velocity dθ

dt

The brain is a dynamical system, which we can always be studied using
dynamical system theory (DST). DST is basically concerned with the study
of the trajectories in the system’s state space. This leads us to discuss what
a Brain State exactly is.[40]

This attack of the problem is controversial. There are scholars, mainly
philosophers who repudiate the idea of brain state. Thomas Polger holds that
“brain states . . . we don’t really even have a clue what such things are”[41],
Bechtel and Mundale have argued that “The notion of a brain state is a
philosopher’s fiction” [42].

Bechtel’s rationale is as follows: prior to identifying brain states we need
to identify separate brain areas, and as brain areas are very similar across
different species, two different species having activity in the same area of the
brain, they will necessarily exhibit the same brain state. Of course, this argu-
ment is flawed, because the brain areas are not the same, but they just share
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anatomical and physiological properties and most importantly, the identifi-
cation of functional area and brain state, in which Bechtel’s claim is based,
is simply wrong.

But what are the brain states and how can we discern them? Buzsaki de-
fines brain state as a transient equilibrium condition, which contains aspects
of past history that are useful for future use[43]. This definition emphasizes
the inherent historical aspect of complex system. Complex systems, as Pri-
gogine said, do not forget their initial conditions: they carry their history on
their backs.

Synchrony, or more precisely the phase locking of the firing of the neurons
may make it possible to distinguish the brain states. For example, we find
theta-modulated-gamma waves in a rat exploring its environment, when the
animal is at rest or asleep they are replaced by sharp wave induced ripples.
The granularity we get with the synchronicity is too wide, using Pare and
Llinás words “in electrophysiological terms, waking and paradoxical sleep
are fundamentally identical states [44]”. We need to be able to discern how
perceptual information of the external worlds coming from very different
sensorial apparatus is processed, integrated and finally reflected in the syn-
chronous waves measured in EEG. Freeman proposed the analysis of the
amplitude modulation as the way to unravel the perceptual content that is
conveyed in the wave.

Nunez quantitative theory of neocortical dynamics [45], defines brain state
in the contextof the theory, using psychologically based control parameters
which also mediate in EEG frequencies.

By way of conclusion, we can state that the main trouble with the concept
of brain state is similar to that of some others scientific concepts: the same
word may mean very different thnigs. We will see this later with concepts
such as structure or pattern. It ought to be said that brain state can not be
defined rigorously without having specified a proper context, which is both
temporal and spatial scales of a particular experiment of theory [46].

2.2.1 The search for the meaningful brain states

Neural correlates of mental states are points in the phase space of the nervous
system that are associated with mental states. We can avoid the hard problem
of neural properties and phenomenological states [47], if we focus on the
identification and isolation of those points in the phase space in order to
discover, under which conditions cognitive conditions arise and evolve in time
[48].

One of the most promising strategies for the identification of neural cor-
relates of cognition is the state space approach originating from the analysis
of dynamical systems.
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It is still unclear how the variables that constitute the neural correlates of
cognitive functions, such as perception, memory, language or consciousness,
must be chosen.

The study of the nature of this correlation is today a hot topic with a long
and honorable history that goes back to Helmholtz and the first Freud. The
one-to-one hypothesis that associates EEG measurement with behavior, has
been suggested by the first experimental psychologist, who, by the way, is a
founder of psychophysics Gustev Fechner. Köhler and the Gestalt school were
also favorable to the psychophysical hypothesis, which is scientific in Popper’s
sense because is falsifiable, but poses methodological problems, some of them

Indeed, as we will see in the next section, depending on which level of the
brain we are measuring, we have different tools that will provide different
state vectors [49].

2.3 Organising the Mathematical Framework

The models and theories of the brain are empirically tested and arise from
signal measurements of brain activity. Undoubtedly, the methodology and
technology used, will demarcate the interpretation and application of the
formalisations.

For example, single cell recording typically consists on time series of volt-
age values, trivial to understand for a trained experimentalist. The single
cell recording is easy to understand, it is a collection of time series of differ-
ent voltage values. The action potentials, also called spikes or impulses are,
characterised by two parameters: amplitude and duration.

Recording a population of neurons, on the other hand, is far from trivial.
The recorded signal is not a point process, rather it represents a summation
of several events in the neighborhood of the electrode that is placed in the
scalp or directly in the cortex and adjacent regions like the hippocampus or
the basal ganglia.

At a fundamental level, neuroscience is a challenging and promising test-
ing ground for developing our understanding of how the macroscopic level
emerges from the interaction of large numbers of interacting components.
The functioning of the brain at the high level of mental processing is, of
course, expected to be the result of the co-operate action of a very large
number of neurons.

Neuroscience is an ideal test ground for the statistical mechanics. Other
mathematical approaches like dynamical systems theory or physics of phase
transitions applied to neuroscience will be explored in this review.
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Fig. 2.3 Measurement techniques, brain hierarchy level and mathematical models are

related as the figure shows. An unique and all encompassing mathematical model of the
brain can not be expected.

2.4 Modeling neurons

In the brain, the microscopic level is that of the neurons and its components.
Neurons are not the most numerous cells in the brain, for example there are
more glial cells than neurons. The concern of modelling neurons comes from
the fact that only neurons can transmit electrical signal over long distances.
Hence, to talk about how the brain processes information is, in the long term,
to talk about neurons exchanging information 2.

It is important, and maybe illuminating for some scholars, to realize that
a neuron is a nonlinear dynamical system, complex enough to be thought in
terms of very different aspects. For example, while a biologist is interested in
things like the sodium channels, the pharmacologists deals with the chemical

2 just as ”in the long run, we are all dead” as JM Keynes once said
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blockers of those channels, and a computer scientist would model neurons as
digital gates[50].

At the level of a non-interacting single cell, almost everything is very well
known, and accurate models of single neuron dynamics are available since
Hodgkin-Huxley´s work on action potential propagation in the nerve cells in
the early fifties.

2.4.1 Examples of models of neurons

For the sake of clarity, I will make a distinction between two general ap-
proaches for the construction of models of neurons.

On the one hand, we have detailed biophysical models of neurons, the
Hodkin-Huxley and the Rall models are well known examples [51], [52]. On
the other hand, there are more simple models of neurons with less parameters.
The “integrate-and-fire” models (I-F) are an example of this type of ”simple”
model. The I-F models are based on the concept of action potential as a
threshold process. In this view, the spatial dimension of the neuron is not
taken into account, neurons are seen as unit points, and only temporal aspects
of the input-output properties are included in the model.

Let us see some examples of these two kinds of models of neurons.

2.4.1.1 Detailed biophysical models of neurons

In 1952 Hodgkin and Huxley, experimenting on the giant axon of the squid,
found the ionic mechanisms underlying the initiation and propagation of
action potentials. They discovered different types of ion-currents in the nerve
cells: sodium Na+, potassium K+ and clorum Cl−. The ion channels of
Na+ and K+, control the flow of those ions through the cell membrane, and
mediate in the creation of action potentials which are electrical pulses that
allow the transmission of information within nerve cells.

Formally, the Hodgkin-Huxley model consists of a equation for the total
membrane current, based on the assumption that the cell membrane has an
intrinsic capacitance. The ionic currents of Na+ and K+ are introduced in
the equation which is derived from the Ohm’s law. The H-H model aims to
put in mathematical terms, the major features of membrane nonlinearity: the
voltage-dependent ionic currents that activate and inactivate in time.

IM = Cm
dV

dt
+ IK + INa + IL (2.2)

The H-H equation is based on Ohm’s law, the left side is the total membrane
current, IM , and the right side includes the capacitance of the membrane Cm,
the membrane voltage V , the sodium current INa, the potassium current, IK
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and IL, which is the leakage current carried by other ions that move passively
through the membrane.

The relevance of this model is unquestionable. Indeed, the H-H model
is usually taken as the origin of computational neuroscience [53], for the
biologist Denis Noble the H-H model is at the genesis of systems biology [27].

More detailed models came with cable theory. This theory comes from
Lord Kelvin’s theoretical analysis of signal attenuation in telephone cable.
The phone cable is made of copper, which is a much better conductor than
the salt solution inside a neuron. However, cable theory has been successfully
applied for quantitative predictions about the attenuation of post-synaptic
potentials (PSP) as they propagate through a length of dendrite towards the
soma [54].

Wilfrid Rall, Denis Noble, Cristof Koch and others have applied cable
theory to nerve fibers. The work of Rall is particularly relevant because he
demonstrated, using cable properties, that the usual assumption in neural
modeling, i.e. neurons are isopotential, was flawed. Rall was the first one
to take into account the current flow to dendrites in the models of neurons;
before him, the electrophysiological importance of dendrites was ignored [55],
[52].

Stochastic Neuron Analysis is being used to model noisy neurons -i.e: noise
involved in synaptic transmission. Green’s functions, a type of function used
to solve inhomogeneous differential equations, could be a possible solution for
the cable equation because it is able to take account time delays in neuronal
transmissions due to the non-trivial geometry of most neurons in the brain.
The development of more powerful analysis methods would be of value to
move these results forward, although they already incorporate much of the
power in the temporal modifications in neuron transmission due to non-trivial
neuronal geometry (specifically the branching dendrites) [56], [57].

2.4.1.2 Models of neurons based on threshold

On the other hand, a more simplified kind of models are integrate and fire
models (I-F), which are threshold models of neurons.

Already in 1907, Lapicque [58] stated that action potentials are generated
when the integrated synaptic inputs to a neuron reach a threshold value. The
integrator-and-fire models are based on this idea.

They I-F models give a phenomenological description of neural behavior,
but are not explanatory in the sense that they do not clarify the underly-
ing biophysical causes of electrical activity. The I-F models, compared to the
biophysical models seen above, have less parameters, which make them in-
adequate to predict, for example, how the neuron’s behavior is affected by
changes in the extracellular temperature or how it reacts to pharmacological
manipulations [59].
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To conclude, the much simpler integrate-and-fire models seem to be more
useful for exploring collective phenomena in neuronal networks [60], but the
biophysical models are more accurate than the integrate-and-fire models in
describing real single neurons [61]. However, the Achilles’ heels of biophysical
models is the fact that we still lack a systemic methodology for measuring
a large number of parameters. The blue brain project is working in that
direction [62]. It is expected that in the next years, technological innovations
in imaging techniques, will open new possibilities in quantitative biophysical
models of nerve cells and systems. It might be remarked that neurons are
dynamical systems, this conception was clear in the original model of Hodgin-
Huexley, and it is a key feature that can not be overseen.

2.5 Modeling populations of neurons

To claim that neurons are the computational units in brain circuits, and
that the representational power of the brain is dependent on the microscopic
level, is a minor statement today. In order to give responses to questions like
how the brain perceives the meanings of the stimuli or how the categories of
perceptions are built, we need to go further.

This heading addresses the mesoscopic and macroscopic levels, the former
is in between the microscopic level of single neuron shown above, and the
macroscopic level which deals with the global understanding of dynamics by
the study of whole brain areas and hemispheres.

While to measure the electric activity of a single nerve cell needs a much
more complex experimental setting than measuring big cell ensembles, to
understand the nature of the signal in cell ensembles is way more complex
than for single cells. To measure assemblies of neurons, we use techniques like
EEG or MEG which record the electric and magnetic activity of hundreds
of thousands of units. For example, an electrode placed on the scalp of an
individual, records a summation of myriad of electric events in the neighbor-
hood of the electrode. The MEG records magnetic fields. Thus, in order to
deal with the number of different neural events involved in the recordings,
we need mathematical structures that can cope with the aggregate nature of
the signal that is being measured.

Let us now start presenting the different approaches for the study of the
dynamics of interacting ensembles of neurons. Complex dynamic function can
not be understood by observing the parts in isolation. Integrative functions
emerge from the dynamics of entire networks, rather than from linear compu-
tations performed at each nodal point of the circuit. To understand cognition
we need to understand networks at a larger scale than single cells.
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2.5.1 Artificial Neural Networks

One of the most prolific approaches is the Artificial Neural Network (ANN),
originally created by the neurophysiologist Warren McCulloch[63]. McCul-
loch together with the mathematician Walter Pitts, conceived the digital
computer as a suitable medium for implementing brain processes. In their
view, both the computer and the brain shared a binary nature, the nervous
system operations could be reduced to a set of binary states, 0 and 1. The
state 1 corresponds to a firing neuron and 0 state to a non firing one.

In cognitive neuropsychology the ANN approach is concomitant with
connectionism, which is usually presented as a reaction to the “failure” of
the symbolist approach in Artificial Intelligence. The bibliography of the
symbolist-connectionist clash is wide, and for the most part poses stimu-
lating philosophical problems, such as the Chinese room argument[64], the
symbol grounding problem[65] or the Turing test[66].

The connectionist models use linear algebra applied to point-neurons. It
might be remarked here that linear systems analysis is arguably one the major
achievements of XXth century mathematics. However, it is questionable that
linear analysis is a suitable strategy in brain science. For example, in EEG
data analysis, complex phenomena such as the self sustaining activity of the
brain can not be entirely explained in linear analysis basis.

In [67], the interrogation: Are artificial neural networks (ANN) a good
model for cognition? is answered negatively. William C. Hoffman identifies
the weakness of the connectionist approach in the following points: i) the
omission of the topological structure fundamental for the information process-
ing, ii) omission of the morphological structure of neurons, iii) the inability
to perform memory retrieval from point-neuron ”weights” in neurobiologi-
cal real-time; and iv) failure to implement psychological constancy. All these
disallow connectionism as a valid approach for a theory of cognition.

Despite the criticisms that charge against the oversimplification in the
connectionist approach, the importance of ANN is beyond question, whole
research fields like cognitive neuroscience would not exist without them. The
range of applications of ANN is massive: decision making, pattern recognition,
medical diagnoses, speech recognition or robot modeling and control just to
cite a few. The rationale of this must be found in one capital fact: ANN can
implement any nonlinear dynamical system [68].

2.6 Neurodynamics

Neurodynamics is the study of neural oscillations, which aims to study brain
function by building differential equations that describe neural activity pat-
terns. Neurodynamics builds feedback models that cope with lower levels
activity that self-organise into higher level ones, forming mesoscopic states
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that constraint the activity at the microscopic level into patterns with re-
duced degrees of freedom from the original miscroscopic configuration.

This area of research is strongly interdisciplinar, it shares tools and in-
sights with other fields such as theoretical neurobiology, nonlinear dynamics,
complex systems and statistical physics.

The mechanisms by which changes in the electric membrane potential
trigger action potentials in neurons are well known since Hodgkin-Huxley
model, which was described in section2.4.1.1.

A sequence of action potentials generated by neurons is called spike train.
The spike trains form patterns which may be considered oscillatory activity,
and therefore studied using mathematical tools e.g. harmonic oscillators.

Arguably, periodic spiking is at the basis of neural coding. However it
might be mentioned that scientists have detected subthreshold membrane
potential oscillations that deserve to be studied because they may also con-
tribute to oscillatory activity by facilitating synchronous activity of neigh-
boring neurons (figure 2.4).

Neurodynamics uses concepts borrowed from neural networks. In this light,
neurons are conceived as integrators with a threshold. If the sum of the
incoming spikes from other neuron, is above the threshold, the neuron fires,
otherwise the neuron remains quiescent. The digital (discrete) bias in this
conceptualisation of the dynamics of a neuron is very strong.

The simplistic vision of the neuron in the connectionist tradition, with
only two possible behaviors, a neuron is at rest or a neuron is firing, may
acquire a more realistic outlook by using concepts borrowed from dynamical
systems theory. For example, the old resting state would correspond to stable
of equilibrium and the spiking state can be explained as a limit cycle attractor.
When the equilibrium is near a bifurcation, it is likely that the neuron fires.

2.6.1 Neurodynamics, classical dynamics and
startistichal mechanics

In neurodynamics, the final objective is no other than the construction of
dynamic models of brain activity; but why do we need to coin a new disci-
pline when we already have classical dynamics, which is committed to the
construction of dynamic models?

In classical physics, initial conditions and external forces are controlled by
the experimenter, and the system can be modeled using feedforward differen-
tial equations that embodies the linear causality between inputs and outputs
in the system. For example, the Newton Euler equations of an open kinematic
chain shown in figure 2.5.

Neurodynamics deals with brains, which can not be modeled in this way,
causality is not always directly proportional. Although traditionally cognitive
psychologists have studied brain’s response to a external controlled event, like
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Fig. 2.4 Amplitude (mV) and duration (ms) determine the action potential of a nerve

cell. A. shows an idealized action potential, in B. the recordings of action potentials are
often distorted compared to the schematic view because of variations in electrophysiological

techniques used to make the recording. The membrane potential under the threshold may

also affect to oscillatory activity of neighboring neurons. Image from [10].

a particular task or stimulus, this approach is deficient because it does not
acknowledge a capital property of brains, brain is very active even in the
absence of explicit input or output.

Thus we can distinguished between, induced activity which is triggered
by external stimuli or motor responses and ongoing or spontaneous activity
which is the brain activity that can not be associated with external stimuli or
specific events. Neurodynamics is capable of incorporating the spontaneous
activity in its models, and relate it to mental state like sleep[69], rather than
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Fig. 2.5 Dynamic model using Newton-euler notation or an open kinematic chain of N

links. This system presents transcendental, non-linear systems of differential equations that
it is now possible to solve numerically. The analytical solution can be found for particular

situations, for example when at least three neighbour system of reference have coincident

origins

label it as mere noise, which is commonly done in studies focused on stimulus-
related activity.

Neurodynamics and statistical mechanics are related, in order to outline
this relationship we need to recollect the concept of phase space which was
explained in section 2.2.

Let p be a population of neurons where three relevant properties of the
neurons have been selected as follows: the neural membrane resistance R,
neural membrane potential V, and time elapsed since last action potential
t. The state of each neuron is a point in a three dimensional space given by
(V,R, t) ∈ R3

A phase space may have as many dimensions as we want it to, then for
complex systems, like for example a hypercolumn or a brain functional area,
containing millions of interacting neurons, for each variable of every single
neuron, a dimension is introduced in the phase space of the system, account-
ing to spaces of millions of dimensions. Needless to say, this approach becomes
soon intractable analytically and computationally.

The statistical field models used in neuroscience, share this initial assump-
tion: the spatio-temporal spike patterns produced by neural circuits convey
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information about neurons which is where the brain’s representations rest.
The leaky integrate-and-fire (LIF) model [70], which is variant of the inte-
grate and fire models seen in 2.4.1.2, assume that the non-stationary temporal
evolution of the spiking dynamics can be captured by point-like models of
neurons [39]. The problem with this kind of model is twofold, it depends
on the value of the threshold which is rather arbitrary, and it includes a
reset after each spike generation, which makes the whole dynamics highly
nonlinear.

One of the most important branches of the science of complexity is sta-
tistical mechanics or statistical physics, which has has been increasingly ex-
tending its range of applicability outside the domain in which was created, to
deal with applications as disparate as metabolic scaling [71] or the analysis
of social nets [72].

A word of caution is in order here, statistical mechanics applies to classical
systems close to equilibrium, (Planck’s constant does not appear), but brains
are dissipative and far from equilibrium systems.

2.6.2 Biological synchronization: the theory of coupled
oscillators

In this heading, I outline the theory of coupled oscillators, focusing on how
this theory deals with coupled dynamical systems, for example, neuronal
systems. Phase interactions between oscillators characterise a big variety of
phenomena, including biological ones.

Prior to understand coupled oscillators, it is neccessary to understand
what an oscillator is and how it works. An oscillator is any system with a
periodic behavior, that is to say, a system that after a period T , it returns to
the original state T , f(x, t) = f(x, t+ T ).

When we have two or more oscillators the phase diagram becomes much
more complex. Synchrony is a particular case of phase locking. We say that
when two oscillators are synchronized the influence between them is minimal
[73].

The theory of symmetrical Hopf bifurcation [74] gives the means to classify
the patterns for network oscillators. The application of this theory to neural
activity rests on the following three assumptions: in the brain there are in-
trinsic oscillators(1) that are weakly(2) and globally(3) coupled. I comment
on the first two assumptions next, and the third one, neural activity is glob-
ally coupled, is sketched in the heading dedicated to global brain dynamics
in section 2.7.

The weak coupling (2) of neurons is uncontroversial. As everyone knows,
neurons are chemically and electrically coupled by neurotransmitters and
synapses. However, it is important to have always present that computational
models of neurons showing periodic activity, where coupling is a parameter
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that can be tuned to get the desired results, are not realistic models of brain
activity.

The first assumption(1) deserves more attention: neurons are intrinsic (self-
sustained) oscillators. In neurobiology, it has been reported the existence of
intrinsic oscillators. Some examples are the neurons in the inferior olive nu-
cleus or the neurons in the nucleus reticularis in the thalamus [75] which are
able to generate a rhythmic activity in the same range of the sleep states, 8-14
Hz [76]. Caplan et al.[77] have shown that theta oscillations in neurons in the
hippocampus are involved in spatial learning and navigation. However, in the
nervous system, these are the exception more than the norm. Major charac-
teristics of brain dynamics like transience, variability and non-stationarity in
neural firing, are a limitation to the use of oscillator theory.

Oscillations are real in brain activity. Neurons have different firing pat-
terns, depending on the cognitive state. The different behavioural and percep-
tual states of the brain are associated with different brain rhythms. Buzsaki’s
Rythms of the brain [43], is a very enlightening textbook for the study of
rhythms in the brain. Resonance is a property that describes the ability of
neurons to respond selectively to inputs at preferred frequencies. For a gen-
eral study of the relationship between electrical oscillations and resonance in
neurons, see [78]

In [79] a more detailed case of intrinsic resonance frequencies are shown;
the stellate cells in layer II of mEC. It may be remarked that in less con-
trolled scenarios, the noise and rapid fluctuations in brain activity makes
the search for the intrinsic oscillators in the brain extremely complicated, in
either experimental settings or mathematical modeling.

However, this kind of research should not be underestimated as scientific
naiveté, and as Pérez-Velázquez suggests in [80], it may be still possible to
ascribe “functional” intrinsic frequencies for specific brain states. In order for
the theory of coupled oscillators to be relevant in neuroscience, the empirical
reality of the three assumptions just mentioned above must be reported.

The theory of coupled oscillators has been applied to brain coordination
dynamics[81], [82]. The coordination is empirically observable in terms of
the synchronisation of the neural firing in neural populations. One of the
most striking patterns that can be found in the literature are the standard
quadrupedal gaits -walk, trot, pace, etc. In [83] is conjectured that the sym-
metry in the gaits, suggest a structure for locomotor central pattern genera-
tors (CPG). This hypothesis states that a a population of neurons may exist,
that governs the rhythms associated to the various locomotive gaits. For an
overview of models that exploit the symmetrical characteristic of the animal
gaits: [84], [85]

In [11], Golubitsky discusses the importance of symmetry in neuroscience.
This a very important work from a theoretical-mathematical perspective,
because it gives a mathematical description of the symmetries found in the
different phenomena relevant for natural scientists: animal locomotion, the
connectivity of visual cortex and the vestibular system are described.
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The network of oscillators is described as a graph, whose nodes represent
neurons and whose arrows indicate which neurons are coupled to which. Each
neuron is a system of ordinary differential equations ODE.

Fig. 2.6 The simplest coupled cell network is the two-cell. The class of differential equa-

tions associated to this network is ẋ1 = g(x1, x2), ẋ2 = g(x2, x1) where x1, x2 ∈ <k are

the state variables of the cells. Note that the system is as simple as to be defined with one
single function g. Symmetry in animal gait shows that for quadruped animals, the only

possible symmetry class of CPG networks is the 8-cell network shown on the right side of

the figure from [11].

The use of symmetry in neuroscience is a very promising direction. Some
interesting examples of this line of research are given below. In [86], the
mathematical basis of the leech heart, are unveiled. The symmetry in the
leech’s heart is tackled with ODE and Grupoid theory. Theunissen et al.
have developed a mathematical formalism on the neural coding in the cricket
cercal sensory system [87]

It ought be remarked here, that the works described in this heading, are
primarily theoretical. The existence of CPG, ensembles of neurons that or-
chestrate the rhythms involved with gaits or other periodic activities, in sys-
tems not as simple as the brain of a leech, is more of a mathematician’s dream
than a biological reality.

The rest of the section is devoted to models that study synchronous oscil-
lations in neural assemblies, and therefore are under the umbrella of neuro-
dynamics. The neural field theories are described next, including neural mass
models.
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2.6.3 Neural Field models and neural masses

Neural field models use mean-field approximation, describing the activity of
large number of neurons by building models with “simplifying assumptions
and empirical priors [88]”. The mean-field approach enables to sidestep the
problematics of huge dimensional spaces shown above.

The basis of this kind of models rests on the probability density over
ensembles of neurons. The Fokker-Planck equation is used to calculate the
density dynamics. Thus density-dynamics and mean-field approximation are
the basis of neural-field models. It might be noted that while this kind of
models have shown to be well equipped to describe the steady-state regime
in a system, their appropriateness in non stationary behaviors is under debate
[89].

Neural field models are a generalisation of neural mass models, or put in
a different way, the latter are a particular case of neural field models. As
we will see below, the Fokker-Planck equation allows to model populations of
neurons using the probability density; when in the model the density becomes
a point-mass over the space of states of a population of neurons, the model is
called neural-mass model. On the other hand, when the location of the mass
or expected state of the ensemble of neurons is not a point, but a function of
both time and position on the brain, the model is referred as neural field. In
the rest of the section the basis of neural field model and the Fokker-Planck
equation are introduced. Moreover, references of major results in neural mass
models are provided.

Neural field models borrow concepts from statistical mechanics. The main
idea is to reduce the degrees of freedom in a population of neurons, reduc-
ing the state space dimensionality. In this context, a degree of freedom is a
parameter (a variable) measured for each neuron. This is a well known pro-
cedure in physics, for example, Boltzmann’s theory of gases, gets to reduce
the individual degrees of freedom of the single particles, by means of the
introduction of field terms, like temperature or pressure.

Operating in a similar way, a large population of spiking neurons can be
reduced to a function of distribution that captures the neural state of the
whole population for any given instant. Thus, for a population of neurons of
any size, we can calculate the density of the phase state φ(V,R), where V is
the potential and R the membrane’s resistance.

The Fokker-Planck equation gives the density dynamics of large popula-
tions of either molecules in a gas or neurons in a brain area. The equation,
irrespective of the dynamics of the particular components, is linear and quite
simple. What is gained with this method is that even though the dynamics of
a single neuron may be highly complex, even chaotic 3, the density is simple,
linear and deterministic.
3 It is worth mentioning that Chaos Theory is not a stable theory as can be quantum theory
or electromagnetic theory, but it provides a set of mathematical tools that may be used
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The equation, in the neural context, describes the time evolution of the
probability density function of the state of a neuron. For example, if we define
the state of a neuron as q = (V, I, t), where V is the membrane voltage, I
the current, and t the lapsed time since the last action potential; then the
density of the phase space defined by the ensemble of neurons is p(Q, t), where
p : Rn ×R+ → R0,1, is a scalar function that returns the probability density
at each point in the phase space.

The Fokker-Planck equation enables us going from models of individual
spike neurons (points in the phase state) into electrical waves (fields), that
convey the spikes of myriad of neurons. Thus it is possible to describe neu-
ronal population dynamics in terms of the Fokker-Planck equation.

As an example of this approach, Breakspear et al. [90], have constructed
neural dynamics model based on Fokker-Planck equation that tackle the mul-
tiscale hierarchy of levels in the brain. Neural mass models capture the dy-
namics of a neural population. The term was coined by W.J. Freeman in his
1975’s book “Mass action in the nervous system [20]”.

The theory of K-sets developed by Freeman in the 70’s, is based on a nested
hierarchy of models that describe the dynamic behavior of neural masses at
the mesoscopic level. A neural mass refers to a neural system around 104

neurons with 108 synapses. These models captured the dynamics of neuronal
ensembles in the olfactory bulb [91]. Neural mass models are generalized in
[39] by furnishing wave equations that describe the spatio-temporal evolution
of the expected neural states which are here, a function of space.

2.7 Modeling the whole brain

A common feature of the models described above in section 2.6 is that the
critical step is to identify the mesoscopic state variables that refer to local
masses of neurons, and then write the equations that express how the activity
of self-organise neural ensembles produces global macroscopic order.

In this section I will review the macroscopic level. We need to understand
the spatio-temporal patterns of brain activity. I will sketch some mathemat-
ical tools that promise new outcome to the understanding of the brain at a
system level.

In order to cope effectively with the brain emergent properties that mediate
in high cognitive functions, it is necessary to have an understanding of the
interactions between different brain regions. The dynamics of the brain is
high dimensional and non linear, therefore we need mathematical tools able
to cope with the extreme complexity of brain organisation.

In EEG and EMG activity, fast and robust sensory processing has been ob-
served through frequent phase transitions [92]. A new paradigm is emerging,

to model non linear phenomena. A non linear phenomenon does not mean indeterministic

phenomenon.
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providing a new understanding in terms of transient activity that connect
different brain states or attractors, rather than in the classical approach of
linear dynamics, that expects that brain activity will be confined in an at-
tractor as a response to controlled perturbation induced from the outside.

Thus, the focus is put on the passage among attractors, rather than the
study of equilibrium states, where the system will be confined after the per-
turbation occurred. This opens a new window of comprehension of complex
systems and in particular the brain. In particular category theory is proposed
as new methodology that could fuse the different existing frameworks into a
coherent picture of brain structure function and dynamics. Given the impor-
tance of category theory in this thesis, it will be fully introduced in chapter
3, and used all along the thesis.

Let us start now by sketching some mathematical tools that are tackling
the problem of brain dynamics at mesoscopic and macroscopic scales.

2.7.1 Brain processes as critical state transitions
across levels of organisation

The internal brain dynamics can not be entirely explained within the lin-
ear analysis paradigm, the rationale for this limitation is two-fold. First, the
linear-stimulus response paradigm is powerless with mental phenomena such
as phantom limbs or hallucinations, which are processes that arise from in-
ternal brain state rather than triggered from external stimuli.

On the other hand, brain activity is characterised by abrupt state tran-
sitions. Ordinary differential equations (ODE), have the serious limitation
that they can not describe phase transitions, they deal well describing what
happens in the system before and after but not across the transition. The
function of a cortical area can not be understood in isolation, as a matter of
fact it depends on its relation with other cortical areas. Brain function would
result form the transient coordinated activity of ensembles of neurons.

The theory of coupled oscillators that was sketched in 2.6.2 is a theoret-
ical perspective that, so far, can not deal with the empirical evidence that
shows that the rich internal brain dynamics is characterized by stochastic
and chaotic properties.

2.7.1.1 Theory of attractors in brain dynamics

To define the brain as a dynamical system without describing its attractors
is like building a treehouse without a tree.

It ought to be remarked here that deterministic phenomena are easier to
model than stochastic ones. Thus, to claim that chaotic or other determin-
istic regimes may be valid candidates to model brain activity is due more
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to the convenience or usability of the method, than its real relevance. For a
critical discussion of how realistic the theoretical dynamical regimes for brain
dynamics are, see [80].

An attractor is a set towards which a dynamical system evolves over time.
An attractor can have several geometric forms such as point, plane, . . . or
even a recurrent fractal structure, in which case it is called strange attractor.
The study of attractors in neuroscience is rooted in the idea that stable,
persistent activity is a key aspect for understanding neural computation. The
formal definition of an attractor as a closed subset, is not a straightforward
interpretation in physiological recordings of time series. As a consequence of
this vagueness in the interpretation of the mathematical concept of attractor
in the physiological realm, the term has been used in a rather loose way.
In [80] it is argued that in neuroscience, we should speak of attractor-like
systems rather than attractors.

In [93], temporal correlations between stimuli are converted into spa-
tial correlations between attractors. Cossart et al.[94] have investigated
the spatio-temporal dynamics of neocortical activity, concluding that co-
ordinated activity of groups of neurons may correspond to circuit attractors-
emergent features of feedback neural networks.

The most spectacular finding related to attractors is the cells that display
persistent activity in memory tasks. As early as 1949 with Donald Hebb’s
inescapable book “The organization of behavior”[95], short-memory memo-
ries are thought to be attractor states of neuronal representations. Memories
could be fixed point attractors. More recently, attractor dynamics has been
used to explain context-dependent episodic memories in the hippocampus
[96].

It is important to realize that the empirical demonstration of an attractor
is, roughly speaking, what engineers want to know when looking at how
a system works: perturb the system in order to study how it comes back
to its resting state. EEG activity is enormously robust, it is questionable
that epilepsy[97], [98] or Parkinson’s disease[99] can be explained in terms of
attractors. For example, epileptic seizures, are hard to destabilise once they
have started.

From the fact that we have failed to “clearly” find invariant attractors, it
does not follow that they do not exist, for [80] the reason is that we do not
have the adequate theoretical/methodological means to address the invari-
ance in brain activity, especially at the higher levels, including the behavioral
one. To focus on simple systems like invertebrate nervous systems may be
able to help us understand the robustness and rhythmicity found in some
organisms [100].
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2.7.2 Synergetics

Whole brain dynamics is high-dimensional. However, low-dimensional dy-
namics may be found in specific brain areas, like for example the theta oscil-
lation 4 in the hippocampus of rodents when they are exploring [101], [102],
[103].

The low dimensional dynamics, has lead some scholars to hypothesize
that brain dynamics is chaotic [104],[105]. We must be prudent here; fea-
tures of chaotic systems like sensitivity to initial conditions and short-term
predictability should be demonstrated beforehand.

Hermann Haken, a laser physicist, is the creator of the interdisciplinary
field of research called synergetics [106], [107]. Synergetics is the study of the
general principles of self-organization in systems, irrespective of the nature
of their individual parts. In Haken’s synergetics, causality has two directions,
downwards and upwards. The upward causality is local-to-global, novel sys-
temic dynamics emerge from the interaction of the components. The original
aspect of synergetics comes from the downwards causality, which is global-to-
local. The slaving principle states that there are global order parameters that
enslave the constituents of the system and effectively govern local interactions
between them. This principle may help to explain the low-dimensionality of
neural ensembles in the brain. Because the cooperation of the individual
parts, one speaks of circular causality. At a critical point, a single order pa-
rameter may undergo a non-equilibrium phase transition (see bifurcation)
with symmetry breaking, critical slowing down and critical fluctuations.

In synergetics, co-operation rather than competition, is hypothesised as
the key mechanism that enables the existence of order parameters that de-
termine the behaviour of the individual parts of the system. The order pa-
rameters are collective or systemic variables that arise when the system is in
the brink of instability. The order parameters obey low dimensional dynamics
and characterize the system macroscopically.

In neuroscience, synergetics and in particular the slaving principle is be-
ing applied to brain function. In this approach, the brain is conceived as
a self-organizing system operating close to instabilities where its activities
are governed by the order parameters that enslave the individual parts or
neurons[108]. Moreover, higher cognitive functions, like consciousness, for ex-
ample, has been modeled in terms of order parameters.

4 Theta oscillation can be used with two different interpretations. In rats and mice, theta

oscillation is a specific type of regular oscillation seen in the hippocampus and several
other brain regions connected to it. Thus in rats we say “hippocampal theta oscillation”.

The original sense of theta is used in human experimentation meaning: EEG waves falling
into a frequency range of 4-7 Hz, regardless of where in the brain they occur or what their
functional significance. Therefore “theta oscillation” and “hippocampal theta rhythm” are

different because in the first case the EEG waves are obtained through electrodes glued
to the scalp measuring several areas of the cortex, while in the latter case is implicitly

assumed that the EEG wave comes from the hippocampus, using invasive techniques in

rodents .
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2.7.3 Dynamic geometry

The tensor network theory was proposed by Pellionisz and Llinás [109], it
leads to a geometric interpretation of brain function. The relation between the
brain and the external world is defined in terms of an interactive geometrical
relationship between sensory and motor expression.

The theory deals with the “internal” functional space that can interact
successfully with the “external reality”. Llinás explains this internal space
in terms of a dynamic geometry. Dynamic geometry is the mapping between
the event in the external world and the event in the internal space.

Prior to defining any metric tensor one needs to address a well-defined
distance function. As the anatomy of the brain does not present a smooth
and linear representation of the external world, we need to define a distance
function which will be functionally isotropic.

The multidimensional spaces of the central neural system are, for the most
part, not definable in well-known geometries such as Euclidean or Riemannian
spaces. There must be a stochastic metric -distance function- able to deal with
the stochastic nature of the functional space.

The neurological reasoning is as follows, local chaotic oscillations may give
rise to synchronous oscillations on a larger scale [110] [111]. Thus, from the
local chaotic behavior and its associated stochastic metric, arises a smooth
metric structure at the global level, for which there exists synchronous oscil-
lations.

Roy and Llinás have recently upgraded this theory [112]. The novelty is
the use of a stochastic metric tensor, which is defined as five-dimensional
space-time where the fifth dimension is a probability space. The stochastic
metric tensor in dynamic geometry is defined as gij = hij(x, ξ), where x is
the four dimensional Minkowski space (3 for space + 1 for time), and ξ is
a fifth dimension. The tensor is applied to discern between different dream
states. In REM sleep gij 6= 0 because the internal degrees of freedom increase
in the dream state. In deep sleep, the degrees of freedom seem to be frozen,
gij = 0.

2.7.4 Discrete Approaches to Neural Phase Transitions

In this section some tools used to study of the transitions between levels of
neuronal organisation are briefly described. I present some tools that tackle
the problem of dimensionality reduction for large scale brain modeling. As
it was pointed out in the heading 2.7.1 methods based on differential equa-
tions have the serious limitation that they can not describe phase transitions.
Transitions can be controlled by coupling strength between components con-
nections.
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The phenomenology of phase transitions in neural processes are being de-
veloped using new mathematical tools. For example, Coupled Map lattice
(CML) [113][114], Phase transitions in random graphs [115] and Neuroper-
colation [116]. In particular, Neuropercolation tries to generalize the cellular
automata behavior to simulate the complex behavior of neural populations.
Neuropercolation extends the concept of phase transitions to large interactive
populations of nerve cells. The construction of a coherent framework that fuse
the different approaches presented here has not been achieved. However, em-
pirical findings like neuronal avalanches [117], [118] or percolation transitions
[119] seem to back this research area.



Chapter 3

The Categorical Imperative: Category
theory in Cognitive and Brain Science

Traditionally, mathematical formalisms in cognitive science have been con-
fined to toy model world descriptions [120], [121]. In the absence of a theory
written in mathematical terms, the separation between the different disci-
plines that form the cognitive sciences, will be progressively more acute and
an understanding between them unattainable.

It is unreasonable to think that purely linear mathematics can be the killer
tool to model the complex interactions that take place in the brain. We may
indeed, need a new mathematical language for describing brain activity.

As Mac Lane pointed out, the fact that mathematics is protean, means that
the same mathematical structure has many different empirical realizations,
this is why mathematics is about patterns or forms, where each of these forms
describes different aspects of the external world. Mathematics is therefore the
part of science that deals with more than one empirical context. This same
relationship between mathematics and the external world, suggests a similar
one between category theory and mathematics: all the mathematical fields
can be organised according their structure by specific categories, and such
specific categories can be organised using the notion of general category as
provided in the axioms of category theory as it will be shown this chapter.

This chapter aims to set the agenda of category theory (CT) as the ap-
propriate methodology that provides the necessary theoretical framework in
order to build cognitive models in mathematical terms.

3.1 Introduction

The structure and dynamics of the human brain are overwhelming, 1010 neu-
rons with 104 connections each one. This gives an idea of the complications
we are facing here.

We can identify two major difficulties in modelling cognitive systems as
complicated as the brain.

33
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1. Undeniably the brain is a very malleable system, but the theories and
models of the brain do not have to be that malleable. The proliferation of
fMRI experiments are not necessarily producing a better understanding of
brain morphology and functioning.

2. One of the biggest challenges in science today is to decipher the map of the
brain. In Crick’s words, “there is little hope to understand how the brain
works until we have a map of the neural wiring in the mammalian brain”.
The view that the brain configures metric maps that reflect objects and
processes from the world out there, needs to be revisited with a meaningful
and formal concept of structure[122],[123].

Despite the daunting difficulties in understanding how cognition arises
from neural interactions, it is possible to make advances. What is needed now
more than ever in the brain sciences, is to developed model-related analysis
strategies that enable us to propose hypothesis that can be contrasted to
empirical investigation. In Michael C. Reed words[124]:

experimental neurobiology, like experimental physics, needs input from deep and
imaginative theorists.

In this thesis is conjectured that category theory could provide the neces-
sary concepts to bridge the gap between the different levels of brain activity:
from microscopic neuronal activity, to macroscopic aspects, like for example,
emotions or abstract thoughts, which are defined in a rather vague fashion
in the psychological literature.

Category theory proposes a radically new view in system modeling, which
shifts the focus from the elements to the relationships between those elements.

This chapter has three main objectives that will be explored, as indicated
bellow, in the three following sections.

• to introduce the mathematical theory of categories, providing formal def-
initions of key concepts (section 3.2).

• to outline the basis of a new theoretical framework based on CT that may
cope with the binding problem (section 3.3).

• to provide a state of the art of the actual applications of this theory in the
domain of cognitive and brain science (section 3.4).

3.2 Category Theory

Category theory is a new branch of mathematics i.e. abstract algebra, that
was created during the 40’s by Mac Lane and Eilenberg, as a way of studying
and characterizing different kinds of mathematical structures in terms of their
admissible transformations.

I will make a historical sketch of the birth of category theory and the first
categorists. It ought to be mentioned that in science, history tends to be dis-
missed as irrelevant, the exclusive focus on the present and the last technical
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achievements is, I believe, nothing but detrimental. A historical perspective
can strengthen our comprehension of the current concepts, improve our un-
derstanding of the problem, and help to foresee future developments.

The birth of category theory can be dated to 1945, with the paper by
Eilenberg and Mac Lane entitled, “General theory of natural equivalences”,
in which the notion of natural isomorphism is defined and used to capture the
shared structure in homology groups. By “natural” in natural isomorphism,
Mac Lane and Eilenberg intended a common “phenomenon“, for example a
property existing in different contexts. In their original paper, group homo-
morphisms were “natural”.

Today it is well known that category theory deals with structures and the
relationships between them. Each kind of structure, for example, algebraic or
topological, forms a mathematical category. Indeed, categories in mathemat-
ics arose of the need of a formalism to describe the passage from one type of
mathematical structure to another [125].

It might be said that Mac Lane and Eilenberg underestimated the poten-
tial of their own creation, they did not see category theory as “a field for
further research effort, but just as a language of orientation”[126]. It was
subsequently especially thanks to the efforts of Kan and Grothendieck, that
category theory was perceived as a radically different way of doing mathemat-
ics, far more important that the “handy language to be used by topologists
and others” as Mac Lane initially originally intended. Gothendieck defined
abelian categories through axioms that, importantly, were not like the axioms
for abelian groups, but they constituted the description of abelian groups and
also of other similar categories. The rationale of Gothendieck’s approach an-
ticipated the current understanding of category theory: we pay no attention
to the nature of objects and arrows, but to the patterns of arrows that connect
the objects.

Kan, in 1956, created the concept of adjoint functor which is now consid-
ered as the most significant contribution of category theory to the broader
arena of mathematical thinking [127], or a conceptual tool of the first mag-
nitude on the par with the idea of continuous functions [128].

Ehresmann and Lawvere deserve special mention as well, in the origins and
development of category theory. Ehresmann, in the 40’s worked out the notion
of local structures and later made major contributions with the concepts of
groupoids and structured categories.

Lawvere’s doctoral thesis in 1963 is a major milestone in the history of
category theory. He proposed a new theoretical framework for mathematics
itself, in which the set-theoretical framework is replaced by the axiomatic
system provided by category theory. Lawvere’s work is intrinsically related
to the construction of a proper foundation for mathematics: the category of
categories may provide such foundation.

Mac Lane, influenced by Lawvere, changed his initial view on category
theory as a mere “handy language”. He followed with interest the Lawvere’s
vision of category theory as a true and definitive framework for mathematics.
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Fig. 3.1 Samuel Eilenberg, left, and Sanders Mac Lean, right, the two creators of category

theory

However, it must be said that Mac Lane does not commit to categorical-
theoreic (Lawvere) foundations of mathematics neither a set-theoretic (Bour-
baki). In his beautiful book “Mathematics Form and Function” [129], he
concludes that there is, as yet, no simple and adequate way of conceptually
organizing all mathematics. Set theory, he points out, is a handy vehicle, but
its constructions are sometimes artificial; while category theory, on the other
hand, is almost everywhere in topology and algebra, but “do not as yet relate
very well to most analysis”.

Fig. 3.2 On the left, Alexander Grothendieck, a very remarkable man, Fields medal in

1966, disenchanted with world politics and academic circles, he moved into the woods,
maybe somewhere in the Pyrenees. On the right, William Lawvere, the champion of cate-

gory theory as a foundation for amthematics.
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Category theory can be seen as the “mathematics of mathematics” because
one can make definitions in a broader context, that is to say, without reference
to the particulars to which the definition might be applied [130]. In contrast
to the classical atomist approach of set theory that builds all its notions in
terms of the elements, CT does it in terms of arrows. Indeed the motto of
CT, “thinks in arrows”, means that CT is able to reformulate key concepts
in terms of arrows rather than the elements themselves. As we will see later,
most constructions in mathematics may be defined by universal properties,
expressed in categorical terms.

Category theory is inherently iterative: there are transformations between
categories: namely functors, and transformations between functors called nat-
ural transformations. It is interesting to note that Mac Lane and Eilenberg
originally defined “category” in order to be able to define “functor”, and
“functor” in order to be able to define ”natural transformations”.

Thus, the theory of categories, functors and natural transformations, which
is the actual name for Mac Lane and Eilenberg’s theory, provides a charac-
terization of the notion of a structure-preserving transformation, and thereby
of a species of structures admitting such transformations.

There are some excellent textbooks in CT. A classic is “Categories for
the working Mathematician” by Mac Lane[131] which is a very clear and
elegant text, though not easily accessible for readers not familiarised with
category theory. More basic introductory texts are: “Conceptual Mathemat-
ics” by Lawvere and Schanuel[132], which is written in a very didactic style,
and addressed for general reader, “Category theory” by Awodey[128] and
“Arrows, Structures and Functors” by Arbib and Manes[133], which is a
strongly recommendable book for beginners in CT with some mathematical
background.

“Basic Category Theory for Computer Scientists” by Pierce[127] is a short
and and clear introductory text. Computer science students may find in “Cat-
egory Theory for Computing Science” by Barr and Wells[125] an extended
monograph with solutions to exercises. An “Introduction to Category theory
in for easy movements” by Schalk and Simmons[134], contains also solutions
to exercises. Now it is time to give a definition of category.

Definition 3.1. A category K is a collection of objects Obj(K), where for
each pair of objects A, B of Obj(K), there is a collection of morphisms,
K(A,B), being A the domain and B the codomain that satisfies i and ii :

i associativity of composition: for any pair of morphisms f : A → B, g :
B → C, there is a composite morphism, g ◦ f : A→ C, such that

(h ◦ g) ◦ f = h ◦ (g ◦ f) (3.1)

for all f : A→ B, g : B → C, h : C → D
ii identity: for each object A, there is a given arrow 1A : A → A called

identity arrow. Thus, for any arrow f : A→ B
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1B ◦ f = f and f ◦ 1A = f (3.2)

Categories are nothing more than an algebra of arrows equipped with
the composition operator. A category is anything that satisfies the definition
above, the objects can be sets, groups, monoids, vector spaces. . . or neurons
in the hippocampus. Categories provide a domain of mathematical discourse,
characterized in a very general way[133]. In this vein, classical logic or set
theory are particulars in the more general and universal theory of categories.

3.2.1 Examples of categories

Let us see more examples of categories. Trivially, the category 0 is the empty
category with no objects and no morphisms.

The category 1 has no objects and one morphism which is necessarily
the object’s identity arrow 3.3. Category 0 and category 1 are called discrete

A

idA

��

Fig. 3.3 Category 1

categories, because the arrows are just the identity arrows, one for each object
in the category. The category 2 has two objects and three morphisms, idA,
idB and f , as the diagram 3.4 shows.

A

idA

�� f // B

idB

rr

Fig. 3.4 Category 2

We first of all must note that the categories shown above can be expressed
as graphs where the objects are nodes and the morphisms are edges.

More interesting are the concrete categories, in which the objects are sets,
possibly with some structure, and the arrows are functions or homomorphisms
when the objects have structure. In the textbooks, categories are usually
defined in terms of ordinary set theory. The category of sets, Set, is the
category whose objects are sets and whose arrows are functions between sets,
and the associativity of composition and identity hold.

Other examples of concrete categories are: the category of pre-order sets
Poset, whose objects are posets and the arrows monotone functions, the cat-
egory of monoids Mon, whose objects are monoids and the arrows functions
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that preserve the monoid structure, or the category of vector spaces, Vec,
whose objects are vector spaces and the arrows linear maps.

3.2.2 Definition of some key concepts in the theory of
categories

In this heading I will be formally defined some concepts that will be used in
this thesis.

Let us start by the concept of diagram. Everyone, by glancing a category
theory book, can realise its diagramatic nature. Diagrams, are the way in
which this theory proves theorems and states properties of categorical objects.
The categorists do this by exploiting the commutativity of the diagrams.
Commutative diagrams, work as the equations in category theory, and provide
a geometric, and therefore more “visual” description than the purely algebraic
insight that is given by the equations.

Let us start by defining the “language of category theory”, that is to say,
diagrams. Diagrams are defined upon the well known concept of directed
graph.

Definition 3.2. A directed graph is a class of nodes, together with a class
of oriented edges for each pair of nodes. Thus, a directed graph is a category
without composition or identities.

Remark 3.1. A directed graph can be defined without using category theory
as a 4-tuple G = (N ;E;αs;αt) where E is a set of arrows, N is a set of nodes
and αs is a function defined in E → N that gives the source of each arrow
and tghe function αt that gives the target of each arrow. Thus αs ◦f = domf
and αt ◦ f = codf .

Definition 3.3. A directed graph in a category K, is a diagram whose nodes
Xi, Xj . . . are labelled by the objects DXi of K and whose edges Xi → Xi

are labelled by morphisms in K(DXi , DXj ).

Definition 3.4. A diagram in a category K is commutative if for every pair
of nodes X,Y in the diagram, all the paths in the diagram yield the same
arrow in the category K.

X
f ′ //

g′

��

Z

g

��
W

f // Y
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Thus the path in the diagramX → Z → Y shown in the following diagram,
which is the arrow, g ◦ f ′, in K, is equal to the path X →W → Y , which is
the arrow f ◦ g′ in K. The two paths between X and Z compose the same
arrow g ◦ f ′ = f ◦ g′, because for every argument, they have the same value.

For example, the associativity of composition that all categories must have
based the definition of category given above, means that in the following
diagram, the two paths or composition of arrows, (h ◦ g) ◦ f and h ◦ (g ◦ f)
are identical, (h ◦ g) ◦ f = h ◦ (g ◦ f), as the the following diagram shows.

A
f //

g◦f ��@
@@

@@
@@

B

g

��

h◦g

  @
@@

@@
@@

C
h
// D

The notion of dual is very important on category theory, because the defi-
nitions in category theory can be dualized, that is to say, the definitions come
in pairs, which obviously simplifies the work of defining and understanding
concepts in a theory.

For example, we have initial objecategory theory/terminal object, prod-
uct/coproduct, limit/colimit, cone/cocone, monomorphism/epimorphism.

The dual of a category K, Kop, is obtained just reversing the arrows.

Definition 3.5. The dual Kop of a category K, is such that the objects are
the same, Obj(K) = Obj(Kop) and there is a one-to-one correspondence
between the arrows. For every arrow f : A → B in K there is a dual arrow
f̄ : B → A in Kop with composition and identity properties defined in the
normal way.

Definition 3.6. A cone to a diagram D is an object C, and a family of
arrows ci : C → Di, such that for every arrow δDi :→ Dj in D, the following
diagram commutes. C is called apical object and the morphisms ci : C → Di

leg morphisms.

C
cj //

ci

��

Dj

Di

δ

>>||||||||

The cones for D form a category of cones Con(D).

Definition 3.7. The dual of a cone is a cocone. Thus a cocone of a diagram
D in a category K is an object C and a family of arrows ci : Di → C, such
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that for every arrow δDi → Dj in D, ci ◦ δ = ci which is equal to predicate
that the following diagram commutes.

C Dj

cjoo

δ

~~||
||

||
||

Di

ci

OO

3.2.2.1 Universal constructions in categories

Category theory starts with the realisation that most constructions in maths
may be defined by universal properties. The basic notions of category the-
ory are six: object, morphism, domain, codomain, associativity and identity.
However, strictly speaking, there is only one: morphism, because the other
five: object, domain, codomain, identity and associativity, rely on the concept
of morphism.

Following Kan and Grothendieck investigations, the concepts of object,
morphism, domain and codomain can be described in terms of adjoint func-
tors [135]. Here we will focus on first order concepts of Category theory, thats
is to say, concepts that strictly belong to categories and functors. Higher or-
der relations, like natural transformations and adjoint functors will be defined
later, when needed in section 3.4.

Before starting with the survey of universal constructs, we need to precise
what is intended here by universal. An universal construction describes a
class of objects and accompanying arrows that share a common property. The
universal properties allow us to do not have to deal with all the particular
details of a construction, but to prove if the construct verifies an universal
property. In that case, we can forget the details because all what there is to
know about the construct is already contained in the universal property This
is, in actual fact, the basis of all scientific modelling.

The rationale behind universal properties is to obtain definitions of objects
as general and descriptive as possible. It has been suggested that universals
of the mind may be expressed using universal properties in the theory of cat-
egories [136]. Category theory can encompass these two apparently divorced
terms ,generality and descriptiveness, because allows to capture the structure
of the object in the most general way.

Definition 3.8. A morphism f : A→ B in a categoryK, is a monomorphism
if for every pair of arrows g, h : X → A, f ◦ g = f ◦ h implies g = h. Put
it diagramatically, f is a monomorphism if whenever the following diagram
commutes, implies g = h.
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X
g //
h
// A

f // B

Remark 3.2. Note that the predicate “for every pair of arrows g, h : X → A,
f ◦ g = f ◦ h implies g = h” states an universal property.

Definition 3.9. A morphism f : A→ B in a category K, is an epimorphism
if for every pair of arrows g, h : B → X, g ◦ f = h ◦ f implies g = h. Put
it diagramatically, f is an epimorphism if whenever the following diagram
commutes, implies g = h.

A
f // B

g //
h
// X

Definition 3.10. A morphism f : A→ B in a categoryK, is an isomorphism
if there is a morphism g : A→ B, such that g ◦ f = 1A and f ◦ g = 1B . The
objects A and B are said to be isomorphic because it exists and isomorphism
between them, and since inverses are unique g is the inverse of f , g = f−1.
Trivially, an isomorphism in K is also an isomorphism in Kop.

Definition 3.11. An initial object of a category K, is an object 0 in Obj(K),
such that for any object X in Obj(K) there is one and only one morphism
0

f- X.

Thus, the idea behind initial object is the smallest thing with all the
structure in question. For example, in the category of sets Set, the empty set
∅ is a terminal object, in the category determined by one poset1, an initial
object is the absolute minimum for the poset (in the case it exists)

The concept of terminal object is dual of initial object.

Definition 3.12. A terminal object of a category K is an object 1 in Obj(K)
such that, for any object X in Obj(K) there is one and only one morphism
X

f- 1.

In the category determined by a poset the terminal object is the absolute
maximum for the poset (in the case it exists).

Two initial objects (or two terminal objects) in a category are uniquely
isomorphic. That is, for two initial objects (or terminal onjects) I, I ′ there
is one and only one isomorphism I

iso- I ′. Thus multiple initial objects in
a category are not distinguishable because they are isomorphic. The same
holds for terminal objects.

1 Note that the category determined by one poset is not the same than the category of

posets Pos
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Definition 3.13. A product of two objects A, B in Obj(K), is an object P
equipped with two morphisms, P

p- A and P
q- B, such that given any

pair of morphisms, X
f- A and X

g- B, there is an unique morphism
h making the following diagram commutes.

X

f

����
��
��
��
��
��
��

h

��
g

��0
00

00
00

00
00

00
0

P

p
~~~~

~~
~~

~

q
  A

AA
AA

AA

A B

A coproduct is the dual of product, so it can be obtained reversing the
arrows in the above diagram. Formally:

Definition 3.14. A coproduct of two objects A, B in Obj(K), is an object
C with two morphisms, A

p- C and B
q- C, such that for every object

Obj(K) and all pairs of morphisms, A
f- X and B

g- X, there is an
unique morphism h making the following diagram commutes.

X

P

h

OO

A

f

GG��������������
p

>>~~~~~~~
B

g

WW00000000000000q

``AAAAAAA

The definition of coproduct can be generalised to n representations.

Definition 3.15. A coproduct of a family of n objects Ai consists of an
object

∐
iAi together with a family of arrows (Ai

πi-
∐

iAi) such that

for any object C and family of arrows (Ai
αi- C) there is an unique arrow∐

iAi
h- C) such that the following diagram commutes.

As it will be shown in section 3.4.4.3, Philips et al. [137], have pointed out
that a fundamental cognitive principle such as transitive inference or class
inclusion, involve the capacity to compute coproducts.

Products and copropucts can be defined in a more general way. Indeed, a
product is a form of limit and coproduct is a form of colimit.
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C

‘
i Ai

(h)

OO

Ai

αi

bbEEEEEEEEE
πioo

Definition 3.16. A limit for a diagram D is a terminal object in Con(D).
Thus the cone (ci : X → Di) is such that for every cone in D (ci : X ′ → Di),
there is an unique morphism δ : X → X ′ such that the following triangle
commutes.

X′
δ
//

c′i !!B
BB

BB
BB

B X

ci

��
Di

Definition 3.17. A colimit for a diagram D is a cocone with the universal
co-property that for any other cocone there is a unique arrow such that the
following diagram commutes. Initial objects are colimits of empty diagrams.

X′ X
δoo

Di

ci

OO

c′i

aaBBBBBBBB

The importance of limits and colimits relies on the fact that they are
general mechanisms for combining structures. For example, in [138], Ronald
Brown and Timothy Porter suggest that colimits may give useful analogies to
the way complex systems operate. The concept of colimit may help to explain
how individual parts provide a working whole, that is to say, it captures the
structure of the system, making irrelevant the choice at intermediate stages
in the dynamics of the system.

Ehresmann and Vanbremersch have been pioneered in finding the relevance
of colimit to biological development[12]. The dynamics of the category of
neurons produces evolving structures which can be captured with colimits.
This notion of colimit allows to ”put together” different neural process into
a coherent whole.

In chapter 8, colimits are presented as the main modeling tool for spatial
representation in the brain hippocampus.
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As noted above, links between objects in a category are called morphisms
or arrows. There are also links between categories, these are called functors.
Let A and B be categories, a functor F : A → B, maps every object A of
category A to an object F (A) in B and each morphism in A to those of B.
Functor is a structure preserving map between categories. Formally:

Definition 3.18. A functor F : A → B, from category A to category B
verifies:

1. F : Obj(A)→ Obj(B) such that for all a ∈ Obj(A), F (a) ∈ Obj(B)
2. For each morphism f : a → a′a, a′ ∈ A exists a morphism F (f) : F (a) →
F (a′) ∈ B such that for all a ∈ Obj(A) and all composable arrows f ,g in
A:

a. F (1a) = 1F (a)

b. F (g ◦ f) = F (g) ◦ F (f)

3.3 The cat-level avenue

The brain is an ultra complex system with the additional difficulty that
its behavior is very hard to analyse in vivo. Although the trees are well
known(detailed models at microscopic level), there is still missing an uni-
fied theory of the wood(macroscopic models). Unfortunately, it seems that
in brain sciences, descriptive understanding is divorced from the understand-
ing of underlying mechanisms. Put it in a different way, explain the higher
level properties like for example: memory or language, in terms of lower level
properties, like action potential of firing rate of single neurons, requires far
more than inferences or intuitions. But there are good news in all this obsta-
cles, the brain dynamics is, at least in principle, amenable to mathematical
representation.

In chapter 1, it has been described a number of different mathematical
tools applied to neuroscience. Depending on the level of organisation in the
brain, we find different approaches and techniques better suited than others.
We thus have a whole host of mathematical structures and frameworks to
integrate.

In order to acquire a global understanding of brain dynamics, we need
to create a new methodology, able to fuse, or at least vertebrate, all these
different approaches. It might be remarked here, that I am not claiming for
an unified theory of cognition of any sort, but to bring in a new methodology,
able to modify in a considerable manner the existent frameworks so allow for
new results to be obtained.

This approach based on category theory, tries to relate the levels, as well
as making clearer the mathematical structures needed at each level, and their
efficiency in obtaining relevant explanations of what is observed in the brain.
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This is roughly how category theory cope with the hierarchy of organisa-
tional levels.

1. To detect the localisation of the meaningful patterns of components at
leveli

2. To build the colimit that embodies an object at leveli+1. The colimit is
obtained as a result of the binding process of components at level leveli
and is a category of objects of leveli

3. Go to step 1 in order to continue the construction of categories of higher
level i+2. . .

The mathematical theory of categories may help to set the basis of a novel
framework to cope with the phenomenon of emergence in neuroscience.

In particular, it gives a common framework for studying the different lev-
els of description. In neuroscience, these levels are typically assumed to be
two: microscopic and macroscopic, or three: microscopic, macroscopic and
the mesoscopic level, which lies between those.

There are probably many more levels, each feeding into and being con-
trolled by networks at other levels. We need mathematical objects able to
deal with these networks.

However, from the microscopic level1 where the category Neur is placed
all the way up to levelN of mental objects ImO, there are N-1 levels that
need to be addressed. All those N-1 levels are in truth multiple scales of
organization that go from local network of neurons to the scalp topographic
scale of the EEG and the statistical correlation of MRI.

In this vein, the category of neurons Neur and the category of mental ob-
jects ImO are models of the brain at very different hierarchical levels, namely
the microscopic and macroscopic. Thus, the category Neur is composed of
neurons, and models the physical structure of the brain and its elementary
neural dynamics.

Category theory may provide the answer to the fundamental question of
how cognitive functions, including higher mental processes, arise from the
structural connectivity of the brain? Categories of increasingly complex ob-
jects, are built and formally specified, using terms like for example product,
colimit or functor that will be defined in section 3.2.

In [139], E.C. Zeeman holds that a mathematical explanation of how the
brain works has to rely on the concept of isomorphism.

First develop a piece of mathematics X that describes the permanent structure
(memory) and the working (thinking) of the mind, and another piece of mathematics

Y that describes the permanent structure (anatomy) and working (electromechan-

ical) of the brain; then, from hypothesis based on experimental evidence, prove an
isomorphism X ∼= Y

Of course, we must be cautious with experimental evidence about brain
studies mentioned in a paper of 1962. However, the approach and the empha-
sizes given to the concepts of structure and morphism are totally relevant.
There are two main issues to be considered from the above quote.
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Functor 

Mentale H

Object in the category of neurons Neur. 
Its colimit is the mentale T 

Mentale SMentale T 

Object in the category of neurons Neur.
Its colimit is the mentale S 

Object in the category of neurons Neur 
It is a colimit of the two objects below and 
represents the mentale H 

Fig. 3.5 The figure depicts the categorical construction of a physical object, the gray
house on the right. The mentalae S and T, on the bottom of the figure are concepts

that are reified in a neural organisation, in the category Neur. The colimit of the objects

represent the mentale H (the house). Finally there is a functor between the physical object
and the neural category Neur

First, if category theory is the mathematical theory that studies the struc-
ture, we are going to necessarily need such theory, when we try to model
the structure and function of the brain. The focus in not in what the objects
may be or do but what arrow-patterns exists between the objects. The arrows
reveal the structure and any universals that pervade the structure.

Second, the relation of representation between two systems, involves the
establishment of a mapping, ideally an isomorphism, or in the actual case, a
homomorphism, as it will be shown in chapter 6. In category theory we can
establish morphisms between objects within a category, but also, in the next
level up, we can find morphisms between categories, these comprise functors,
which are structure-preserving maps between categories as defined in 3.18.
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3.4 Applications of Category Theory in Cognitive and
Brain science

In this section I provide a review of the most relevant uses of the mathemat-
ical theory of categories in empirical disciplines, like for example, biology,
cognitive psychology and neuroscience. There is a long and fruitful tradition
of using category theory in software engineering, for example, in program-
ming language semantics, modular specification or formal software validation.
It would take too long to include that relation here, for those interested in
category theory in computer programming can see [140].

It might be remarked, that at present, 2010, category theory is not a stan-
dard mathematical tool in any of the empirical sciences. The only exception
to this can be found in quantum mechanics, where category theory is a well
known theory for those working in quantum gravity and related fields[141].
However, quantum mechanics can not be considered an empirical science tout
court, the empirical tests in quantum gravity is still an ongoing process. The
construction of large energy particle accelerator, will help in this direction.

3.4.1 The origins: Rosen’s (M,R-systems)

The application of category theory to biological systems began as early as
the 50s, with the attempts of Robert Rosen within the frame of relational
biology.

Rosen’s work is often cryptic, which unfortunately has helped to portray
the idea that it is indeed a very interesting fotmalism but too abstract and
hard to understand, let alone to apply. Rosen’s theory aims to transcend
the reactive paradigm of simple physical systems, to a new post-Newtonian
paradigm, able to deal with complex natural systems, or organisms using
Rosen’s terminology.

The metabolic, repair systems, (M,R)-systems, is a way of characterising
systems quite independently of their physic-chemical constitution. In Rosen’s
words

What remains then is an abstract pattern of functional organization, which has prop-

erties of its own, independent of any particular way it might be materially realized.
Indeed, it is what remains invariant in the class of all such material realizations, and

hence characterizes that class.[142]

Rosen was the first in seen the power of category theory to express, in
a purely mathematical realm, patterns of relations between models, and be-
tween models themselves. This fact was exploited by Rosen who was looking
for a theoretical framework for modeling in general, and in particular for
living systems.
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The theory of categories provides the necessary mindset to model the
(M,R)-systems, a kind of systems that are independent of how they are phys-
ically realized. The (M,R) systems characterise the minimal organisation a
material system would have to manifest, in order to realise a cell. Rosen ac-
knowledged, of course, that there exist also in biology systems that depend
upon the material details of a particular realization. In order to represent
the (M,R)-systems it is need a general class of diagrams that the theory of
categories provided.

In essence Rosen’s theory is as follows. A completely autonomous living
organism needs to encode all the information about the state of all of its
catalysts (the M in (M,R)-system), and when necessary, makes the necessary
replacements itself (the R in (M,R)-system).

The only way this information can be encoded, is in the connectivity of the
network itself. The network must be constructed in such a way, that its entire
connectivity must be uniquely encoded i.e. the natural(the living organism)
and the formal system(the model of the organism) are isomorphic [143].

The formal system is relational, consisting of a category of interrelated
components. A component is defined by a mapping f : A→ B. For example,
the mapping f can represent an enzyme that converts a substance a A into a
product B. Both metabolism and repair processes are modeled as morphisms,
M : A → B, R : A → H(A,B) respectively, where H represents the class of
all the metabolisms from A to B, M : A→ B.

Rosen, with the (M,R)-systems, tries to provide a solution to the infinite
regression in the iterative mappings M,R and H. They key issue is how the
network produces the selector map g in order to avoid that vicious circle.

A
f //B

g //H(A,B)
where the operator g : B → H(A,B) is produced by the network when the

system is capable of autonomous invariance. The mapping β : H(A,B) →
H(B,H(A,B)) encapsulates the notion of metabolic enclosure and provides
the solution to the vicious circle. For β to exit, given a metabolism f , the
corresponding selector g must be such that g(f) = f .

A
f //B

g //H(A,B)
β //H(B,H(A,B))

3.4.2 Category theory in Perception

In [144] Z. Arzi-Gonczarowski deploys a basic category theory tool for per-
ception modeling purposes. A perception is a 3-tuple < E, I, ρ > such that
E and I are finite disjoint sets and ρ is the arrow ρ : E × I → {t, f, u}.
The set E is made of elements of the external world, and I are mental con-
cepts or internal connotations of the external world. Therefore the predicate
ρ : E × I → {t, f, u} is 3-valued. A mental concept i, can be a true, false or
unknown, connotation of an external object.
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Let E be an environment and P1 =< I1, ρ1 > and P2 =< I2, ρ2 > two
perceptions over E. The mapping h : P1 → P2 is a perception morphism (p-
morphism) iff h is a mapping between the connotations I1 and I2 and definite
truth values (t,f) are preserved by the p-morphism. Note that p-morphisms
are the categorical morphisms of the category based on the collection of all
perceptions with the same environment E.

3.4.3 Memory Evolutive Neuronal Systems

In order to understand the theory developed by the mathematician Andree
Ehresmann and the physicist Jean-Paul Vanbremeersch, it is necessary to
understand first, the approach to systems modeling based on category theory
in which the theory is rooted.

In chapter 2 it was introduced the concept of state space, which is the
space with all possible states of a system. The state space approach is non
structured in the sense that a state space is merely a collection of points. For
example, the state of a pendulum is given by the quantities representing the
position and the velocity like in {(0, 0), (pi/4, 0.1), (pi/2, 0.3)}.

This is in contrast with the configuration category approach, which im-
poses the structure of categories to the system’s representation. The identity,
and very importantly, the composition which is most important distinguish-
ing feature of a category[13], are taken into account.

The theory of Memory Evolutive Systems (MES), produces a mathemati-
cal model for natural open self-organizing systems, such as biological, socio-
logical or neural systems. In particular, the theory has been applied to neural
systems: Memory Evolutive Neural Systems, MENS, which is a particular
case of MES. Thus, MENS is a mathematical model based on the theory of
categories for cognitive systems, and MES is a more general model, that deals
with problems like emergence and self-organisation for autonomous complex
hierarchical systems, in a formal-categorical way. MENS will be sketched in
this heading.

It is important to note what the term evolutive means here. A system is
evolutive when it evolves in time, which is precisely the definition of dynam-
ical system. However, MES are dynamical systems but not in the same sense
that physicists use. Indeed, by the choice of using the term evolutive, rather
than dynamical, we must expect that the term evolutionary is being used
within the context of Evolutionary Theory.

As it has been already said, category theory is based upon the notion of
morphism, this is in contrast for example with set theory which relies in the
concept of membership of a quantity x, in a collection or set X, x ∈ X. A
morphism, for example, f : a→ b in a category C, expresses one of the many
possible ways in which the object a relates to the object b, in the context
given by the category C.



3.4 Applications of Category Theory in Cognitive and Brain science 51

We can easily find the underlying graph G provided by the morphisms
in a category C. The objects in C are the nodes in G and the morphisms
C are the edges in G. However, it might be emphasized that a graph and a
category are not the same thing. In fact, a category can be seen as a (multi)-
graph but equipped with something more: a composition law. In a category,
compositions are calculated when two morphisms have identical domain and
codomain. Category theory exploits this symmetry, by stating that different
paths whose compositions have the same domain and codomain, may have
the same meaning.

MENS starts with a multi-directed graph that models a nervous system,
which is the lower model in the hierarchy of categories that is constructed in
this theory. At such level, a graph will map the neural assembly as follows:
for every real neuron, a node is created in the graph, and for every synapse
between two neurons, there is an edge in the graph that connects the two
nodes that represent the presynaptic and postsynaptic neurons.

A sub-system Neur is introduced in the theory to model the neuronal
system. Of course, the nervous system is dynamic or evolutive in Ehresmann’s
words, and neurons and synapses may be created or disappear.

We can now start to model the system using the categorical approach that
was referred above. The configuration category of such system at a given
time t, is given by the category of neurons Neurt, and the trajectory of the
configuration from the instant t to another instant t′, is given by the partial
functor F : Neurt → Neurt′ , which maps the configuration of neurons and
synapses existing in Neur, at two different times.

Fig. 3.6 The figure describes the evolution of the neural system during its life. For each
t of the timescale is Time, we have the category NEURt of neurons at t [12].

Now, we need to find the relevant patterns for Neur. A synchronous as-
sembly of neurons P may work as a whole on another neuron N . In this
case we say that N is a coordination neuron whose activity corresponds to
the synchronous assembly of neurons P . It may happen that N can not be
found, but there is a colimit cP at a superior level than that of Neur, that is
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to say, a cat-neuron cP of an immediately superior level may emerge. In that
case, the cat-neuron cP becomes the colimit of P and also of other patterns
P ′ synchronised with P .

Thus, MENS begins with a sub-system Neur that is initially modeled
as a graph, which will suffer transformations that will be modeled through
partial functors in the configuration category space, given by the category
of neurons at different given instants Neurt. The system will evolve, and by
the complexification process, higher cat-neurons representing more complex
brain processes will rise.

It is important to remark that a cat-neuron in MENS is conceived as
a multifold object because it admits several decompositions patterns P ,P ′

. . . which may be not connected. This point is crucial because it establishes
a powerful mathematical tool to explore the binding problem: How different
functional brain areas for particular items, are coordinated in such a way to
form widely distributed assemblies of neurons that represent complex items

Using Ehresmann’s words “the cat-neuron characterizes the invariant that
the different assemblies it binds have in common [12]”. In this light, the
cat-neuron colimit is a formalisation of the multiplicity principle, which is a
generalisation of what neurobiologists call the degeneracy problem in neu-
ronal code: given a single group of neurons they can participate in more than
one representative function. The multiplicity principles will be fully explored
in chapter 4.

The fundamental question of how higher mental processes arise from the
functioning of the brain? is approached by the formation of increasingly com-
plex objects. In this vein, neurons (Neur), category of neurons and mental
objects (ImO Image of object O) are models of the brain at different hierar-
chical levels.

This is roughly how the complexification of a category of neurons is formed:
category theory cope with the hierarchy of organisational levels

1. build the subsystem Neur which is represented as a graph having as nodes
neurons and as edges synapses. The nodes or neurons in are cat-neuron of
level 0.

2. synchronous assemblies of neurons form patterns and a cat-neuron of level
1 is created when a colimit to those patterns can be found.

3. By induction a cat-neuron of level k is the colimit of a series of patterns
of lower cat-neuronsk−1,1

As the figure 3.7 shows, the category Neur is composed of neurons and
models the physical structure of the brain and its elementary neural dynam-
ics. The binding of a pattern P of neurons in a category of level 1 (Neur),
becomes the mental image ImO of an object O. Thus, ImO is a cat-neuron
of level 1. Progressively, the construction of a cat-neuron of higher level, 2
and so on, is established by the mental image of an object C formed by the
juxtaposition of several objects Oi that the animal can already recognize.
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Fig. 3.7 The iterative building of cat-neurons binding patterns of cat-neurons of lower
levels, models the computation on mental objects, to form more complex ones. It gives

explanatory power for the construction of an algebra of mental objects
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MENS does not explain how the patterns of neurons are formed, or how
the category of neurons of higher complexity are created however, but it
does provide fresh theoretical insights that deserve to be explored by either
empirical tests or computational simulations. Indeed it tackles fundamental
conceptual issues like, the phenomenon of emergence or the degeneracy prin-
ciple in biological systems, and does so by formulating new mathematical
structures, adapted to the structure and functioning of the brain/mind.

What is necessary now is for experimentalists to validate the theoretical
hypotheses by measuring neural and cognitive activity. Only then, will it be
possible to establish the real value of the theoretical claims and the mathe-
matical structures proposed in MENS. Of course, the empirical measurement
of purely mathematical objects in an ultra-complex system like the brain, is
an extremely hard mission. As an example; since neither every neuron nor
every stimulus can be studied at once, experiments that merely record the
activity of a group of neurons upon presentation a stimulus, cannot defini-
tively prove that only that stimulus creates the activity of the neurons that
the stimulus seems to activate.

This thesis intends to make progress in that direction, and in chapter 8,
it will be described a testable theory, that is able to explain how place cells
in the hippocampus are created.

3.4.4 Category theory in knowledge acquisition and
representation

In [135], Lawvere points out that category theory will be a necessary tool in
the construction of an adequately explicit science of knowing. In this chapter
I sketch how this idea has progressed since Lawvere’s claim. For example, in
this heading we will see how “the initial plausability” claimed by Lawvere has
been transformed into real implementations, for example, in the construction
of ontologies by adaptive neural networks 3.4.4.1, in categorical models for
family resemblance and contextuality, as well as in semiotics 3.4.4.2, or in the
field of cognitive psychology, for example in concept formation and inferential
abilities in humans 3.4.4.3. Let us see some of these implementations.

3.4.4.1 Category theory for ontology building

Healy et al.[145] describe knowledge as “a category representing an ontology
formalized in a modular hierarchy of closed knowledge fragments, or theo-
ries. . . Expressing an ontology as a mathematical category of theories allows
the machinery of category theory to be harnessed in understanding the se-
mantics of adaptive, distributed systems”.
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Category theory is used here as a mathematical language for ontology
building. The rationale is as follows: i. concepts form a structure, so it is pos-
sible to build the category of concepts and ii. structures can be mapped onto
each other, so we can find a functor that preserves the structure of two dif-
ferent category concepts. Thus, a model is a functor where the domain is the
classifying category and the codomain any category with similar structure.

Fig. 3.8 The theory T0 defines a simple geometry of points and lines which are primitive

types and the relationship between them is given by the axiom “Two-points-define-a-

line”[13]

This categorical approach to ontology building, consists of defining the
category of concepts Concept. In figure 3.8 it is shown how the concept
T0, which is a geometry theory, can be used for forming an ontology within
the category Concept. Morphisms in Concept relate theories, for example
s : T0→ T1, expresses the partial association of the syntax of a concept T0
with concept T1.

Colimits are used in the ontology in order to provide greater specificity, as
figure 3.9 shows. The dual of colimits, limits, provide the opposite direction,
that of abstraction. But so far, only syntactic properties of theories expressed
in predicate calculus have been tackled. In [13], Healy at al. go further, and in
the second part of the paper, they provide a mathematical semantic model, in
which these theories are grounded to network components. Thus, the syntax
of the geometric theories in the example above is now given in terms of the
architectural structure of neural networks.

A network architecture A, formed of a set of neurons, together with an
array of the connection weight values w of that set, is modeled as the category
NA,w. An object of NA,w is defined by a pair (pi, w), where set pi = 1, 2, ...nk

is the nodes of A and w represents the set of output values for pi connections.
A morphism m : (pi, w)→ (pj , w

′) of NA,w is defined by a set of connection
paths (synapses) between the set of nodes (neurons) and their weight states,
(pi, w), and the nodes (neurons) and their weight states, (pj , w

′).
Functors now transport the invariant structure across the category Con-

cept and the category NA,w, M : Concept → NA,w The main idea is that
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Fig. 3.9 The figure depicts the colimit T2pL of theories T1,T2, and TL. The colimit theory
glues the theories T1 and T2 along their common sub-theory TL. For the dual treatment

of theory abstraction using limits see also [13]

learning can be modeled as a transition between categories. A functor is used
to model the structure-preserving associations between categories. On the
other hand, colimits express the learning of more complex concepts through
the re-use of simpler concepts already represented in the connection weight
memory of a neural network. The categorical approach to concepts it makes
possible to model the declarative semantics of systems, such as neural net-
works, which are distributed over many components.

3.4.4.2 Category theory in semiotics

In [146], Neuman and Nave address two major problems in modeling concept
formation: family resemblance and contextuality, borrowing concepts from
category theory, in particular pushout and its dual, pullback. The formal
theory for concept formation is based on two steps, first there is a bottom-up
process that is modeled as a pushout, and then a top-down process which is
modeled as a pullback.

Let us see, how the authors explain the concept formation of “Dog” in a
child. Sign-mediated concept formation starts in the child when the mother
assigns the same sign to at least two different objects. For example, the
mother may refer to the Great Dane and the Chihuahua as “Dogs”. We can
express this with the following diagram.

Next, a third object, for example, a German Shepherd, is introduced to the
child by the mother. The resulting diagram tells us that a Chihuahua is like
a German Shepherd, and a Great Dane is like German Shepherd. These are
local similarities, but there is an obvious global property, the three objects
are all dogs, can not be inferred directly from the diagram bellow.
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Great Dane

��
Chihuahua // Dog

German Shepherd

��

// Great Dane

��
Chihuahua // Dog

In order to model the global property of family resemblance we need to
define Dog*, which may be constructed trhough the pullback. The dual top
down process is modeled with the following pushout diagram.

Dog∗

""

))%%
Dog

��

// Chihuahua

��
Greatdane // Germanshepherd

The same authors have applied category theory to understand the mech-
anisms of coding that living systems posses, and in particular genetic coding
[14].

This work may be labeled as biosemiotics, which is the field of theoretical
biology that studies the nature of coding and communication of signs, in
living organisms.

The informational approach followed in Neuman’s work, is different from
the engineering approach based on Shannon’s theory. The divorce between
information and meaning, in the engineering view, is clearly expressed in
Shannon’s words: “Frequently the messages have meaning; that is they refer
to or are correlated according to some system with certain physical or con-
ceptual entities. These semantic aspects of communication are irrelevant to
the engineering problem [147]”.

For Neuman, biological systems are not information-processing systems
but “meaning-making systems”. Neuman defines meaning as “the effect that
is produced via semiosis through interaction between at least two parties”.
This approach is sympathetic with the view defended in this thesis in chapter
7, that states that brain coding is of form and meaning.

One of the dogmas in biology avows that the flow of information is only
one way: from DNA to RNA to protein. However, we know today that the
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dogma is not entirely true. It has been found a “reverse transcription” flow of
information, from RNA to DNA, that could be at the basis of the mechanism
by which, for example, RNA tumor viruses infect normal cells and turn them
into cancer cells.

In addition, it has been hypothesized [148], that under certain experimen-
tal conditions, DNA can be translated into protein without the mediation of
RNA.

Fig. 3.10 Information flow in the genetic system as depicted in [14]

The paper produces a mathematical solution using category theory to the
following problem: how systems translate information encapsulated in DNA
into proteins along two different paths: (1) from RNA to DNA; and (2) from
RNA to protein.

The mathematical approach to this problem relies on the concept of iso-
morphism. By the definition of isomorphism given above, we know that a
map f is an isomorphism if there exactly one map g such that h = g ◦ f
where g = h ◦ f−1

For a genetic system, it is possible to establish an isomorphism between
the four DNA bases and the four RNA bases which is represented in figure
3.11 with the arrows f and f−1.

Moreover, the above figure 3.11 allows the authors to reformulate in math-
ematical terms the question of how information flows in the genetic system.
In this view, the DNA does not contain information, in the sense given by
Shannon, rather it has value. The value is “the effect, mainly the generation
of protein, through the symbolic mediation of RNA, which constrains the
different possible interpretations of the DNA for self-replication”.
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Fig. 3.11 The flow of information from DNA to RNA and protein, is represented with

the arrows f−1 and g. Thus, given the arrows f and h we can detrmine f−1 and g

3.4.4.3 Category theory in cognitive psychology

There are psychological categories, that at first sight, do not have too much
in common with the mathematical categories described in this chapter. In
“To cognize is to categorize revisited: Category theory is where Mathematics
meets Biology [149]”, I briefly sketch the possible parallelism between both
kinds of categories. Let us look at this with more detail now.

On the one hand, a mathematical category is an algebra of mappings
among things that can be composed and where composition is associative.
On the other hand, in psychology, categorization is referred to as the process
by which distinct entities are treated as equivalent. The output of the process
of categorization are categories, which are concepts that we necessarily build
in order to cope with reality.

Within this view, category and concept are assumed to have identical
meaning. Mental concepts or categories are created based on the principle of
similarity: an object falls under a concept if we can determine that the object
is sufficiently similar to the other category members. Thus, an instance i falls
under a concept or category C iff ∀featuref ∈ C, f(i)is true. This theory
of concepts, as categories of similar items, has been predominant in theory
of mind, since the seminal work of Eleonor Rosch [150], [151]. For a detailed
description of this view and its criticisms see [152].

William C. Hoffman[136], shows that the basic structure is the same for
both kinds of categories. He establishes a correspondence between psycholog-
ical and mathematical categories, based on equivalence. Such an association
allows us to set the basis for a mathematical investigation of cognition, per-
ception and emotion, which are the fundamental components for conscious-
ness. The mathematical theory of categories, makes available tools for the
deduction of hypothesis for structure and function in neuropsychology. The
intrinsic categorical nature of the mind is clearly stated in this quote:
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the computation involved in basic human affairs is primarily topological or cate-

gorical rather than computational in the traditional computer-science sense of that
term. Every percept is a geometric object in the mathematical sense. And concepts

and emotions, to be sufficiently general, must be categorical.

Hoffman uses the category of sets Set and the category of topological
spaces Top, the former models “trains of thought” and the latter is able to
cope with percepts, concepts and emotions that occupy the mind.

Philips et al. [137], use category theory to show that, human inferential
abilities like transitive inference and class inclusion, involve the dual category
theory concepts, product and coproduct respectively. Children around five
years of age develop what is called Transitive Inference which is for example,
given that Bertrand is taller than Ludwig, and Ludwig is taller than John,
one may infer that Bertrand is also taller than John. Class inclusion develops
later in children and consists of the ability to discern between the cardinality
of classes and subclasses, for example there are more animals than cows.

Category theory shows that these abilities can be formally connected.
Transitive inference can be modeled with product, and Class inclusion with
its dual, coproduct. This fact would explain that these two reasoning abilities
have “similar profiles of development”, because they involve related sorts of
processes, namely product and coproduct

In a later paper, [153], Philips et al. use category theory to explain sys-
tematicity in human cognition. Systematicity is defined as “the property of
human cognition whereby cognitive capacity comes in groups of related be-
haviours”. In this work, systematicity is perceived as a necessary consequence
of a higher-order theory of cognitive architecture, this would make either the
symbolist and the connectionist approaches inadequate to explain systematic-
ity. While connectionist and symbolist theories are both first-order, category
theory, and in particular adjunctions, allows us to deal with the higher order
structure, which is more appropriate for cognitive functions modeling.

Definition 3.19. An adjunction consists of a pair of functors, F : C → D,
G : D → C, and a natural transformation η : IC → (G ◦ F ), such that for
each C-object X and C-arrow f : X → G(Y ), there is a unique D-arrow
f : F (X)→ Y , such that the following triangle commutes:

X
ηX //

f ##G
GGGGGGGG G(F (X))

G(f)

��
G(Y )

An adjunction is a natural transformation between functors, natural here
means particular realization of the functors. By analogy, systematicity “is
natural in that it does not depend on a particular representational scheme.
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Hence, the explanation does not depend on ad hoc assumptions about internal
representations”.

In their conclusions, the authors suggest that a more integrative theory of
cognitive architecture could be attained by including acquisition of represen-
tations which is not tackled in the paper. Indeed, why an object belongs to
a particular class and not to another is not explained but assumed. Finally,
the incorporation of category theory into the Bayesian theory is stated as a
promising future line of research. Undoubtedly the creation of a category of
Bayesian models will need of ingenious mathematicians.





Chapter 4

Elementary principles in cognitive
systems modeling

This thesis is about thinking, in all its ontological, epistemological and oper-
ational facets. It deals not exclusively with the process of thinking, but also
with conditions which must be created and laws that must be fulfilled, in
order to think about the process of thinking.

Arguably, human cognition may be largely a emergent phenomenon. How
cognitive functions “emerge” from the nested hierarchical architecture of neu-
ral systems, is a question that has been posed with a myriad of approaches.

Concepts that traditionally belong to the philosophy of science like emer-
gence, reductionism or principle, have started to receive some attention from
researchers in complex systems.

4.1 Introduction

In this chapter I propose a framework for modeling in cognitive science. The
brain (and mind) is a ultra complex system, we can not expect to find the
definitive model that encompasses the countless factor that mediates in men-
tal processes such as like language, memory or perception.

Section 4.2 explores the concept of reductionism. I will define reduction-
ism and I will show that, for the purpose of modeling complex systems, the
reductionist approach can only give us a fragmentary picture of the system.
Section 4.3 discusses formalisation and its limitations.

Emergence is introduced in section 4.4, this concept is explored in a rigor-
ous way, trying to provide a formal description of emergent properties within
a context relevant for cognitive scientists. Section 4.5, describes three princi-
ples for modeling in cognitive systems -i.e: locality, hierarchy and multiplicity.

Well known problems on modeling in cognitive and brain system, for exam-
ple frame problem or degeneracy problem, are shown here as inherent aspects
of laws or principles that certain systems hold, and need to be formulated
before to the modeling act.

63
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It ought to be remarked that in this chapter, modeling is not seen as
quantitative prediction data, that kind of models were described in chapter
2. Here, I present a survey of modeling in a more basic or fundamental way.
Modelers should not be satisfied to merely demonstrate a fit to data, the goal
of modeling is to increase our understanding of systems [154].

4.2 On reductionism

Reductionism is a term that has gained considerable bad press within cer-
tain cultural milieu. However, reductionism can be seen as just another -ism,
carried out by the reductionists, who study complex phenomena by over sim-
plifying them.

There is a well-known fear of reductionism in the social sciences. Admit-
tedly, reductionist statements ornamented with some obscure mathematical
terminology by some, has served to brutalize social reality, and minimize
environmental influences for the most self-serving reasons.

As an example of this, there is a very colourful dispute, published in the
journal Mathematical Intelligencer, between the mathematician and number
theorist, Neal Noblitz and Herbert Simon, Nobel prize in Economy[155]. At
the origin of the argument was the politologist and Simon’s friend, Samuel P.
Huntington, the same that wrote later on, in 1993, The Clash of Civilizations,
an essay that was very influential in G.W. Bush’s State Department.

In his 1968 article [156], Hungtinton’s collateral effects only caused the
irritation of some sensitive readers with mathematical background.

Hungtinton defined the following equations in order to support his conclu-
sions about the impact of modernization in developing nations:

SM

ED
= SF,

SF

MO
= PP,

PP

PT
= PI

where SM is social mobilization, ED is economic development, SF is social
frustration, MO is mobility opportunities, PP is political participation, PT
is political institutionalization and PI is political instability.

The problem is that Huntington never formally defined what the variables
used in those formulae, social mobilization, political instability, exactly mean.
He neither provided the reader elementary facts like the units in which the
variables must be measured or their range of possible values.

Hungtinton’s conclusions, supported by trivial and badly formulated math-
ematics, lead to surprising consequences. For example, Philippines was a “sta-
ble” country and France was not, or South Africa, during the Apartheid was
a “satisfied society” [157]. If we acknowledge the big mismatch between the
mathematical equations and the social and economical facts that the for-
mulae pretend to explain, the conclusions are not surprising at all, but the
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consequence of bad mathematics. This was pointed out by Neal Koblitz in
”Mathematics as Propaganda” [158].

Despite the evident bad formalisation practised by Huntington, Herbert
Simon came to the politologist’s defense with a paper on ”Some Trivial But
Useful Mathematics”[159]. A vehement exchange continued and other math-
ematicians like Saunders Mac Lane and Serge Latig, joined Koblitz against
Hungtinton’s simplistic reductionism [160].

Reductionism and mathematization, are a danger only when used with
spurious interests and limited knowledge of the mathematical structures that
are introduced in the explanations. Hungtinton’s case is a conspicuous exam-
ple of this; alas it is not an unique case. The psychoanalyst Jacques Lacan,
suggested, and convinced some people with no mathematical background,
that Don Juan was a compact topological space [161].

Having shown “the dangers of reductionism and mathematization in social
sciences’,’ we must not misunderstand them. In social sciences and in cogni-
tive science too, the ambiguous and strictly verbal account of the facts still
prevail.

There seems to be some sort of irrational or pathological fear of reduc-
tionism and mathematization within the realm of social science and cognitive
psychology. The following unattributed quote expresses this superbly

If in the physical sciences, one is able to successfully reduce complex phenomena

to a simple rule or model, one is awarded the Nobel prize, the reward for a similar
attempt in the social sciences is to be pilloried in the New York Review of Books.

With this in mind, we can readily see the necessity of reconfiguring the con-
cepts of reductionism and formalisation on more rigorous ground.

4.2.1 What is reductionism?

A reductionism approach explains a phenomenon C, through a simpler one,
S. It is by that account that reductionism gives reductive explanations. It
might be reminded that there is no understanding without reduction.

In the philosophy of science, to reduce is to express laws and rules of sec-
ondary sciences in terms of primary ones [162], i.e. the secondary science of
Thermodynamics was explained using concepts and laws belonging to New-
tonian mechanics, the primary science.

In mathematical logic, to reduce is considered as equivalent to deduce.
Given a set of premises P we deduce a new statement s, however, s is not
really new because it was already contained in P .

Reductionism can be understood in several ways. For example higher/lower
or partial/total reductionism, both cases will be explored next. Bunge[163]
establishes a differentiation between higher reductionism and lower reduction-
ism. Indeed, the etymology of to reducere is to lead back, and not necessarily
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toward smaller scales. One example of higher reductionism is to state that a
calculator is intelligent because it is fabricated by an intelligent person. An
example of lower reductionism is to explain the intelligence of an animal as
a set of automatic mechanisms.

On this view, emergent phenomena can be more or less complex than the
elements of the substrate that give rise to them[164]. Behaviorism could be
seen as lower reductionism: a complex mental function, -e.g: emotion, may
be reduced to a set of preconfigured states, e.g. the states of an automaton,
which are much simpler than the mental functions.

Both approaches are reductionist, but it is important to note that the
higher reductionism is, epistemologically speaking, more untenable than the
lower one, because it leads to obscure explanations about complex phenom-
ena. In other words, it explains something by means of something else even
more complicated ignoti per ignotum, as in the above example: a calculator
is reduced to something more complex, a person.

The lower reductionism, on the other hand, constitutes the very basis of
the modern science, which roughly consists on the study of any object by
reducing it to its elementary components and properties. A distinction be-
tween total and partial reduction is appropriate at this point. For example,
particle mechanics is deducible from quantum mechanics or solid rigid kine-
matics is deducible from solid rigid dynamics. Of course, the total reducibility
is not always applicable. As an example of this, biology can not be reduced
to physics, but partially reduced. Theories that are totally reducible, are
isomorphic [165].

In short, let Phy and Bio be two theories, and let A a set of assumptions
not included in either Phy or Bio. Then Bio is fully reducible from Phy, iff
Bio follows logically from Phy. Bio is partially reducible from Phy iff Bio
follows logically from Phy ∪A and not from Phy alone.

4.2.2 Two obstacles for reductionism

There are two main problems concerning reductionism. One is of ontologi-
cal nature or what are the elementary components belonging to the complex
studied object? and the other is the epistemic problem or how well the lower
components of a complex object reflects its nature and essential properties?.

These two problems are indeed almost perennial matters in the history
of philosophy and science. Therefore no magic recipe or simplistic formula
can be expected here, rather there is a need for a theory, within a general
framework, where the questions exposed above can be conveniently treated.

In order to understand a complex phenomenon, is by no means always
enough to decompose it in its atomic components. Atomism, as a matter of
fact, subscribes a strong bottom-up causation placed in a temporal framework
where time is unidirectional.
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In complex systems, for example, biological ones, not only the physical fac-
tors have to be considered. Ecological factors are necessary for the obtention
of powerful explanations. Even though the environmental or cultural aspects
are, of course, ultimately sustained in physical causes, such causes could be
inaccessible or irrelevant. Causality is not always exclusively unidirectional,
there is also a downward causal flow. This point was sketched more fully in
chapter 1. We are very close in science to reduce as much as we can, the next
step must be a work on synthesis. A full understanding of complex systems
will come only form integrating the reductionism methodology into a more
all-inclusive approach.

4.3 On formalisation

Descartes’ invention of analytical geometry supposed an astounding concep-
tual revolution. The universal order, with its objects and laws, could be
mapped and studied within the cartesian concept of space.

This happened a long time ago, but this should not make us to take for
granted the dramatic change that supposed the inclusion of algebra in ge-
ometry. The geometric forms, which were thought of, in the pre Descartes
era, as synthetic mental ideas, were now able to be formulated as mappings
in coordinate axis. This paved the way, three centuries later, with the work
of Lobachevski and Bolyai, to non-Euclidean geometry and its application in
quantum physics [166].

Having said this, the cartesian axis seems a very feeble skeleton to sustain
the whole body of the universe laws. In words of David Bohm [167], reality is
a multi-dimensional reality and only under very concrete conditions can be
satisfactorily simplified to three dimensional reality.

Reckoning this as true, it exists the danger to misunderstand ontology
with epistemology, or said plainly, between on the one hand, the things that
populate the world, and on the other the methods to know those things.

The thesis defended here is that formal systems, expressed by means of di-
agrams or equations, can be an extraordinarily efficient and successful mech-
anisms to explain phenomena and represent features of the world. The point
to be retained is that formalisations are methodological tools and not on-
tological simplifications. For example, a map of London is not the same as
the city of London, however, the map is a formal representation of a physical
system, or to put it a different way, there is a homomorphism that preserves
significant aspects of the system that is being modeled and the model itself.
The fact that the map captures the structure existing in the city is evident
in this.

A map has to be simpler than the world it models. Of course, this means
that every so often the map may be wrong, in that case, the mapping is not
homomorphic and the structure is not preserved.
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When we succeed in representing an external object of the real world in
our head; a map, or to be more precise, a homomorphism that preserves
the common structure of both the external object and the mental object has
been established. Using the theory of categories, if we specify the category M
of mental objects and their homomorphisms and the category E of external
objects and their homomorphism, a functor F : M → E constitues a model
of the external world.

Let P a physical system, given by a domain PD and a set of relationships
PR, and let M a mathematical system, given by a domain MD and a set
of relationships MR. A homomorphism h, is a mapping from PD to MD

that preserves the structure in an appropriate way [157]. This psychophysical
homomorphism constitutes a small scale reproduction of the natural laws that
rule the physical world. In the words of Dehaene, “we carry in ourselves a
universe of mental objects whose laws imitate those of physics and geometry”
[168].

When moving from the hard sciences -e.g: physics, to less hard sciences,
e.g: psychology or sociology, the formalist credo does not see as well received
as it is in physics. Needless to say, putting into our daily experience and
intuitive concepts, into formal terms is not an easy task by any means.

However, the formalist endeavor in science -hard or soft ones- is unstop-
pable, and as formal descriptions of the phenomena studied progress, ordi-
nary accounts are abandoned. Clearly, this replacement of the ordinary for
the mathematical-formal is a constant in the books of the history of science.
Quoting R.D. Luce:

and as honest scientists, as far as we disentangle the structure we need to begin to
describe it in formal terms.[169]

Although the fear to reductionism is not totally irrational as it was shown
in 4.2, the unease, or aversion of some cognitive scientists with the formali-
sation of the cognitive sciences is unjustifiable and counterproductive.

To know and be able to formalize the laws and the essential properties that
rule the cosmos does not make it less beautiful. Said in Lee Smolin words

Scholars in social sciences seem to be comfortable with the belief that biology and

natural selection successfully delivered homo sapiens into the upper paleolithic and
then was abandoned to the ministrations of culture [170].

4.3.1 The limitations of formalisation

Next, I sketch six general obstacles to formalisation. In what it follows I
hope to shed some light in a crucial point: formalisation has, not only an
epistemological dimension that can be understood as a method to gain some
knowledge about the world, but also an ontological dimension; formalisation
is an inescapable cognitive activity, intrinsically related to perception.
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4.3.1.1 Definitions in the dictionary are circular

When asked by a child, for example, about the definition of one word, we
easily realize that the very simple questions may require long and complicated
answers.

Let us obviate here all the difficulties rooted in the process of categorisation
of everyday concepts and in its formulation in natural language[152], and
focus in the definitions of the concepts.

The definitions that one finds in the dictionary are sometimes circular and
ambiguous. In natural language, a circular definition is a description of the
meaning of a word that assumes a prior understanding of the term being
defined. For example:

fast -adj. : swift ; quick ; speedy
swift -adj. : fast

Or another comical but realistic example is:
see -verb : See see

The basic component in a dictionary are the lexemes (words) which as it
is shown above, are sometimes ill-defined with circular definitions.

In mathematics is possible to start with more basic concepts than lexemes.
The indecomposable elements in mathematics are objects that can be seen as
elementary particles with a minimal amount of ambiguity in their definition.

The indecomposable elements hold the Indecomposability Principle, es-
tablished by Brouwer that states that the continuum cannot be partitioned
into two nonempty pieces [171].

The idea I am defending is simply to promote the use of formal languages
-e.g: mathematics rather than natural languages -e.g: English, in cognitive
and brain science. A good reason for taking this strand is that the basic
concepts of formal languages are infinitely closer to indecomposability than
natural languages. [172]

It must be emphasized that this approach is radically different than the
language of thought hypothesis (LOT), proposed by the philosopher Jerry
Fodor, that postulates that thought and thinking take place in a mental
language[173].

LOT is linguistically bias, thinking is seen as the product of syntactic
operations defined over representations.

The problem with LOT is that as it focuses exclusively in linguistics, and
obviates other languages like mathematics, which is an extremely efficient
source of new concepts and tools to understand reality (thought included).

4.3.1.2 Obstacles to formalisation: The plurality of definitions

Formal logic definitions are not always enough to fully describe a mathemat-
ical concept, indeed in the textbooks of mathematics, the definitions of new
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concepts are self-included in definitions, but they usually need of lemmas and
examples in order to be properly defined.

It ought to be noted that in mathematics, unique definitions for mathe-
matical concepts do not exist, not even for those as important as function or
structure. This is because these are concepts used in several areas of math-
ematics, in many different ways, so no single definition of function has been
universally adopted. For example, the concept of morphism which recurs in
much of contemporary mathematics and in particular in this thesis, has differ-
ent denotations. For example, in set theory, morphisms are functions; in linear
algebra, linear transformations; in group theory, group homomorphisms; and
in topology, continuous functions.

This lack of unity in the definition, even for some of the most fundamental
concepts, ought not to drive us to wrong conclusions about the useless or
impossibility of the formal program.

Au contraire, the obtention of formal definitions provides a common setting
where everyone knows what the others are intended to say, even if restricted
to some particular domain situation or context.

4.3.1.3 Obstacles to formalisation: The sensitive coding

Another problem alleged against formalisation is the sensitive coding (we use
the term coding borrowed from informatics as equivalent to formalisation).

Obviously, when encoding any process or set of data, some relevant part of
information can be lost. This occurs because the encoding does not capture
the invariance of the object that is being coded, in consequence the structure
is not preserved through the codification process.

The coding process can be seen as a morphism, in order to capture the
invariance, such morphism should be an isomorphism.

4.3.1.4 Obstacles to formalisation: The Gödel’s incompleteness
theorem

The first and second Gödel’s incompleteness theorems are used for some
scholars as the kill all argument against formalisation[174].

Gödel’s first incompleteness theorem says that any axiomatisable theory
that is adequate for arithmetic is incomplete. This implies that any attempt
to capture some arithmetical aspect of the world using a formal system, will
not be able to prove all the truths about that aspect of the world. In the
same vein, Skolem’s paradox shows that no formal axiomatised system can
capture our intuitive notion of set.

This is far from surprising, especially if we are aware of the simple fact that
the formal systems that we generally construct cannot completely capture the
aspect of reality that they describe. This is analogous to the incompleteness
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of arithmetic, since our formal axiomatisation of arithmetic cannot capture
everything about the mathematical system itself.

One main lesson to get from Gödel’s incompleteness theorem 1 is that the
foundational relation of maths to mathematical logic is ill-founded. Indeed, in
order to verify the correctness of a theory T , it is necessary to build a stronger
theory T ′. This leads to an infinite regression because the completeness of T
needs of T ′ ⊃ T which needs of T ′′ ⊃ T ′ and so on. The Gödel’s theorem
demonstrates the impossibility of establishing the non contradiction of arith-
metic solely by methods borrowed from arithmetic or weaker theories[175].

The Gödel’s deadlock means that every time we build a formal system, in
order to test its completeness, one stronger formal system has to be addition-
ally built. As there is not a finite method to guarantee the completeness of
any formal system, the gap between formalisation of a system and the system
itself seems abyssal.

But this is not any impediment at all. In both Set Theory and in Com-
puter Programming textbooks, formal definitions abound, that exemplify this
infinite regression. The axioms of Peano for the natural numbers is a good
example of what we are saying, the set of natural number N is such that
satisfies:

1 ∈ N
@n : succ(n) = 1
∀n ∈ N : succ(n) ∈ N

(4.1)

The formal definition of the natural numbers, one of the most basic struc-
tures, is recursively defined.

In addition, it is worth noting that the concept of formalism proposed
in this thesis, is wider and more general than the that used in the logical
tradition that focuses on formal consistency and completeness, which are
purely syntactic concepts.

Formalisation can be seen as the cognitive process that necessarily medi-
ates in the grasping of the regularities existing in the world; and formalism as
the output of such process, bringing together the mathematical entities, that
reflect the structural invariance between the real system and its formalisation.

1 First Incompleteness Theorem: Any adequate axiomatizable theory is incomplete. In par-

ticular the sentence ”This sentence is not provable” is true but not provable in the theory.
Second Incompleteness Theorem: In any consistent axiomatizable theory (axiomatizable

means the axioms can be computably generated) which can encode sequences of numbers

(and thus the syntactic notions of ”formula”, ”sentence”, ”proof”) the consistency of the
system is not provable in the system.
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4.3.1.5 Obstacles to formalisation: Formalisation as opposed to
intuition

It is necessary to abandon the platonic idea of mathematical forms and theo-
ries as an extramundus thing. Gödel himself is a champion of the Platonism
in mathematics, not in geometry, which he conceives as physically grounded
in the world, but with Set theory. The objects of Set theory, are Platonic
Forms because they are non-physical yet objective. Due to the intuition fac-
ulty, it is possible to perceive truths about these objects with which we have
no physical interaction.[176]

Let us for a moment assume Gödel’s platonism credo for set theory. The
Platonic Forms, to which we have access only through intuition, are commit-
ted to the law or order that we perceive in nature, it follows then that those
intuitions must be governed by rules as well. Both intuition and set-theoretic
objects, are mutually constrained by the morphological laws or legality using
Jean Petitot’s notation. [177]

It is vulgarly assumed that intuition covers all that is not formalised. At
this point is convenient to shed new light on the concept of intuition. Intuiton
and formalisation are not on opposing sides, rather intuition is at the core
of formalisation, intuition naturally converges into formalisation. There is a
tendency to understand formalisation as a process that progressively limits
the field of the intuition which we can define as that that is not (yet) formal-
ized. This is a dangerous myth that must be debunked. First, even in the case
that formalisation was une chôse pour des elites, this elite should be listened
to, at least, as much as those lacking the skills that the formalists posses.
Second, there is no such a thing as unstructured cognitive state. Any mental
content, in order to be attainted, needs of the intermediation of perceptual
schemas (forms) that configures the agent’s perception.

Mistakenly, formalisation is seen as a prerogative of a small elite com-
posed by those that find themselves comfortable in mathematical and logical
arena in opposition to intuition, which as a natural gift that everyone has,
no pedigree nor skills are required. It might be remarked here, that all expla-
nations or descriptions, are rooted in some context or theory. The definition
of any object makes sense, only as far as is related to a theory, which must
be formalised (mathematised) to be operational.

The cognitive agent is always mapping the outer repeating patterns into
its own inner structures. However artificial it may seem, formalisation resides
naturally and primitively in the cognitive agent, formalisation supersedes
intuition. The world out there, is nomologically (legally in Petitot’s terms)
organised, and the only option for us, as cognitive agents, is to interact with
it.
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4.3.1.6 Natural thought is circular and equations are linear

Formal scientific explanations propose, contrarily to ordinary ones, are gen-
eral and perfectible models.

Linearity of natural language and proof theory in logics is confronted
with structural circularity. Through effective construction of ”ideas”, ”signs”,
”percepts”. . . the cognizer can open the door of the universe. Mathematics
or any other formalism, becomes relevant to science when the scientist is
able to disentangle the structure in the observed phenomena. The symbols
that the formalism is made of, are necessary to keep track of those struc-
tures captured in the scientist’s head. The scientific study of cognition will,
of necessity, require a formal language able to seize and to express, in an
systemic and comprehensible way, the structural invariance residing in the
phenomenon of cognition.

The words of the father of cybernetics will put an end to this section.

“power to operate with temporary emotional symbols and to organize out of them

a semipermanent, recallable language. If one is not able to do this, one is likely to
find that his ideas evaporate from the sheer difficulty of preserving them in an as

yet unformulated shape.” [178]

Form F(S)Stucture E(S)

System S

The formalisation of the system
captures its structure

The structure of the system is prior
 to its formalisation

Fig. 4.1 The structure is prior to its formal and the formalisation captures the structure

of the system

4.4 Emergence on Systems Modeling

The modeling cycle in science, necessarily begins with a reductionist ap-
proach, creating the simplest possible model. The modeling process generates
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an understanding of the underlying structures, as components are represented
with mathematical structures. The minimal model then grows in complex-
ity, phenomenological descriptions can not be captured by hypothesis that
solely rely on the components’ properties. The informal notion of “complex-
ity” has a number of approaches and definitions. For example, Kolmogorov
complexity for one object, is the amount of information required to describe
the object.

Here we are interested in organizational complexity. The organizational
complexity, in order to be studied, needs a scale hierarchy representation
of the system. In this view, a larger scale system may impose boundary
conditions upon the faster dynamics of lower scale systems[179],[180].

Emergence may be seen as a manifestation of complexity. However, emer-
gent property do not necessarily necessarily arise in complex systems. There
are many examples of emergent phenomena, some of the most common are
transitions between solid, liquid and gaseous states, honeycombs, life, mar-
kets, economies, cities. . . . Interestingly, in the Wikipedia, intelligence is in-
cluded as an emergent phenomenon.

As this thesis is about cognition, we will explore the connection between
emergency and complexity. The mind can be studied as an emergent phe-
nomenon that arise, in last term, from purely physical processes that occur
in the brain, which is a system with a tremendous organizational complexity.

4.4.1 A few notes on complex systems

In order to be effective in complex system modeling, we can not rely on
disquisitions about how complex a system is by setting up which properties
are global and which are local. The main problem with this procedure is that
it assumes three things that we can not take for granted,

• the components of the system have clear cut borders
• the frontier between the system and the environment is a clear cut border
• the properties of the system are always observable and measurable

Perhaps for a better understanding of complex systems, we must outline
the work of scholars -e.g: System theorists, who use system as a major theo-
retical construction in their explanations.

Ludwig von Bertalanffy, father of general systems theory, defines a system
as a “set of elements standing in interrelations”. In this view, Mario Bunge,
has accomplished a colossal work, writing a veritable opera magna in eight
volumes that goes from Ontology to Sociology.[165]

Bunge, leaded a formidable project2 called Exact Metaphysics. In essence,
Bunge is a systemist, the motto “everything in the universe is a system or a

2 This project has not been completely abandoned. Indeed the Society for the exact phi-

losophy organises every year a congress
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part of a system” and “every system has global properties that its components
lack”, has been formally defined in Bunge’s work with some recent variations
and adjustments as we will see next.

Given a system S, a model of the system, m(S), can be expressed as
follows:

m(S) =< C(S), E(S), S(S) > (4.2)

, where C(S) is the set of components of system S, E(S) is the set of com-
ponents of the environment relevant for S, that is to say, items that act on
or upon items of C(S), and S(s) is the structure of system S, which is the
collection of relationships between the parts of C(S) and between C(s) and
E(s).

Moreover, S(S) = SI(S)USE(S), where SI(S) or endomorph structure,
represents the internal structure of system S, and SE(S) or exomorph struc-
ture which is the structure done by the relationships between internal items
in C(S) and their relevant neighbors in E(S).

In 2003, Bunge[164] included the mechanismM(S) to the model, resulting:

m(S) =< C(S), E(S), S(S),M(S) > (4.3)

However, this does not resolve one of the main objections of this model:
the distinction between the system and the environment is too clear cut.

It is well known that one of the main features of a complex system are
the indeterminate nature of its boundaries. The decision about where the
system finishes and where the environment begins, is ultimately made by the
observer which is not included in the model.

Nils Baas has developed a model that deals with emergent properties in
complex system including the observer[181]. The definition of emergence rests
on the existence of an observer with its own observational mechanisms. Thus,
one property is emergent when it cannot be observed in one system S1 but
it may be positively observed in the resulting system S2, which is the new
structure generated through the interactions of the components inside S1.

Then,
S2 = R(S1, Obs

1, Int1) (4.4)

where S1 is the initial system, Obs1 are the observational mechanisms and
Int1 are the interactions between neighbor components of S1.

Therefore p is an emergent property iff can be observed in S2 and not in
S1.

On the other hand, the inclusion of the observer in the model is problem-
atic, because it may lead to infertile disputes(at least in the purely mathemat-
ical and scientific arena) , for example the realism/anti-realism in analytic
philosophy.

The realists subscribe the existence of a world of objects independent of
anyone’s linguistic practices or conceptual schemes. On the other hand, anti-
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realism, states the predominance of the language over the thought and of the
thought over the reality [182].

According to anti-realism, it is useless to try to answer whether one sen-
tence is true or false and this is because in actual fact, the realist and the
anti-realist support rival systems of logic.

Dummett, an anti-realist, suggests that a definitive resolution of such
metaphysical debates can be obtained only if we give predominance to the
language. Consequently, the confrontation between realists and anti-realists
vanishes, because each opponent would be concerned with a particular type
of language - so one might be an anti-realist about arithmetic but a realist
about the past [183].

To sum up, the inclusion of the observer, poses some metaphysical com-
plications which it would be preferable to avoid.

At this point, before we proceed deeper in the analyses of emergence, it is
worth remarking that there are no properties per se, but properties possessed
by objects, the same goes for processes, the object undergoes the process; ergo
no process nor property without its object [165].

4.4.2 A few notes on emergent properties

The principal source, at less at philosophical level, in the study of the phe-
nomenon of emergence, is that of the confrontation among atomism and
holism.

The common attitude toward atomism reflects a misleading conception:
atomicity is not a property that an object possesses, rather is a model or
category good at describing objects at some particular scale.

On the other hand, holism is usually referred by the motto “the whole is
more than the parts”. Holism states that in a given system, there are prop-
erties of the system that cannot be determined or explained by the system’s
components alone. In this view, the properties of a system as a whole that
can not be found in any of its individual components are called emergent
properties. [184]

For example, the GNP of a country, is an emergent property: it is possessed
by the whole ensemble of citizens and not by any single individual.

In this account, the moral can be drawn easily: holism is better placed in
the biological and social sciences because can deal with the phenomenon of
emergence.

It is necessary to clarify two points here. One is that emergence is an
universal phenomenon, present in a number of systems, therefore, it is simply
a bad idea to study it with esoteric mereologies or as a mysterious phenomena
that requires even more inexplicable assumptions.

The other point is that it is possible to analyse emergence with rigour and
precision using mathematical tools. More generally, when definitions or ex-
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planatory theories of complex systems are required, purely verbal approaches
are in most cases unconvincing.

For example, the system composed by two atoms of Hydrogen and one
atom of Oxygen have properties that lack the same single atom of Oxygen.
Contrarily to properties such as the melting point, weight or density which
are present in either the molecule of water and in the Hydrogen and Oxygen,
there are other properties, like for example, viscosity, that only acquire sense
when are used in the molecule of water and not in its individual components.

The natural numbers have properties like closing under operations -e.g:
the sum of two natural number is another different natural, that are missed
in one single component taken separately, for example the number 67. To call
to those properties emergent or just systemic properties is from my point of
view, just a matter of choice.

Once the idea of emergence as a hidden or mysterious phenomenon has
been rejected, there is no objection to define that concept formally. Given a
system S, a subsystem si of S is emergent iff si possesses some property that
is uniquely possessed by the subsystem si inside the system S.

Formally,

S =
n⋃

i=1

si,∃p|p ∈ si ∧ p ∈ sjj 6= i (4.5)

Since the properties are not floating in limbo, a property is always a prop-
erty of some material thing, we say that the system si is an emergent system.

It has been shown above, a model m(S) for any system S. It ought be
remarked that this model, relies on the analysis of the system S to identify
its components C(S), the environment E(S) and the S(S). The underlying
idea is called ontological reductionism. In plain English, everything that exists
is made of a small number of basic substances that behave in regular ways.

One important point that we can glean form the above remarks is that in
order to build a model m(S) of a given system S, first we have to identify
the objects that compound the system, C(s), then the objects that are not
the system but affect or are affected by the system E(s), and at last the
relationships between the objects configure the structure of the system S(s).

Once all its components and their relationships have been dissected, the
study of the properties of the system rests just a matter of observation and
measuring. But when we turn back to the subject of complex systems, that
is to say, systems with emergent or systemic properties, we quickly encounter
problems.

For example, if one builds the model above of a system like for example a
tissue in a biological organism, it arises problems as well as questions that, I
am afraid, our model has no answer to say.

First, the model requires a complete enumeration for both all the cells
belonging to the tissue and all the cells that do not belong to the tissue,
which act upon cells of the tissue.
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Second, for every cellular component one needs to account for all its neigh-
bors and the relationships between them.

Third, it is also required to describe all processes going on or upon all
this plethora of cells. In addition to this, the tissue, of course, is a not a
static object but inherently dynamic; certainly it is continuously suffering
transformations. To be specific, cells undergo processes like dying, growing,
moving or duplicating, so the components of the tissue may have changed in
two different instants of time.

Clearly, system modelling is a primary tool for the study of the structure
of a system. However, this is conditional on the requirement that the system
is disclosed in its components and in the relationships between them. The
structure can not be comprehended as a predefined set of pairs between
components, because those components and the relationships between them,
are not fixed but changing with the time.

I want to oppose this view with that of structure as the relevant organi-
sation of a system that is invariant under transformations (homomorphism).
This argument will be introduced in the next chapter 5. The consequence of
the idea explained above is that we must shift the focus from the objects of a
system, to the relationships between the objects that remain invariant under
transformation.

This paves the way to study emergence focusing on the structure of the
things, and not in their properties. The strategy drawn next falls under the
rubric of epistemological reducibility.

4.5 Three Principles for Cognitive Systems modelling

In our exploration of the phenomenon of emergence, I establish three princi-
ples that may be taken into account for modeling in complex and cognitive
systems.

4.5.1 Principle of Locality
4.5.2 Principle of Hierarchy
4.5.3 Principle of Multiplicity

This section attempts to relate emergence and other properties of cognitive
systems like degeneracy, to three basic principles, namely locality, hierarchy
and multiplicity. Establish this connection is an attempt to gain a better
understanding in the design principles in cognitive systems, that may be
also of help for scholars that build artificial systems equipped with cognitive
abilities.
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4.5.1 Principle of Locality

The Frame Problem refers to the difficulties found when trying to obtain a
formal representation for a changing world. The world is inherently dynamic
and in continuous change, but this does not mean that every action modifies
all the possible states of the world. Indeed, there are persistent states as well
as, morphisms between states. The interesting point here is to settle which
morphism are homomorphisms or invariant under transformation.

It is thus required that we figure out which states of the system are per-
sistent and which are not, that is, a set of frame axioms.

For example, if when driving my car and I change the gear, as a con-
sequence of this action, the torque in the car’s engine will be drastically
modified, but of course, the color or the number of doors of the car will
not(because they are a persistent state). Thus, the event of changing the
gear is structure preserving.

Common sense theories have flourished in Research centers and Universi-
ties in the last 15 years, unsurprisingly the most active programs are around
laboratories like the MIT, leaded by Marvin Minsky, the main referenced
scholar in the vast literature of the frame problem 3. Common sense theo-
ries are claimed as necessary because they could help in solving the frame
problem [185].

Contrarily to this, the thesis defended here is that the non utilisation of
the principle of locality, reveals with clarity, the weakness of the habitual
tactics based on logics or in common sense theories.

Here, no solution for the frame problem, neither the development of a
new logic to handle it is suggested, instead I will highlight the cause of such
problem, which is locality. Without assuming locality principle, complexity
is unmanageable.

The theories described in the books of physics are local in space and time,
relating close spatial points and time instants, the distances between points
and instants are ideally infinitesimal.

As I am proposing a general principle that must serve as a foundation for
the modeling of cognitive systems, locality can not be understood exclusively
in terms of physical distances.

Locality conveys direct links, also called arrows or morphisms. One link
fixes a relation between two things, the links can be simple or composed, the
former defines a direct relation and the composed link is a composition of
two or more direct links.

For example, in the below graph, the arrows l1 and l2 define local relations
between two nodes.
3 There is some controversy about the paternity of the Frame Theory which is disputed

between Minsky, Jerry Feldman and others. However the origins of the frame problem is

in Hume’s Problem of Induction.
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•
l1 // •

l2 // •

The composition l1 ◦ l2 is depicted in the upper arrow in the graph below,
which represents a global property of the graph because it encompasses the
two local relations l1 and l2.

•
l1 // •

l2 // •
((

As it is pointed out in [186], Evolution may be alternatively thought of
and analyzed as a composition of local procedures. The same metaphor could
have inspired William James when defined consciousness as a continuous
stream of thought. In this vein, human consciousness could be explained as
the composition of local thought processes, leading to global loops of processes
of processes, that result in a higher-order stream of consciousness.

Dealing with local to global properties is one of the most critical problems
of today’s science. It is far from obvious what algebraic structure will be
useful to obtain precise local-to-global results.

Category theory provides the notion of colimit which can be used to deal
with local to global properties. It might be noted that colimits do not nec-
essarily exist in all categories. A colimit in a category can be seen as the
binding agent in for example a neural architecture, the colimit captures the
emergence of strictly increasing complexity.

4.5.2 Principle of Hierarchy

The Principle of Hierarchy (PH) circumvents the realist/non-realist ontolog-
ical disquisitions about the structure of the world seen above, in section 4.4
(the same goes for the subjective/objective dispute).

PH establishes that nature is organized in levels, and a level is a collec-
tion of things with specific properties in common. Levels are not empirically
observable things existing in nature, but mathematical abstractions, or sets
of objects that share some properties.

Following the principle of hierarchy, we can add the level l to the model
shown in 4.4, resulting:

m(S)l =< C(S)l, E(S)l, S(S)l,M(S)l > (4.6)

, where the level l, expresses a set of objects that share some properties.
Emergence is a systemic property, that is to say, it is a global property

that can not to be found in the particular components of the system. The
reason to include emergent properties is twofold:
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i the property does not exist in any of the parts of the system;
ii systems have different levels of description, therefore some properties or

others are “visible” depending on which level we are observing the system.

– li: is the level of things at level i (they share a set of properties)
– li+1: is the level of things at level i+ 1 (they share a set of properties)

We say that the level li+1 supersedes or is superior to the level li iff all the
objects in li+1 are composed of objects of li.

For example, the level of the molecules of Hydrogen, li, is composed of
objects belonging to the level of atoms of Hydrogen, li−1; then li > li−1 or li
supersedes li−1.

One example of a level that supersedes more than one level, is the level of
the graphs, for example lg, which are composed of elements from the level of
nodes,lg−1 and form the level of edges,lg−2; then lg > lg − 1 > lg−2.

We can now try to define emergence formally: one object,Ω, composed of
objects from levels, l1 to Ln, is emergent when has at least one emergent
property, and rho is an emergent property iff ρ is presented at the i level and
not in any of the precedent levels, 1 to n-1.
¬(Ω1..i−1,ρ) ∧Ω1..i−1,ρ

A1 A3

A2

K

Diagram D

Fig. 4.2 A colimit K for the base diagram D. For the sake of clarity in the figure the
diagram D has three objects Aii = 1..3. The colimit shows that high level interactions .i.e:

the colimit K, may arise without being directly induced from lower levels i.e: the diagram
D

We can represent the configuration of a hierarchical system using the defi-
nition of hierarchical category as introduced by Ehresmann and Vanbremeer-
sch in [12].

Definition 4.1. In a hierarchical category K, its objects can be partitioned
into a finite sequence of levels, so that any object O in the level n is the
colimit of at least one pattern P which is composed of objects that belong to
level n− 1 or lower.

Objects in a hierarchical category can receive and send information from
objetcs at the same level, but also at lower and higher levels, that is to say, for
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any two objects O1 and O2 in the category K, there is no particular constrain
in the domain and the codomain in the set of all morphisms Mor(O1, O2).

4.5.3 Principle of Multiplicity

There is a commonplace statement that says that evolution leads to optimal
systems. Such an assumption has been conveniently deflated and lay to rest in
biological studies [15] and economic ones as well [187]. Accordingly, humans
should not be delusional in thinking that we are optimal in our properties.

Evolution is not any guarantee for optimality and neither for progress.
In a system that undergoes an evolutive process it is not true that there is
always an increase of complexity, as a matter of fact, evolution can lead to
simplicity if parsimony is of value.

However, complexity is a extremely relevant feature in today’s science. In
the words of Edward O. Wilson

the greatest challenge today, not just in cell biology and ecology but in all of science,

is the accurate and complete description of complex systems. Scientists have broken

down many kinds of systems. They think they know most of the elements and forces.
The next task is to reassemble them, at least in mathematical models that capture

the key properties of the entire ensembles[188].

In [189], it is conjectured that a direct relationship exists between complex-
ity and degeneracy, anyhow the authors do not provide any formal theory of
such hypothetical dependency. Degeneracy is defined by Edelman and Gally
in [15] as “the ability of elements that are structurally different to perform
the same function or yield the same output”. The capacity for the biological
systems to degenerate is capital in the process of natural selection.

Degeneracy, if not an ubiquitous biological property, it is undoubtedly a
property that exists at very different levels, from the genetic to the behavioral,
passing by the cellular. And not only in biological systems if we follow the
definition given by Edelman and Gally.

It is perfectly possible and indeed habitual, to find in nature different
objects with differences in their composition that carry out the same function;
in other words, objects with disparate composition have identical behavioral
or functional manifestations.

It might be interesting to note that if we use the above definition, the
manipulator arm shown in figure 4.3 is degenerate, because for two different
configurations of the robot -the elbow above and the elbow below-, the end-
effector reaches the same location A, as is depicted in the figure.

Ehresmann and Vanbremeersch in [12] introduce the multiplicity princi-
ple, which aims to set a mathematical frame to cope with the problem of
degeneracy.

We can find a historical parallelism with the formulation of the principle
of inertia. The principle of inertia does not impose itself a priori, but it is
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Fig. 4.3 The manipulator arm shown in the figure is an example of degenerate system if

we follow the definition given by Edelman and Tononi in [15]. In robotics we say that the
configuration of the robot is redundant

verified by its consequences, which is that the motion of all material objects
on the universe depend on second order differential equations.

The multiplicity principle can be verified by the empirical observation:
biological species show adaptability and resilience . Concepts like adaptability
or resilience, in order to be usable, it is necessary to establish a way to measure
them. The property of degeneracy is here that measure.

The mathematical theory of categories can help to understand degeneracy
in systems. Ehresmann and Vanbremeersch define multiplicity principle as
follows:

Definition 4.2. A category K satisfies the multiplicity principle if it admits
at least two patterns which are homologous but not connected.

For the formal definition of homologous pattern and related concepts, the
reader can consult chapter 4 of Ehresmann and Vanbremeersch book [12].
Here I will develop their ideas in a more informal way.

In a category K, for two decompositions P and P ′ of the same object C,
such that C is the colimit of P and P ′, then P and P ′ are homologous pattern.
It is important to note that this can occur without any direct link going from
P to P ′ and vice versa, this shows that the colimit is a global property that
can not be seen at the level of the components, as it was already noted above
4.5.1.

On the other hand, if C admits two decompositions that are not connected,
C is a multifold object, and the passage from P to P ′ and vice versa is a
complex switch. We are now equipped to explore the following statement:
“The same function can be accomplish by two different structurally different
components”. This is a critical property in biological systems that can be
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redefined as follows: the patterns that these different components form, have
the same colimit.

In brain studies the problem of selection is related to the above property.
The problem of selection can be stated as follows: 1 how can we determine
which areas are relevant for a cognitive process? and 2 which areas are acti-
vated incidentally when a cognitive process is engaged?

Brain image studies, detect activation of specific regions in the brain, but
we must be prudent with the inference we take from those activations, they
may be, indeed, incidental to the cognitive task used in the experiment. To
claim that an area is involved in a task is very different that the area is
specific to that task[190].

There is an important issue that was not covered above, indeed, how the
patterns arise and can be formulated, has not been tackled here, but will be
fully explored later in this thesis.



Chapter 5

The shift towards structure

Mathematics provides provable knowledge about the real world, and this is
due to the fact that mathematical structures deal better than anything else
with the structure of the world. That is to say, there is a structure preserving
mapping between the mathematical structure that models the world and the
world itself. The main idea is to translate the concept of algebraic structure
into brain studies.

In this chapter we will fully explore the concept of structure, furnishing a
formal definition of structure, and a categorical framework for representation.

5.1 Introduction

Scientists build models and theories that capture, in a more or less accurate
way, the regularity of the world. This is possible because nature is structured.
The Oxford Dictionary of English defines structure as “the arrangement of
and relations between the parts or elements of something complex”.

Structure is a word used in many different contexts and situations, for
example in architecture a structure is a man-made object fixed to a surface
e.g. a building. In social sciences, structure is conceived in a rather abstract
way as a human organisation with some common characteristic or goal, and
in molecular biology, the structure of a cell is its shape or geometric appear-
ance. In natural sciences and in social sciences as well, structure is a core
concept, as a matter of fact, theories, paradigms and whole research agendas
pivot on the concept of structure. There is linguistic structuralism, func-
tional structuralism, structuralism in mathematics and even a structuralist
film theory.

There is, bien sûre, a counter-structuralist program. The post-structuralism
wave, criticizes the social imperialism of structuralism. The post-structuralism
summons the structuralist project, based on the Greek ideal of rationality and
in the systemic method of Descartes, as tyranny of logos [191]. Deconstruc-
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tion is the post-structuralist tool to resist this tyranny, deconstruction would
show us that there is no structure to be understood in any text. In this vein,
it is key to understand Derrida´s theory of repetition. The sign is at the be-
ginning of the text, but one does not understand its meaning independently
of aspects that are not necessarily placed in the reader’s expected “order”.
Along the repetition of the sign appearances, the sign itself is irremediably
changed, therefore there is no beginning.

The post-modernism approach is not exclusive to humanities, for example
ethnomathematics[192] is one possible case of post-modernism in the “hard
sciences”. However, in contrast to the social sciences, in the natural sciences
and mathematics, post-modernism is rather peripheral and too localised to
certain research centers and scholars.

Mathematics is relevant to science because it is able to uncover the struc-
ture of the phenomenon studied by the social or natural scientist, capturing
the patterns and regularities that are hold by the system under study. Theo-
ries of mathematics, such as set theory or category theory, have the resources
for describing a wealth of interrelationships between structures. Mathemat-
ical structures can be modeled themselves as a set of objects with certain
distinguished relations and operations the set.

Using Elaine Landry’s words “the concept of a model and so the concept
of shared structure between models must be formally framed within a single
unified framework, set-theoretic or other [193]”.

5.2 Defining structure

In this section I flesh out the concept of structure and I explain the necessary
link between structure and form. It should be emphasized here that structure
is a not the kind of concept that can be easily defined. For the sake of clarity,
I will begin by explaining what structure is not.

Structure, is not just a 3-dimensional physical construction, like for exam-
ple a civil building, this is a layman’s view of structure. By using mathemat-
ics, we can go deeper into this concept. For example, symmetry and continuity
are structures that can be realised in both physical and non-physical systems.
The symmetric structure in the plot narrative structure in structuralist film
theory, is an example of structure in a non-physical system. Continuity is
a kind of structure that can exist in time as well as space [194]. Later, in
section 5.4.1 this idea of continuity as a kind of structure is exemplified using
the Brouwer’s theorem.

Modern physics studies symmetry by discovering the physical laws that
remain unchanged when the system is viewed from different perspectives or
undergone transformations[195]. In an informal and general way, structure
can be defined as the set of components of a system and their relationships.
Based on this definition, one system has a multitude of possible structures.
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The structure is therefore contingent on the configuration of the system; to
put it in a different way, the structure depends on which parts of the system
are taken into account, and how the relationships between the different parts
are calculated.

But we can not accept this definition as definitive. Indeed, any partition of
a system could be its structure. It is therefore necessary to make a distinction
between relevant and irrelevant structures. The relevant structures are those
that are preserved under transformation. Consequently, the structure must
reflect the invariance through transformations.

The idea is to go beyond the predominant view of structure as a geomet-
rical shape (life sciences) or as a construction permanently fixed to Earth’s
surface (architecture), and translate the mathematical concept of structure
into the arena of the natural sciences, in particular in the cognitive and brain
science. In order to make this point clear, let us explore the habitual view of
structure as a shape. The insufficiency of this approach is rooted in the fact
that the shape of a system, when it has one, usually is a mere appearance; it
lacks of explanatory power about how the shape came to be, or about how it
will evolve in the future.

The physicists do not think in terms of the shape of the proton. Although
the proton overall has a spherical shape, its exact shape dramatically depends
on the momentum transferred to the proton, so if a photon couples to a quark
with spin parallel to the spin of the proton, then the shape is not spherical
but similar to a peanut[196]. The electrons are shapeless particles, we know
it since they were discovered by J.J. Thomson. Obviously, the same goes for
more complex systems like biologival organs, individuals, societies, countries
etc.

The extraordinary diversity of the different organs, makes the view of
organ as a purely morphological concept completely inadequate. The organs
are, for the most part, determined by their forms (shapes) and also by their
inner structure, which lies at the base of their outer shape. The concept of
organ is a pure physiological concept, rather than a morphological one.

Only fractals, like coastlines or snowflakes, have parts, which are similar
in shape to their whole. Perfect fractals, however, are very rare in nature.
In conclusion, the form or external shape of systems can not be utilized as
an universal feature for modeling of systems, complex or not. Unlike energy,
for example, shape is not an universal property. Thus, strategies for system
modeling that exploit the symmetry or similarity of shapes between the whole
system and its parts can not be universal solutions.

Definition 5.1. Structure is the internal organisation of a system.

Proposition 5.1. The operational aspect of structure is given by set of ob-
jects which are invariant under transformations (homomorphism).

This definition of structure will lead naturally to the concept of structured-
system and later, to the category-theoretically framed cat-structure system



88 5 The shift towards structure

that will be developed later. Note that the term cat-structure system that will
be used in chapter is equivalent to the notion of general category, that was
formally defined in chapter 3 .i.e: a two-sorted system, the sorts being called
objects and arrows that fulfill the axioms of associativity in composition and
identity.

But prior to get into the sophisticated debates around the different inter-
pretations of mathematical structure, I will try to be as didactic as possible
and I will serve myself of the bellow allegory in order to hopefully transmit
to the reader the intuition of the concept of structure, which will serve for
the formal treatment of the concept that will follow.

5.2.1 The shepherd’s tale

In a remote land a shepherd lived with his flock of sheep. He never went to
school, so he never learned how to count or knew about the natural numbers,
let alone arithmetics. Though uneducated, the shepherd was a curious man
and wanted to know if he had more or less sheep than his neighbor in the
valley.

At the end of the day when the sheep were back in the cave, he placed
some pebbles that the shepherd collected during the day and matched each
sheep with each pebble. Since then the shepherd could positively know if some
sheep were missing or a new sheep had joined the group. The shepherd had
arranged a mathematical structure. The sheep were now a structured system
whose structure was exemplified by the amount of pebbles. This supposed a
great achievement, the matching of pebbles-sheep represents the cardinality
or number of members in the set of sheep. The first morphism or function
between two structures had been attained.

The shepherd, as it was already said, was very curious, and after having
figured out the structure of the sheep, he went further. Obviously the sheep
were not all the same, our friend knew very well, who was the most lazy, the
one with the darkest skin, the one that always got lost etc. As before, he put
pebbles in the cave where he kept the sheep, but in this occasion each pebble
matched each particular sheep, for example the biggest pebble matched onto
the biggest sheep, the most grained pebble represented the least gregarious
sheep and so on.

Now the shepherd could know, not only if some sheep were missing, but
also which particular sheep, simply by looking at the unmatched pebble.
Therefore, the structured system is now more complex than before, when it
only captured the cardinality of the set of sheep. The structure exemplified by
the pebbles with different aspects, exemplified different physical appearances,
moods . . . of the sheep etc. Notice that this fable works as an anthropological
explanation about how the mathematical structures started to be applied to
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physical systems. It is indeed a narration that tells us the way in which, a
series of past events could happened in the past.

The same fable can have a phenomenological explanation: the cognitive
agent, in our case the shepherd, describes in first person how his mind is
working. Finally, a neurophysiologist will tell us what is going on in the
brain of the shepherd, using tools that measure the brain activity.

From the three levels of explanation, the anthropological, the phenomeno-
logical and the neurophysiological, the last one is the only one that is positive
in the sense that may empirically refute the theoretical hypothesis. The an-
thropological level is not falsifiable. Moreover the phenomenological level is
exclusively verbal and subjective, rather than inter-subjective as modern sci-
ence proceeds.

With the tale above, I hope have made my point clear: for any physical
system, the relations between its components can be encoded into a math-
ematical structure. For example, the structure of a pack of six can of beers
is 6 and the structure of the 12,349 telephone poles that connects Berkeley
with San Bernardino (CA) is 12,349. Obviously 6 and 12,349 are not the
only possible structures of those systems, but undeniably they are admissible
abstract forms of those physical system.

That said, we can not dream that just by matching physical systems with
numbers we can always get some relevant knowledge about the world. As
a matter of fact, physical systems may present non empirically perceivable
patterns and intricate structures that require more complex mathematical
structures than the numbers.

5.3 Categorizing structured systems

As it has been showed though the above allegory, an abstraction e.g. a num-
ber, is a mental construction that makes it possible to talk about objects
without point to them [197]. The abstractions function as a toy model of the
world. In order to interact meaningfully with the world, we impose abstract
forms on it. The abstractions are our interfaces through the world.

The cognitive agent establishes sets of equivalence, or classes between the
systems (things), and the structured systems (abstractions), this is how it
grasps the meaning of the world. It might be emphasized that structures can
not be created from nothing, Ex nihilo nihil fit, there must exist a preexisting
order. Michael J. Katz [198] coined the word templet to refer to the pre-order
that makes the perception and the following abstraction of a physical system
possible.

The templets are the necessary blueprints or natural patterns for percep-
tion. They collect the configurational information that is embodied in the
physical systems. The ontogenesis of the natural patterns, or in other words,
how the pattern of a system, PS came about, are metaphysical questions.
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Metaphysics, as much as other forms of constructing metaphorical worlds,
can not help to represent the state of the natural environment for purposes
of prediction and control; which is the aim of scientific models[199].

It is preferable to try to provide scientific explanations. This thesis sheds
some light on questions like these: Given the pattern PS , How can we obtain
a model or representation of the system S, and What is a structure preserving
form of S?

The inclusion of the formal representation of S in this theory, is graphically
sketched in figure 5.1. Figure 5.1 resembles the schema of levels of reality
proposed by Stanley Salthe {mass {form {organisation}}} in [180]. We must
be prudent in the use of speculative or metaphysical disquisitions about what
a pattern in the physical world is. We should ask which formalism can describe
more accurately the patterns and systems existing in the physical world. In
other words, how good is the mapping that relates physical systems with
mathematical abstractions.

Of course, Nihil novum sub sole, the point I just exposed is indeed nothing
but the core of the scientific explanation which consists of translating world
phenomena into other terms that we know and understand independently of
the phenomena being explained [162].

structure

form

structure

Fig. 5.1 Structure is a kind of form, while form is one possible kind of mass.

5.3.1 General systems theory

Bourbaki mathematical structuralism, assumes an ante rem conception of
structure. The Bourbaki’s interpretation of structure leads to a reification of
structures as entities independently of the things themselves. Thus mathe-
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matical structures are constructed by taking an abstract set and appending
to it an additional constructs [200].

We can see the systems theory (ST) approach as a kind of in re struc-
turalism. In the systems theory discourse, structures are subordinated or
even eliminated in favour of systems. Indeed structure is a shorthand for
talking about systems of objects [201].

The models built by system theorists, rely on the measurability of the
relevant properties of the system, namely the variables of the system. There
are two main complications in the approach of the system theoretician.

Firstly, it is not stated what the real nature of the properties of the system
are, neither which are the most relevant properties. Secondly, the definition
of system in ST is too vague and general. From a philosophical perspective,
there is an ontological positioning that must be seriously tackled: are the
systems real objects existing in the physical world?; or are just conceptual
tools useful to disentangle the components of which the things are made?

A rigorous analysis about whether the systems are ante rem or in re ob-
jects, is somehow missed in the ST literature. For example, in a purely philo-
sophical standpoint, system means model, and objects of a system can be
considered as positions in the model.

ST puts the focus on the components of the system and their properties,
in other words, the system is broken down into its sub-objects, and so that
its properties or attributes can be measured. Based on this idea, the general
system theory states that a complex system is more than a sum of its com-
ponents, because there are properties that are in the system but can not be
found in its components.

Whether or not we want to admit it, the general systems theory (GST) has
more of curiosity in the history of science books, than in a scientific program
that progresses and makes quantifiable contributions. Sadly, GST never had a
major impact in either the scientific or the philosophical context. This is not
the best place to argue about the obliviousness of professional philosophers
and academic scientists with regard to the GST program. For a deeper review
in this topic [202]. However, it ought to be remarked, that despite its flows,
the GST systemic approach and its emergent reductionism, are tenets to
which, this thesis subscribes.

5.3.2 Structured systems

Here, the term system is used equivalent to the term thing, that is, the systems
are the matter of which the physical world is made. Thus, the things of the
world are systems. As the world is nomologically ordered, the systems are
undoubtedly structured. The term structured system is introduced here as an
abstraction of a system, that is to say, models of the things that exist in the
physical world. The structure of a system is the abstract form of a system.
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Any system, when perceived by a cognitive agent, is “naturally” struc-
tured. If the system lacks structure, the problems disappears, not because we
solve it, but because we erase the statement of the problem. A system with-
out any structure at all can not be a system. There are underlying structures
which are present in the physical world, these structures may be common
to mathematical structures and therefore can be formulated in mathemati-
cal language. We must start by mentioning the two main interpretations of
structure in mathematics:

• in re: mathematics is about systems with structure or structured systems,
rather than about structure itself. The shepherd’s allegory is indeed in re
interpretation, the numbers are a shortcut to talk about systems (sheeps)
that exemplify the structure. Thus there is no structure as such but struc-
ture needs to be exemplified in a system.

• ante re: this interpretation assumes that structures exist over and above
systems that exemplify them. Thus, the ante rem interpretation reifies
structures because they exist independently of any given system or ob-
ject, structures are prior in place, in this view, structure is reminiscent to
Platonic forms.

Category theory provides, a in re interpretation of mathematical struc-
turalism, it can be seen as a framework or tool that allows to organise what
we say about structure. It is interesting to compare this categoric approach
with the set-theoretic interpretation of structure, which has been the pre-
dominant view, at least in the period in which Bourbaki school was the most
strong voice in mathematics and very specially in the didactic of mathemat-
ics. For Bourbaki, structure are types of set-structured systems.

Category is not just a new fancy mathematical abstraction that means
the same as set or class, it provides a frame for the study of several struc-
tured systems related in some way. Contrary to set theory, in categories,
the objects do not need to be elements and the arrows do not need to be
functions. Categories are more general than sets and than any other mathe-
matical structure, and using Elaine Landry’s words “is able to organise our
talk about both structures and structures of structures” [203].

Here, I quickly sketch why a category is a structured mathematical system,
and why a set is not. Let two sets A and B in set theory, we say that A and
B are equal, A = B, if and only if they consist of the same elements. Thus,
A = B stands for x ∈ A if and only if x ∈ B. The sets A and B, A = B,
because they have the same elements, Anne, Tom and their dog Fido. Now,
imagine that Anne has developed an allergy to dogs, the sets are still the
same, they still have the same components, but the relations between the
components is not taken into account.

On the other hand, the category K of sets A and B, includes the mapping
between the components. Contrarily to sets which have no structure, category
theory makes explicit the relationships among their components. The evolu-
tion from set-structured system to category-structured systems is explained
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bellow in three steps. A cat-structured system , is a two sorted system, it has
objects and morphisms as defined in the category-theoretic axioms showed
in section 3.

system the things of the world
structured system the abstract form of a system
cat-structured system a family of structured systems

First step, it is possible to define categories using set-structured sets and
morphisms between them. For example, the category of topological spaces
Top can be defined as a category such that its objects are topological spaces
and its morphisms are continuous functions, or the category of vector spaces
Vec, with vector spaces as objects and linear transformations as morphisms.
Once categories have been defined, it naturally arises the question whether
there is possible a category of categories. It is indeed possible to build a cat-
egory where its objects are categories and its arrows are structure-preserving
maps between categories, also called functors.

Second step, now we can start directly, not from set-structured systems but
from the categoric concepts that were built in the previous step like category
and functor. category-structure systems. This is an important step because
it is here where the concept of category-structure system arises. We do not
need to start from set-structured systems in order to build categories, the
structure is unveiled in the patterns of morphisms defined in the category.

The nature of objects and morphisms in the category-structure system are
practically irrelevant, what really counts is the patterns of morphisms in the
category.

The last step establishes the context-principle, by which we can not ask
for the meaning of any mathematical concept in isolation but in the context
of a category.

The axioms of category theory: morphisms compose associativitely, with
identity, provides the means to talk about structured-systems without being
bothered with what the objects of the systems are made of, but focusing
on how morphisms relate to each other. The relationships between the mor-
phisms in a category or between the functors in the category of categories
provides the patterns that allow to analyse the shared structured between
systems.

The axioms for a category provide the context from within which we can
analyze the shared structure of abstract kinds of structured systems in terms
of the morphisms that exist between them [204]. The important point to be
retained here is that it is possible using this perspective to talk about shared
structure of structured systems in terms of types of cat-structured systems. A
category acts as a schema that is used to frame the statements we can make
about the shared structure of systems, in terms of types of cat-structured
systems [205].
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The sections above facilitate a review of the concept of structure and paves
the way for its mathematical formulation. In what follows, we will try to apply
it to solve real-world problems.

5.4 Linking the mathematical structure of the physical
world

It is worth reminding our selves, that the central concept of this thesis is that
of structure. The idea is to provide a framework that deals with objects as
relational components in structured systems, by way of their shared struc-
ture, rather than as clear-cut systems that posses relevant properties to be
measured.

5.4.1 An example of theoretical hypothesis in biological
systems: The Brouwer theorem

In this heading, I exemplify how pure mathematical statements, may stimu-
late the research in areas which are apparently disconnected to the mathe-
matical realm, like spatial representation in the brain, for example.

The Brouwer’s fixed point theorem was originally created for topological
spaces and continuous maps. I begin by giving a formal definition of the fixed
point theorem, next an original use of this theorem is provided, showing
that Brouwer’s theorem may illuminate the place-cell/place-field mapping
problem. The place cells are nerve cells in the brain hippocampus that encode
the location.

Theorem 5.1. Let I be a line segment I = [a, b] and f : I → I a continuous
endomap, then there is a point x0 in I such that is a pixed point f(x0) = x0.

This is the simplest version of Brouwer theorem because the continuous
function f is defined in the one dimensional space I (a line). For a more
general form of the theorem we need to take the mapping f as f : K →
K, where f is a continuous functions from a convex compact subset K of
Euclidean space to itself. An example of K is the disk D in figure 5.2.

Thus, f maps topological spaces, that is, f is necessarily continuous, so a
small change in the domain corresponds with a small change in the co-domain.
Therefore no big leaps are permitted in the function f .

Let us see how to make use of the theorem in the hippocampal place cells.
Two requirements are in order here. First, as f is an endomap, we need
the same category at both sides of the function; and second, f needs to be
continuous.
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•
X 0

Fig. 5.2 Rotating the disk gives a continuous endomap f : D → D. The center of the

disk is the fixed point x0

Let us imagine now the experimental setting. We want to explore how the
place cells in the hippocampus of a real rat, represents the environment in
which it has been placed. To make the experiment easier, the environment
is one dimensional, that is, the rat can move in only one direction like for
example a rail track. Suppose that f represents the mapping between the
place cells and the physical positions in the rail track visited by the rat, as f
is an endomorphism, it takes values in the same space in which it is defined,
f(x) ∈ I for all x, where x is the location of a place cell in the hippocampus.

Hence, if we find a setting in which the assumption above holds, the fixed
point theorem applies, then there is a fixed point.

But in the rat’s brain, such a continuous function f has not been found,
as a matter of fact, close pyramidal neurons in the hippocampus do not
necessarily represent close points in the environment [43].

Thus, as the hypothesis of Brouwer theorem does not hold, f is not con-
tinuous, we can not say anything about the possibility to have fixed points
f(x0) = x0, which is the definition of place cells.

From the analysis of Brouwer’s theorem, we can infer important conse-
quences that are sketched in table below. Note that Brouwer does not directly
apply to the experimental scenario, notwithstanding, through the logical anal-
ysis of the theorem it is possible to make progress in the research of fixed
place cells in the hippocampus.

Brouwer states that

if H (f : I → I is a continuous endomap in interval I) then C (f must have
a fixed point f(x0) = x0)

Logically, if C is true then we can not say anything about the validity of the
hypothesis, H, which can be true or false.

Experimental research is focused on factual data, this is a very fine praxis
as long as the theoretical aspiration to put the data together, in a sound
theoretical body, is not neglected.

For example, given that we have discovered place cells, that is, C is true,
we should try to incorporate this fact into a sound theoretical scheme, for ex-
ample, the Brouwer theorem that allow us to obtain more general knowledge
that can lead the experimental research.
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On the other hand, if H is true then C is necessarily true, then provided
that there is a continuous function, the fixed place cells exist.

If H is not true, then we can not endorse or reject the statement “fixed
place cells exist”.

These three cases are sketched in the table.

H ⇒ C
if ¬C no inference about H
if ¬H C can be true or false
if H C is true

So far, critics would say: to use Brouwer’s theorem is an exotic attempt
that does not reveal any deeper insight about how hippocampal place cells
encode location representation.

This is true, especially if the research is driven by strict experimental anal-
ysis or computational simulation modeling. In the first case, the research’s
aim is to collect data in order to validate or reject hypothesis, and in the
second case, the target is the reconstruction by computational simulation of
biological phenomena.

Experiments with rats in a linear track show that different neurons are
activated when the rat visits the same position, in this light the concept of
place cell needs to be, in the best case, reformulated or even discarded.

On the other hand, computational reconstruction of place cells by neu-
ral networks able to learn physical position, can only hardly provide useful
knowledge far from the particular requirements for which the simulation was
planned.

The idea behind the introduction of the Brouwer theorem here is simple:
rather than corroborate hypothesis or simulate phenomena, the goal of this
approach is to generate new hypothesis. It might be remarked that “correct”
hypothesis, that is to say, theoretical statements that are correct because they
are embedded into a sound theoretical model, are not enough. The hypothesis
must be empirically explored and verified. Only under these two constraints -
theoretically sound and empirically verified- a hypothesis can be called “true”
hypothesis.

5.4.1.1 Practical case: Measuring the activation of pyramidal
neurons in the hippocampus

In this heading, I apply the formal theory of representation to cells in the
hippocampus that are related to the representation of spatial features, like
location, orientation or distance.

The idea is to build a theory for representation that is grounded in em-
pirical data, rather than driven by biased experimentation, that leads to a
posteriori formalisms that fit into the empirical data for which the formalism
was designed.
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It should be emphasized that the research in grid cells will likely be ob-
structed with similar problems that those found in place cells, namely the
lack of a mathematical-theoretical framework for representation and the mis-
conception between measurement and representation. This point will be con-
veniently explored in chapter 8.

Consider now that the observable ψ is measuring the activation of pyra-
midal neurons in the hippocampus. In this scenario what we want to know
is whether the neurons are place cells, that is to say, neurons with a spiking/
firing rate related to the position of the animal.

In this case scenario, if ψ is not continuous, the position of two very close
neurons can result in a big difference in their activations. Then we can not
reduce the granularity by defining a finer topology that makes continuous
ψ, because the basic unit of computation in the brain, and of course in the
hippocampus, is the neuron.

At this point three important conclusions must be pointed out. First, the
state space Θ composed of individual neurons used in experiments for de-
tecting place cells, is unreliable in the mathematical topological framework.
Unsurprisingly, ψ is not a continuous function.

Second, we need to make sure that Θ is a Hausdorff topological space.
That is, given two different points N1, N2 of Θ we must guarantee that it is
possible to find two neighborhoods θ1 ofN1 and θ2 ofN2 that do not intersect,
θ1 ∩ θ2 = ∅. If Θ were not Hausdorff, we would have two distinct states, N1

and N2, that are not distinct at all because we always can find another state
as close as we want to be to both N1 and N2, which is at odds with the idea
of distinct state. The problem with this can be epitomized with the following
interrogation: How can we measure states that are not distinguishable from
each other?

It may thus, be recommendable to have the Hausdorff condition explic-
itly stated in the formal definition of neural spaces, just as many spaces in
mathematical analysis -e.g: topological manifolds, do.

• •
N2N1

Θ 1 Θ 2

Θ

Fig. 5.3 Points N1 and N2 in a topological space Θ can be separated by neighbourhoods if
there exists a neighbourhood Θ1 of N1 and a neighbourhood Θ1 of N2 such that θ1∩θ2 = ∅.
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Third, the working hypothesis in the obtention of place cells is flawed in
the following sense. It is assumed, that from the measurement of the firing
rate of single neurons (the states of the system), it is possible to predicate
the representational power of that neuron. Or, to put it in a different way, to
be able to measure, for a physical position, the firing of one neuron compared
to others, means that a possible representation of that physical place in the
brain, is that precise neuron with larger activity than its neighbors, called
place cell.

But, to measure and to represent are two completely different things. In
fact, trying to discover what the neurons represent by measuring states in a
topological space that could be discontinuous may lead to incongruent results.

Fourth, the mapping f : Θ× t→ Θ tells us in which state the system will
evolve to, after some time t, f(θ, t). This assumes a complete knowledge of
the system. In complex systems such as the hippocampus of a mammal, this
assumption simply can not hold. We need to deal with “inconveniences” like
noise and stochasticity.

To summarize, research focused on place cells, seems to have been put on
hold as a result of the incongruent results, this could have been anticipated
with the theoretical notions sketched above. It is now the grid cells that are
attracting the attention and efforts of neuro physiologists. Without pretend-
ing to forecast anything, the research in grid cells will likely be obstructed
with similar problems than those found in place cells, namely the lack of a
mathematical-theoretical framework for representation and the misconcep-
tion between measurement and representation. The notion sketched above of
cat-structured systems or categories can provide new and powerful explana-
tions to how hippocampal cells mediate in spatial representation, as it will
be seen in chapter 8.



Chapter 6

A general framework for
representation

In this chapter I present a general framework for representation based on
category theory. The idea is to bring a mathematical formalism into the
domain of neural representation of physical spaces, setting the basis for a
theory of mental representation, able to relate empirical findings, uniting
them into a sound theoretical corpus. The theory of representation introduced
in this chapter, will provide a deeper insight into the process of representation.
The major benefit of the application of this theory based on category theory
is that, on the one hand, it may help to discard conjectures that are at
odds with the formal framework. On the other hand, it will facilitate the
integration of different models of representation in the hippocampus into a
durable theoretical framework as I will show in chapters 8 and 9.

The chapter is structure as follows. The first two sections present two par-
ticular modes of representation: denotation and measurement. Section 6.1
investigates the idea of representation as denotation, and in doing so, pro-
vides insight into the concept of representative models. Section 6.2 describes
mathematical representations, such as measurement theory and phase space.
In this section, key terms like theoretical law, observables or measurement
will be scrutinized. Section 6.3 provides a general theory of representation and
sets the basis for the theory of representation based on category theory. This
is fully described in Section 6.5, where a general theory of representation,
based on category theory is introduced. Moreover, examples and applications
of the theory are given in the domain of discourse of the category of metric
spaces and the category of neurons.

6.1 Representation as denotation

We all know that there are symbols; for example icons, pictures or words that
represent things, real or abstract. With the use of symbols we can talk about
objects without having them in sight. The symbols do more than simply
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denote other objects. Let us see why. Representation is ordinarily assumed
to be the same as denotation. For example, the red traffic light represents
stop, or the word “MAN” for an English speaker, means a human male. But
denotation is not the only way to represent. In fact, denotation is a weak
version of representation, anything can denote anything, it is just a matter
of convention, the red in the railway network in the United States can mean
“clear” rather than stop and the word “MAN” can denote a brand of a truck.

I disagree with the philosopher Nelson Goodman who claims that “deno-
tation is the core of representation and is independent of resemblance”[206].
Denotation is far from being the core of representation, indeed denotation
is a non-epistemic representation. A model, m, is an epistemic representa-
tion of a system, T , when the user of th model can perform sound inferences
from the model m that are applicable to the target T . This is also called
surrogative reasoning. For example, while a map of the metro is an epistemic
representation, the logo of the metro is not; the user can make surrogative
inferences from the map to the real network and not with the logo.

In conclusion, denotation is colloquially taken as representation, but in
truth, it is a weak form of representation because it lacks surrogative reason-
ing. In figure 6.1, the drawing is an example of epistemic representation of a
man. A user, by observing the figure can infer properties of the real man rep-
resented by the figure such as the symmetry or the parity of the extremities
in the human body.

Fig. 6.1 We can infere properties -e.g: symmetry in the limbs, from this simple drawing

that may represent a man

This has an important consequence: either denotation and epistemic rep-
resentation define triadic relations and not dyadic, as is usually assumed. A
vehicle e.g. a photograph or a map are representations of a target for a user
or set of users. A symbol is not a representation in itself, but is always a
model for some cognitve agent, in some context. The artist Joseph Kosuth
expresses this idea of representation with his “One and Three Chairs” 6.2.

Figure 6.3 represents the process of perception, how the triadic relation-
ship symbol-concept-referent is produced is sketched next. The referents of
the external world are grasped by the agent. This is because the world is
populated by material things which undergo processes which emit energy to
be captured and encoded by the sensors 6.3(1). The sensory stimuli captured
by the agent are objective and quantifiable. The properties of the perceived
object can be measured, of course, the agent has perceptual limitations about
what can and cannot perceived, based on its sensors and the way they are
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Fig. 6.2 The artist Joseph Kosuth’s famous work “One and Three Chairs”, which a visual

expression of Plato’s forms. The piece features a physical chair, a photograph of that chair,

and the text of a dictionary definition of the word “chair”.

attuned. The patterns are instantiations of concept’s properties for certain
kinds of perceptions 6.3(2) that try to achieve the matching with the encoded
information of the sensor’s channels 6.3(3). When this computation succeeds,
the referent is incorporated to the concept ontology.

In other words, the salient features or properties of the referent are identi-
fied and related to the agent’s ontology of concepts. The conceptual compo-
nent of a sign is depicted 6.3(4). In actual fact, it is an ontology of concepts
which represent things or processes with common properties. According to
this, the ontology of concepts is nomologically related by the relationship
among the properties of the concepts. Due to the lawfulness of the concepts
relations, learning is possible; if the brain lacked this, that is to say, the prop-
erties that belong to the concepts, the perceived item from the external world
could never be classified. There it would be an agent with deficient cognition
and scattered options to survive in a world ruled by laws.

Alternatively, if the agent, as is the case in humans, has a language or
some other sign-denotative system of symbols, the relation between the ex-
ternal referent and the ontology of concepts can be by- passed by a symbol.
The symbol 6.3(5) serves as a vehicle to share concepts within a community
of agents [190]. However, there are others symbols that are not merely de-
notative, rather they permit us to infer, validate and even to create novel
knowledge, we call such symbols, models. How do we know what is and what
is not a model? The search for the essential features that make something
a model seems a futile exercise; as a matter of fact, we make something a
model by determining to use it as such [207].
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concept referent

symbol
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property property property

concept

concept

concept
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concept
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(3)

(4)
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Fig. 6.3 The triadic representation conveys to us a new definition of representation as

the process of construction and relationship of signs within a system of signs.

We may also consider, how good or “representative” a model is. The prac-
tice of science, can be equated to the practice of building models of parts of the
world. Scientific models, provide statements which are empirically refutable,
and able to predict and explain phenomena to a certain degree of accuracy.
It goes without saying that the search of a perfect model of the world is
essentially misguided because the perfect model of the world is the world
itself.

The concept of model is very widely used, so a single definition that pleases
everyone seems unrealistic. However, there is a general agreement in that a
model represents aspects of the world.

In adopting this definition of a model, the problem now is to understand
what representation is, that is to say, in virtue of what a certain model rep-
resents a certain system?[208]. The concept of representation is probably as
elusive as that of a model. The reason is simple, one word can mean many dif-
ferent things. The term model is intended here as those more or less abstract
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descriptions of a system. We say that a model M is adequate for modelling
a real system T , when T can be replaced by S for some purpose. For ex-
ample, having a model of the Golden Gate bridge, permits us to calculate
how many cars can be simultaneously crossing it, without causing any dam-
age to the bridge. Maxwell’s model of electromagnetics, Bohr’s model of the
atom or Watson and Crick’s model of DNA are noted examples of scientific
(representational) models.

But how adequate can models be? It is thought that a good model is one
that predicts the future states of the real system. This argument, apparently
sound, fails when we realize that Ptolemy’s model of planetary motion was
able to predict the path followed by the sun and the moon.

The adequacy of one model or other is linked to the purpose with which
the model has been constructed. The model can be built only to show some
similarity with the real system, or it can be built in order to make the model
and the real system interchangeable, in this case we say that the model M is
isomorphic to the system T or M ' T .

Carver [209] distinguishes between, phenomenally adequate models and
explanatory models. The former are those that subsume the phenomenon
under observation and the later are those that constitute an explanation
because they afford the control and manipulation of the real system. The
ability to control a system involves the understanding of the system, the
reason is that we would be able to understand how the system behaves if the
initial conditions of the system vary. This is what in [210] is referred as the
modeller, which can answer more w-questions of the system, a w-questions is
a “what-if-things-have-been-different” kind of question.

6.2 Mathematical representation

The main purpose of this section is to ground the concept of representation in
a basis as unambiguous as possible. One of the major virtues of brain science
is that it has been able to take theoretical laws with unobservable terms, and
transform them into experimental ones, that is, composed of observables. For
example, to ask what emotion is, what intelligence is, or what perception is,
through an explanation exclusively based on experimental data and concepts,
will lead us to ad-hoc explanations of those terms.

What is indeed possible and desirable, is to formulate empirical laws, based
on observables in the brain, and formulate them using theoretical mathemat-
ical terms. It might be remarked that from experimental data alone, we can
not directly infer theoretical laws, instead we need a set of rules that makes
possible such a conversion.

Definition 6.1. An observable is a phenomenon that can be directly mea-
sured with the appropriate tool.
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In physics, an observable is a quantitative magnitude that is measured on
a system; an example of an observable is the torque of a motor, or the mass
of a body. For example, in figure 6.4, the thermometer is the tool that assigns
numbers to the observable which is the temperature of the body. It ought be
remarked that for a philosopher, an observable is something perceived by our
sensorial apparatus. Thus, external tools, a thermometer, for example, are
excluded from this definition, which is man-centered and leads to puzzling
problems like qualia, or the nature of consciousness that will not be addressed
in this section.

R

Fig. 6.4 The figure depicts a thermometer, the observable ψ, that when in contact with

a system, the box, returns a real number R that is the state of the system.

The importance of observables 1 is that empirical laws are made out of
them. The repetition of observables define generalities that can be expressed
as empirical laws. For example, Galileo came to an understanding of uniform
velocity and uniform acceleration by measuring the time it takes for bodies
to move various distances [212], or the empirical Ohm’s law, which is based
on measurements of applied voltage and current through simple electrical
circuits containing various lengths of wire.

I =
V

R

On the other hand, theoretical laws do not arise from direct observation.
Thus, theoretical laws can not always be created from the generalisation of
observables, they are purely hypothetical. The utility of theoretical laws is to
two-fold, first it allows us to unify in a common corpus, a set of empirical
laws based on observables and second; it may suggest new empirical laws

1 Observable and unobservable are not two fixed categories, indeed it is possible that as

science progress an unobservable becomes an observable. For example, since Democritus
atoms were taken as purely theoretical constructs; until 1905 when Einstein, in a series of

three papers, explained the Brownian motion described by visible pollen grain, with the

“invisible” molecules and atoms. Moreover, Einstein’s paper also made predictions about
the properties of atoms that could be tested [211].
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(inexistent at the time in which the theoretical law was created) that need to
be validated empirically. We need to turn to mathematics to find theoretical
laws.

6.2.1 Measurement Theory

Measurement is a particular way of representation, a mathematical represen-
tation, that assigns mathematical objects, for example numbers, to empirical
objects or qualitative entities. By the end of the XIX century, scientists and
psychologists with an accurate knowledge of the physics and mathematics of
their time, set the basis of the modern measurement theory. Measurement
theory is the theory that assigns mathematical objects i.e. numbers, to em-
pirical or qualitative entities e.g. length or mass but also for psychological
concepts like pain or colour. This theory is part of Psychophysics which is the
discipline that studies how physical properties are represented in the subject’s
mind.

First Helmoltz (1887) and later Hölder (1901), with more mathematical
rigor, studied how to measure numerically “fundamental extensive” mag-
nitudes such as mass or length [213]. Hölder demonstrated that there is a
homomorphism between the represented empirical relational structure and
the representing mathematical relational structure.

So, if X =< X,.,⊕ > is a continuous extensive structure then there is
an effective procedure to find a homomorphism Φ of X into the structure
R =< R,6,+ > of the real numbers R with the ordering relation 6 and the
addition operation + such that for each x,y ∈ X, x . y, iff Φ(x) 6 Φ(x) and
Φ(x⊕ y) = Φ(x) + Φ(y)

One main consequence that arises from this is that for any empirical system
that satisfies the set of axioms described in [214], there is a homomorphism
or function that preserves the quantitative relations among the objects of the
empirical system, which are mirrored by the mathematical structure -e.g: the
real numbers. In order to define homomorphism in measurement theory we
need to first define relational structure.

Definition 6.2. X =< X,Rj >j∈J is a relational structure iff X is a non
empty set of empirical entities or numbers, J is a non empty set usually of
integers called index set and Rj is a relation of finite order on X.

Thus, Rj is an element (a 0-ary relation on X) or is a subset of X (a 1-ary
relation on X) os is a n-ary relation on X, n > 2.

By a homomorphism Φ of the relational structure X =< X,Rj > onto
Y =< Y, Sj >, we mean a function between the relational structures that
satisfies i) ii) and iii)

i Φ is a function from X into Y
ii ∀j, Rj is a n-ary relation iff Sj is a n-ary relation
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iii Rj(x1, x2, . . . , xn) iff Sj((Φ)(x1, x2, . . . , xn))

If iii) is a one-to-one mapping fromRj(x1, x2, . . . , xn) into Sj((Φ)(x1, x2, . . . , xn)),
then Φ is an isomorphism.

Example 6.1. Let X =< X,.,⊕ > and R =< R,6,+ >. X is a set of
physical bodies, ergo with mass, R1 =. is a relation that establishes that
two bodies can weight less or the same and R2 = ⊕ means physical addition
of two bodies.
R =< R+,6,+ > is a relational structure comprising the positive real

numbers, the ordering relation and the addition relation defined by them.

The homomorphism Φ : X =< X,.,⊕ >→ R =< R,6,+ > assigns real
numbers to bodies α, β . . . ∈ X satisfying:

i (α . β)⇒ Φ(α . β)
ii (α⊕ β)⇒ Φ(α+ β)

In words, i means that when the body α weighs less than the body β, the
number associated with α e.g. 1.0, is smaller than that of β e.g. 2.2. And ii
means that for any two bodies there is a number which represents the weight
of the resulting weight of those two bodies put together.

However, Measurement Theory does not say anything at all about the
neural substrate of representation or how physical properties are neurally
encoded. We need more powerful ways of mathematical representation for
this.

6.2.2 Phase space representation

The idea behind the mathematical representation of physical systems is ex-
tremely powerful. It lies on the assumption that a single mathematical object,
is identical to the collection of measurements of the system, which are poten-
tially infinite.

For example, a rotation matrix contains all possible rotations along one
axis. For example, a rotation by an angle α about axis z is given by:

Rz(α) =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


And just by composing them in good order we have the resulting state of the
system that has undergone a series of rotations: a rotation about an angle α
about z axis, followed by a rotation by an angle β about the original y axis.

Ry(β)Rz(α) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

  cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 0


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Let us look at another way of mathematical representation. Given a system
S, the state of the system, Θ, is all what need to know about S, so Θ is a
complete description of all the components of the system S, at any instant
t. For example, the state space of a pendulum is given by position and the
velocity Θ = (θ, θ̇).

If we know the equation of motion of S, then we can easily obtain the
time-development of S in phase space, in this case a two-dimensional plot
with position (x-axis) and velocity (y-axis) as shown in figure 6.5

Fig. 6.5 “Real” space and Phase space of harmonic oscillator.

The representation of physical systems in phase space is extremely useful
because it depicts how the system evolves over time, from one state to the
other. The study of key properties of the system like stability, asymptotic
stability or robustness rely on this kind of representation.

But how do we compute the different states? This is what measuring is
about, to assign a real number to each state of the system. Thus, to measure
it, is to build the mapping:

ψ : Θ → R (6.1)

The physical interest in using the mathematical abstraction Θ is that it is
possible to exploit the concept of closeness of states. As we know, topology
on a set is mainly about closeness of its subsets, therefore the set of states Θ
is a topological space.

Now let us consider the mapping i.e. a measurement ψ, which can be seen
as the operation to assign a number to a physical state.

If ψ is non continuous, the physical system will have a behavior which is
not very realistic in the sense that small variations in the state that we are
measuring, will result in huge changes in the value of the state space variable
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that is being measured. So we need ψ to be continuous, in order to be able
to reflect the physical closeness of the states of the physical systems.

However, in the case of a discontinuous ψ -although it goes against the
assumption of continuity as a necessary condition for measuring a physical
system- it may still be possible, though not always, as we saw in 5.4.1, to
find a continuous mapping ψ by reducing the granularity in the state space
defined Θ.

6.3 A theory of representation in cognitive systems

Ronald Giere, a philosopher of science and former physicist, has worked on
a unified and cognitive theory of science[215], [216]. This theory is interested
in a particular type of representation, that is, established between the sci-
entist and the (scientific) models built by him. Giere’s interest in a theory
of science of this kind is motivated by this fact; given that a theory of a
phenomenon helps us to explain the phenomenon itself, a theory of science
has to explain the phenomenon of science itself. Thus, the task of engaging in
scientific inquiry is considered as just another cognitive activity, susceptible
to be studied in the same way as any other mental activity.

Giere[217] succinctly defines his theory as:
AMRWP

that stands for: an Agent intends to use a Model to Represent part of
the World for some Purpose. The expression contains at least two terms
that need to be carefully considered. First, at the center of the formula, R
or representation, which is the main component of the formula. It might
be remarked that anything can be potentially a representation of anything
else, but only those representations that embody relations that are preserved
between the represented and the representing, are genuine representational
models.

Definition 6.3. A representational model is a structure preserving descrip-
tion among two objects: the specification of the model(vehicle) and the rep-
resented object(target).

Second, the inclusion in the formula of the purpose, P, implies an inten-
tional conception of representation, that is to say, the purpose of the agent in
his task of modelling the world is taken into account. The following section
fully investigates the nature of representational models.



6.4 Structural commonality in representation 109

6.4 Structural commonality in representation

There are two main arguments against a naturalistic and formal account of
representation. One is that representation is a relation between two different
domains that need to be interpreted by a user or observer; the second states
that representation is context dependent, therefore, we can not get a formal
definition of representation, because the phenomenological experience of the
agent and the context, in which this agent is immersed, would be missing.
Thus, in order to naturalise representation, we must find a kind of relation
of representation free from the agent’s purposes. A relation of representation
between two domains implies an agreement in form. A structure is the ab-
stract form of a system, it allows us to focus on the relationships among the
objects, and ignore other features of the objects that do not affect how they
relate each other [218], [219].

Cognitive agents do not have a total or omniscient access to the real struc-
ture or the world, rather they operate within it through the use of a contin-
uous and dynamic endorsement between the form exhibited by the system
and that idealized in the agent’s model [207]. To represent something is in-
trinsically formal or structural, this view is opposed to the exclusively verbal
idea of representation based on definitions. The thesis defended here, stands
opposed to the widespread and long-standing approach that reduces repre-
sentation as a linguistic or pictorial concern, instead it proposes a formal
mathematical shift in representation.

If A and B share a structural commonality, then A represents B or B
is represented by A. In order to say that A represents B there must exist
a transfer of structure between the two different domains. But what is this
structural commonality? Suppose we have answered this question (this is the
subject of the next section), in that case, we have obtained a naturalised
formulation of representation, that is to say, the purpose of the agent has
been naturally dissolved in the structural account of representation. Thus, in
the formula proposed by Giere shown above, the term Purpose disappears.

The task is as rewarding as it seems and therefore it deserves to be fully
explored. Let us see how.

I identify three kind of relationships as possible candidates structural com-
monality:

1. Similarity: A represents B iff A is similar to B.
2. Isomorphism: A represents B iff there is an isomorphism between A and
B, that is to say A and B are two isomorphic structures.

3. Homomorphism: A represents B iff there is a homomorphism between A
and B.

The rest of the chapter is devoted to the study of the three kind of rela-
tionships: similarity in section 6.4.1, isomorphism in section 6.4.2 and homo-
morphism in section 6.4.3 At last, in 6.4.4 is analysed which relationship is
required in a true relation of representation.
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6.4.1 Representation as a relation of similarity
between structured entities

Given A and B, we say that they are similar iff they share a subset of prop-
erties.

1. Similarity is a reflexive relation because A is similar to itself.
2. Similarity is a symmetric relation. Let A share the properties p1 and p2

with B. Then B share with A p1 and p2.
3. Similarity is a non transitive relation. Let A share the properties p1 and
p2 with B. Let B share p3 with C. The A and C could share any property
rather than the property of sharing a property with B. For example, A is a
set of 2 Bengal tigers, B is a set of 2 soldiers from Tanzania’s army, and C
sunlight reflecting in Victoria lake. A and B share the property cardinality
is 2, B with C share the property is located in Africa, but A and C do not
share any property.

The concept of similarity presented here is more general than that of simi-
larity as visual resemblance. Indeed, two items can be “similar” in terms of
the similarity relation shown, even if they are visually disparate.

6.4.2 Representation as a relation of isomorphism
between structured entities

Given A and B, we say that they are isomorphic iff there is a one to one
and onto map between all the components of A and B. Therefore, a map
f : A → B is an isomorphism if exists the inverse of f , f−1, such that
f ◦ f−1 = 1A and f−1 ◦ f = 1B , where 1A and 1B are the identity maps of A
and B respectively.

An isomorphism describes a deeper level of “similarity” between objects.
If there is isomorphism between two objects, there is also similarity, the
contrary is not true.

6.4.3 Representation as a relation of homomorphism
between structured entities

A mathematical representation of a non mathematical realm occurs when
there is a homomorphism between the non mathematical system and the
mathematical system. Indeed, homomorphism is less restrictive than isomor-
phism because homomorphic structures do not necessarily have the same
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number of elements. An isomorphism is a homomorphism that is one-one
and onto.

Books of mathematics do not give a definition of homomorphism tout
court, rather they define homomorphism of groups or homomorphism of Lie
algebras [220]. Homomorphism, is a structure preserving map between two al-
gebraic structures -e.g: homomorphism of groups, homomorphism of lattices,
homomorphism of rings etc.

Homomorphism generalizes the notion of isomorphism.

Definition 6.4. Homomorphism is a structure preserving map between two
structures. Formally, Φ : (A, ∗)→ (B,#) is a homomorphism if it satisfies:

Φ(a1 ∗ a2) = Φ(a1)#Φ(a2) for all a1, a2 ∈ A

Example 6.2. A morphism Φ from commutative ring A into a commutative
ring B, Φ : A→ B, is a homomorphism iff it satisfies: for all a, b ∈ A:

Φ(a+ b) = Φ(a) + Φ(b)
Φ(ab) = Φ(a)Φ(b)

Thus, the homomorphism of commutative rings preserves the two opera-
tions defined in that structure: addition and multiplication.

6.4.4 Representation implies structural similarity:
Homomorphism

Suárez in [208] answers no to this question, can scientific representation be
naturalised?. The rationale is as follows: as representation is non reflexive,
non symmetric and non transitive, then the similarity relation can not be
representational because it is reflexive, symmetric but non transitive. The
same goes for isomorphism, because contrarily to the representation relation,
it is reflexive, symmetric and transitive. Therefore, representation relation in
Suárez’s view, is not constructed out of similarity and neither isomorphism,
which leaves the project of naturalisation of representation in a distressing
situation.

However, as I will justify bellow, this argument is defective, indeed the
premise is false, therefore the rest does not follow.

Suárez argues that the relations between similarity and isomorphism do
not constitute a relation of representation, and there could be something
missed or a hidden relation between the two entities that participate in a
representation. He gives a name to that missing piece: representational force
or essential directionality of representation. Based on this statement, Suárez
enlarges the definition of similarity and isomorphism incorporating his rep-
resentational force, redefining similarity’ and isomorphism’ as follows:
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1. similarity’: A Represents B iff A is similar to B and the representational
force of A points to B.

2. isomorphism’: A Represents B iff A is isomorphic to B and the represen-
tational force of A points to B.

A major allegation is in order here. It is untenable to abandon the project
of naturalising representation that would have major benefits, for example,
the reduction of representation to empirical facts, or the formalisation of
representation in mathematical terms. The view proposed by Suárez, as long
as it uses obscure terms like representational force, can not be provide a solid
basis for a theory of representation.

Misrepresentation by accidental similarity is one of the favorite arguments
against naturalisation of representation. Suarez provides the next example.
If my friend is dressed like pope Innocenzo X, I could think that Velázquez
depicted my friend rather than the pope. Therefore, Suárez argues, this dis-
qualifies similarity as a valid representation relation, because it leads to a
wrong inference, the figure depicted is the pope and not my friend dressed
like him.

The problem with this argument is that it limits similarity to visual re-
semblance. As it was already said in 6.4.1, similarity is not mere visual re-
semblance, rather it must be understood as structural similarity. Before we
go further we need to clarify what I intend by structural similarity. One or
more agents with analogous perceptual capabilities, can trivially state that
two physical objects are similar by putting them together and observing if
they share a number of relevant properties. Needless to say, to compare two
similar objects is banal. Much more interesting is when an agent describes a
physical object or phenomenon, using another object, for example a mental
object. Here, for some, there is a problem because the mental object and
the physical object do not share properties, the former exists in an abstract
or mathematical realm and the last in the concrete or physical realm. This
argument is flawed for one reason: because it is dualist, and it dissolves if
we acknowledge two simple things; first, concrete objects have properties and
second, the properties are parts of the abstraction of the object [207].

By this account, models do not apply to the world by a relation of lay-
man’s similarity, but by a more precise notion of similarity that I have coined
structural similarity, and that will be mathematically defined bellow.

The scientific effort to describe nature is rooted in the obtention of a model
or systems of models -i.e: a theory2 that formally captures the structure
presented in the phenomenon observed, this is possible because both the
model and what is modeled are morphic structures.

In order to have two isomorphic structures, STR1 and STR2, it is neces-
sary that i. the two structures have the same number of elements, and ii. the
relationships between the elements of STR1 have the same pattern as the
relationships between the elements of STR2

2 The semantic view of models sees theory as a set of models
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One example of two isomorphic structures is ten cans of beer and the set
of integers 1..10. In this example, the invariant structure is cardinality, and
distinctness is the relevant relationship capturing the invariance between the
two systems that are being modeled. When we need structures that include
richer relations between their elements, or at least richer than the very ele-
mentary distinctness, more complex patterns than that of cardinality arise.
For example, Let A be a structure formed of three brothers, John, Paul and
Tom and the relation “is older than”; and let B be the structure formed of
an alligator, a python and a mouse and the relation “feeds on”. Then A and
B are isomorphic.

Given one cylinder and the same ten cans of beer, there is not an iso-
morphism because the number of elements differ. Nevertheless we can find a
morphism -e.g: homomorphism, between the cylinder and the cans that pre-
serves more relevant features than the cardinality, like the height or shape.
Homomorphisms are structure preserving maps and therefore, true represen-
tations. Given a type of structure and given a map from a set A with this
kind of structure, to set B with the same type of structure f : A → B,
f is a structure preserving map, if when we replace every element a in a
structure in A we get the corresponding structure in B. For example, given
a poset -i.e: a set with equipped with the structure ≤, we say that the map
between two posets f : P → P ′, is a order preserving map, if p1 ≤ p2 implies
f(p1) ≤ f(p2). Note that for particular structures, homomorphisms may be
known with specific names, for example, homomorphisms between posets are
called order preserving maps or between vector spaces, linear maps.

Once we have defined structure and homomorphism we can build cate-
gories. For example, monoids and their homomorphisms define the category
of monoids Mon, vector spaces and their homomorphisms define the category
of vector spaces, Vec. This is what Arbib and Manes call the naive approach
to categories [133].

6.5 Theory of representation based on category theory

In this section I provide a theory of representation based on the mathematical
the theory of categories. Let us go now directly to the problem.

Definition 6.5. Given an object A in the category C, a representation of A
in the category C’, consists of an objectN ′ in C’, together with a morphism γ
in the category C such that it associates each element a in A with a morphism
from N ′ to N ′.

A
γ- Mor(N ′, N ′) (6.2)
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Thus, the object A in category C, is represented in the category C’ as
a bunch of morphisms, and the representation reflects the structure within
the object A, which is given by those morphisms between elements in C’.
This definition exemplified categorically the statement described previously,
representation is a structure preserving map.

Let us see this with an example. A representation of a metric space, M in
the category of neurons Neur, consists of an object N ′ in category Neur,
together with a rule that assigns to each element n of N ′ in Neur, a homo-
morphism γa, from neural assembly N ′ to neural assembly N ′ such that the
structure given by homomorphisms between metric spaces is preserved in the
category of neurons.

Of course, a theory of representation may not regard representations as
static or fixed items of knowledge. In order to represent objects of increas-
ing complexity, the theory needs to be able to manipulate and create new
representations from old ones.

At this point I will present examples of the genetic power of the theory pre-
sented. The capacity to create new representation cases is depicted through
the propositions described bellow.

Proposition 6.1. Given the representations of A on N ′ and P ′, A
α- Mor(N ′, N ′),

A
β- Mor(P ′, P ′), it exists a morphism from to the product of N ′ and P ′

to itself, N ′×P ′ pia- N ′×P ′, that makes the following diagram commutes.

N ′

αa

��

N ′ × P ′

πa

��

noo p // P ′

βa

��
N ′ N ′ × P ′noo p // P ′

Thus, a new representation, that of A on the product A×B is created:

A
π- Mor(P ′ ×N ′, P ×N ′) (6.3)

Note that a representation of A on the coproduct A+B, A
π- Mor(P ′+

N ′, P ′+N ′) is directly created by dualizing the above diagram, resulting the
following diagram, in which the arrows have been inverted.

Example 6.3. Coming back to the example above we can extract the follow-
ing heuristics: for an object , A, in the category of metric space, when it is
represented on n different objects N ′

i of Neur, it is possible to get the repre-
sentation A as the product and as the coproduct of n cells: A→Mor(

∏
N ′

i)
and A→Mor(

∐
N ′

i) respectively.



6.5 Theory of representation based on category theory 115

N ′ n // N ′ × P ′ P ′
p
oo

N ′

αa

OO

n // N ′ × P ′

πa

OO

P ′

βa

OO

p
oo

Proposition 6.2. Let A be an object in category C, N ′ an object in category
C’, and A

γ- Mor(N ′, N ′) a representation of A. Now, given a subobject
K ′ of N ′, K ′ is a subobject of P ′ if K ′ ω- N ′ is a monomorphism.

The theory should be capable to tells us whether A is still a representation
of K ′. Let us see how. By definition of representation, for every a in A, there
is a morphism that takes elements of K ′ to K ′, K ′ γa- K ′; the problem
here is that we can not take for granted the morphism γa because it may be
possible that for some element a in A, γa can take elements of K ′ out of K ′.
Thus, in order to predicate the representation of A on a subobject K ′, we
need first to prove that K ′ is an invariant subobject.

Definition 6.6. A subobject K ′ is an invariant subobject of A, when for
every a in N ′, there is a morphism µa that makes the following diagram
commutes.

K′ ω //

µa

��

P ′

γa

��
K′ ω // P ′

The invariance is an aspect of major importance that deserves closer at-
tention. Topology is indeed, the mathematical discipline that studies the
invariant qualities of structures under deformation and transformation. Lie
algebras deal principally with the invariance in geometry and partial differ-
ential equations [221]. It might be noted that Lie algebras use the concept of
cyclic permutations which is at the core of Groups. Helmholtz was the first in
pointing out that cyclic permutations of a group may explain psychological
questions like perceptual invariance.

Exploiting properties like symmetry, it is possible to map cognitive invari-
ances into mathematical topological ones, resulting in a class of equivalent
structures in the mathematical realm. Category theory arose in the minds of
Eilenberg and Mac Lane as a general theory that deals with general forms of
equivalence.

Remark 6.1. From a representation A
γ- Mor(N ′, N ′) and an invariant

object K ′, it is possible to get a new representation of A on K ′:
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A
µ- Mor(K ′,K ′).

Example 6.4. In the case of spatial modulated cells in the hippocampus -
place cells and grid cells- the representation described in 6.2 is not relevant.
If we assume that neurons are the basic computational units in the brain,
we simply can not find a subobject K ′ of N ′, being N ′ a single neuron, -e.g:
place cell, grid cell. But when the object N ′ in the category of neurons Neur,
is an assembly of neurons rather than an unique cell -a singleton or category
with only one object- the representation described above 6.2 will be relevant.
This idea will be fully explored in chapter 8.

Proposition 6.3. Given the representation A
γ- Mor(N ′, N ′), and the

morphism, B
δ- . By composition of morphisms it follows that

B
γ◦δ- Mor(N ′, N ′)

is a representation.
Therefore a new representation is generated just by defining a morphism

from B to A and a representation of A.

First, let us explore the theoretical statement just shown with an example
using the categories that are being used in this section, the category of metric
spaceMet and the category of neuronsNeur. In the category of metric spaces
Met, given an object A, composed of elements forming an array of equilateral
triangles, an object B, and a morphism B

δ- A, then by composition
of morphisms B is represented as the bunch of morphism from the neural
assembly N ′ to N ′. The structure of B is reflected within Mor(N ′, N ′).

Now, there is a mapping between two metric spaces, f : (A, d)→ (B, e), if
f preserves distances, for all a1, a2 ∈ A, e(fa1fa2) = d(a1, a2). Thus, if we
define the same distance, d = e, it is evident that for any subobject B of the
metric space A, B ∈ B, f : (A, d)→ (B, d), therefore any subject of the grid
space defined in A would be a representation of the neural assembly N ′. This
is empirically false, of course not any subobject B of A can be represented as
the same set of morphisms between a neural assemblies, Mor(N ′, N ′) that
represented A. Stated differently, a mental object and one of its subobjects,
do not arise from identical neural assemblies in the brain.

Therefore, from the premises: A
γ- Mor(N ′, N ′) is a representation

of a mental object A on neural assembly N ′ and B
δ- A is a morphism

from mental object B to A; it does not follow B
γ◦δ- Mor(N ′, N ′), B is a

representation on neural assembly N ′.
Having defined colimit in 3.

Proposition 6.4. Given two representations of A and B on N ′: A
γ- Mor(N ′, N ′)

and B
δ- Mor(N ′, N ′), the representation of the coproduct of A and B,
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Mor(N',N')
N' is a pyramidal cell 
 in the hippocampus

A is the mental object of a 
hexagonal grid

B is a subobject of A, B -> A

Fig. 6.6 Under the case explained above, to state that a mental object is the represen-
tation of a neural assembly is ill-founded, any subobject would be a representation of the

same neural assembly.

A + B
π- Mor(N ′, N ′), is immediately generated. (Note π is the unique

morphism that makes the above diagram commutes).

This proposition is an example of what I will examine in Chapter 8, which
investigates place cell formation in brain hippocampus using concepts bor-
rowed form category theory like colimit and coproduct.





Chapter 7

Towards a theory of brain structure,
function and dynamics

While a lot is known about the properties and functions of neurons, the mod-
els for translating the data from the micro level to the macro level and vice
versa, are still uncertain. This chapter has two main issues. The first concern
is an attempt to point out the flawed use of mathematical and philosophi-
cal concepts, in our attempts to understand how the brain functions. More
specifically, I draw attention to the restricted, yet inconclusive quarrel be-
tween the different schools of brain organisation and functioning. Modular,
distributed or sparse conceptions of brain connectivity may be verifiable or
not, depending on the measurement technique, and the scale that is being
used.

The second concern is the introduction of mathematical descriptions of
key concepts, such as pattern or structure, which are at the core of the natu-
ral sciences, and should occupy a preeminent position in the neural sciences.
Category theory is presented as a valid foundational framework for model-
ing biological networks such as neural networks. Brain structure modeling
is sketched under this categorical outlook. Concepts from Category Theory
like colimit, functor or adjoint are proposed as universal tools that should be
applied to the different levels of organisation of the brain. The scale-free dy-
namics of brain system and its subsystems need a powerful descriptive device,
able to capture the creation and transformation of patterns of connectivity
and activity in the brain at all the relevant levels. The categorical frame-
work that is introduced here supersedes the K-sets theory of Walter Freeman
and aims to formally describe the KV set that deals with the highest level
functions in mammalian cognition, which have yet to be formally assessed
[18].

119
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7.1 Introduction

The eminent mathematician Henri Poincaré wrote The aim of science is not
things in themselves, as the dogmatists in their simplicity imagine, but the
relations between things; outside those relations there is no reality knowable
[222]

The study of the relation between the external world and the central ner-
vous system, and in particular the brain, has been approached from numerous
disciplines and subdisciplines that are recognizable under the term cognitive.
In the past, psychologists studied brain functioning, yet did not include an
examination of its internal structure. The behaviorist school, that was pre-
ponderant in the departments of psychology during a good part of the last
century, accorded to the biological organism, a predictable behavior in terms
of input and output. The organism reacted with mechanical precision to the
stimuli and what happened inside the organism was considered irrelevant
because it was already prefixed by the stimulus/response pair.

Paradoxically, some time before Watson and Skinner gathered their behav-
iorist theories that disregarded the biological issues involved in behavior, the
biological understanding of the brain had gained an extraordinary impulse.
Ramón y Cajal using Golgi’s stain technique provided definitive evidence
that neurons are discrete cells. Cajal is the champion of the Neuron Doctrine
which was established based on anatomical studies done by Cajal. Neuron
doctrine states that the neuron is an anatomical unit, that through the laws of
dynamic polarization, is unidirectional. The McCulloch and Pitts [63] notion
of the neuron as a basic information processing unit in the brain can be seen
as a newcomer in the Neuron doctrine 1. The neuron doctrine states that
neuron is the fundamental structural and functional element of the brain,
both the basic building block and the elementary signaling unit of the brain
[16].

At the neuronal level almost everything that needs to be known is al-
ready known. Although there still remains some technical limitations in the
measurement of the brain activity, those technical barriers will efface, as the
resolution in the brain imaging devices is progressively enhanced and new
and more powerful techniques deployed. Today, the Neurobiology of Behav-
ior is a reality that is continuously providing a deeper insight into the brain
functioning and the neuronal correlation of behavior and cognition. Indeed,
Neurobiology is vindicating Hippocrates’ hypothesis that the proper study of
the mind starts with the study of the brain. [223]

However, the organisation principles of the brain, able to to explain and
predict the ontogenesis of meaningful patterns of connections between brain
areas and their evolution along the time, is still missing. In the human brain
there are approximately 1012 neurons and 1015 synapses, these are obviously

1 Neuron Theory is an example of consilience where low level theories are absorbed into
higher level theories that explain the base data as part of higher order structure
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very big numbers. The daunting dimensionality of the problem is drastically
reduced by the phrenologists and by some cognitive psychologists of modular-
ist vein. They state that both the domain and the co-domain in the mapping
from cognitive functions to brain organisation, f : C → B, are both discrete.
Although such theoretical positioning can be seen as justifiable for practi-
cal reasons, because it makes the problem manageable by reducing its space
state, it is empirically false.

7.2 The crisis of a paradigm: Historical account

As early as the beginning of the nineteenth century, Francis Gall, developed
what he thought was the mapping of the cognitive and emotional capacities
into the skull and the brain areas underneath. Pierre Flourens, tested Gall’s
theory by trying to isolate different brain regions in order to establish the
different roles played by each different brain region, as the phrenologists ad-
vocated. He reached to the conclusion that no specific region was exclusively
responsible for any particular mental operation. Rather, the brain as a whole,
participated in all mental operations. This holistic view of the brain as a de-
composable organ, was later called the Aggregate-field view. Later on, the
Aggregate-field view was refuted by J.H. Jackson who, through his studies in
epilepsy, showed that it is possible to locate some motor and sensory func-
tions, in particular parts on the cerebral cortex. However, the Aggregate-field
view continued to be championed by psychologists like Ivan Pavlov and Karl
Lashley.

By 1950, Lashley had reformulated the Aggregate-field view, based on two
principles, the principle of mass action and the principle of equipotentiality.
The former stated that the cerebral cortex acts as a whole in many types of
learning, and the later established that if certain parts of the brain are dam-
aged, other parts of the brain may take on the role of the damaged portion.
Thus, in the new Aggregate-Field theory, there was not any particular singu-
lar locus to look for in the cortex that served cognitive functions. Moreover,
the cytoarchitectonic approach that lead to the exclusion of a map of the
functional parcellation of the cortex was considered nearly worthless [224].

However, facts are stubborn things and the empirical evidence for the
anatomic localisation of the basic functions was irrefutable.

Karl Wernicke was the first proponent of the now prevailing notion of
the brain as a distributed system processing, simple cognitive functions -e.g:
simple sensory and motor activities, are localized in particular areas of the
cortex, and complex functions can be traced as the result of the interactions
between simple functional sites [225]. In the 1930s, experiments with cats
showed that the application of a tactile stimulus in different parts of cat’s
body, triggered an electrical activity in particular regions of the cortex. The
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basis was used for the mapping of the cortex as in the depiction of anatomical
regions described by Broadmann.

7.2.1 The old paradigm: Modularism-homuncularism

There is a conceptual and a methodological problem in finding out which
brain area a is correlated with which function fa. When one states that area
a is responsible for the function fa, what is really meant, is that the activity
measured (electrical, magnetic . . . ) in that area a, has overcome the thresh-
old that the experimenter is using for his experiment, while other areas b, c
or h have not. As any first year student in logic knows; an event a occurs
simultaneously with an event fa, is not the same as fa entails a, fa → a, and
of course differing from a follows fa, a → fa. However, for educational and
historical reasons, in psychology, the cognitive functions have been classified
in main cognitive faculties e.g. perception, memory or attention, and there-
fore, treated as discrete items. In actual fact, those functions are not islands,
but interdependent and highly coupled. For example, perception is a function
of memory and attention. If we admit that cognitive functions can overlap,
their neural basis may overlap as well. It has been demonstrated that in
the brain distinct functional regions exist. For example, the left hemisphere
is primarily concerned with sensory and motor processes coming from the
right side of the body, or the frontal lobe is related with tasks that involve
planning, but that does not justify the functional parcellation of the cerebral
cortex as posited by Gall. In short, and using Fuster’s words, to constrain a
cognitive function within the scope of the method used to test it can not be a
far reaching methodology [226].

Historically, the attention has been put on the anatomically differentiable
areas (neurobiologists approach) or in the sensorimotor or complex cognitive
faculties (cognitive psychologists approach), both belong to what I call the old
paradigm. From two divergent approaches (from the neuron up to the psyche
and from the cognitive function down to the neuron); there is a resulting
substantial gap between the domain of the anatomy and physiology of the
brain, on the one hand, and the domain of behavior and cognitive abilities,
on the other.

7.2.2 The brain is not an aggregate system

Wheeler, in [227] defines the concept of aggregate system as one that holds
two conditions;

i It is possible to identify the components of the system by their explanatory
function without taking into consideration the rest of the system.
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ii Non-trivial cases of system-wide behavior can be explained by reference
to the operation of comparatively few parts.

According to this definition, the brain, contrary to the practitioners of
the functionally modular vision, is not an aggregate system. As claimed by
Wimsatt [228], modularity is typified by aggregative systems, therefore the
brain can not be modular in the way that Wheeler’s definition of aggregative
systems states. However, the choice to categorize an intelligent system -e.g:
the brain, as fully aggregate is too simplistic here. The concept of Continuous
Reciprocal Causation (CRC) posits that in “the presence of continuous, mu-
tually modulatory influences linking brain, body and world.” [229] we can’t
use componential analysis because we can’t isolate the components.

CRC would make the system under study less and less aggregative over
time and thus, the reciprocal causation between the components of the sys-
tem would decrease its modularity and it would become more holistic. In a
complex system, components are coupled and the dependencies and interac-
tions between them are inherently tangled. The system’s behavior, is not just
a matter of an analysis of the components, but it is the interactions between
the components that primarily must be discovered.

Despite the evolutionary process of continuous complexification of the
structure and its progressive specialisation in the brain, the different sub-
systems e.g. cortical areas, limbic structures etc., never act independently as
isolated systems. Indeed, almost any cortical neuron or neuronal assembly
can be part of many networks and thus, instantiates many different cogni-
tive functions. Accordingly, a modularist or homuncularism [230] analysis
must be declined as a valid theoretical framework for the brain function-
ing. As a matter of fact, biological systems are typically not composed from
previously autonomous systems incorporated into a common system. The
biological systems are commonly broken down into several parts, which are
subsequently further differentiated. This is probably how the different cortical
areas evolved.

One possible exception to this general rule is the mitocondria, which is
a membrane-enclosed organelle found in most eukaryotic cells, composed of
sections that carry out clearly differentiated, specialized functions where the
mitocondria resides. The mitochondria is a case of a big sudden change in
the evolutive process.

7.2.3 The brain mapping is of form and meaning

Cellular connectionism states that individual neurons are the signaling units
of the brain, arranged in functional groups, that are connected to one another
in a precise way. Although this is the established view in modern brain phys-
iology, it still poses one important issue; exactly what is a functional group
and in what way they are connected to each other?
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In basic theory of sets, a relation between two sets is modelled through
a function f , that has a domain and a target as two related sets. Thus, a
function f : A → B, relates each element a in A to another element b in
B. Likewise, when a neuroscientist investigates the neural substrate of the
cognitive functions, he is indeed carrying out the function f : C → B, that
relates the domain C of cognitive functions and the co-domain B of the
neuronal organization in the brain.

In order to build the function f that relates cognition with brain areas,
f : C → B, we are confronted with the problem of granularity that we
can state with this question: what are the unit elements in the brain, B,
to which the cognitive functions, C, are mapped onto?. We must note that
if the neurons are those basic units, then the mapping becomes intractable
and meaningless. Conceptually the problem is not straightforward. How may
we get out of this conceptual conundrum?. If we assume that the space B
is discrete, then the form associated with some cognitive faculty is vague.
In other words, the anatomical and physiological borders of the area under
study for example, the right hemisphere, or frontal lobe, are too imprecise
and general. Nevertheless, if B is thought to be continuous, then there are
no modules to which we may ascribe any particular function, but instead, a
daunting circuitry of neurons and synapses. In this embarrassment of riches,
the form, that is the anatomical parts where the cognitive abilities rest, can
be precisely determined, but the meaning is missed.

The nature of brain mapping must encompass form and meaning, and the
best way to capture such mapping is to focus on the links between form and
meaning. Only those forms with representational power have meaning.

It is possible, in the appropriate laboratory conditions, to trace the course
from the stimulus to the final action, bringing to light the neural pattern
of activation triggered. I will explain this with two examples of increasing
complexity.

The patterns are the basic units that we are looking for in the organisation
of the brain. A pattern is a meaningful structure made up of an ensemble
of neurons or a group of neurons, which are functionally connected. Pattern
is a word with many, surely too many, possible uses and interpretations.
Therefore, rather than provide yet another possible definition, I will outline
through two examples what I intend by the word pattern.

7.2.3.1 The Sensorimotor Topographic Pattern

First, a simple case, the sensorimotor pattern. As it is well known, Cajal was
the first who comprehensively traced the sequence of transformations from
the sensory neurons of the skin to the motor neurons of the limb to be moved.
The signal was initially perceived by the sensory neuron. The sensory neurons
are attuned to the outside world, thus the visual sensory neurons respond to
light, auditory to sound waves, and so on.
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Features of the stimulus, for example the intensity of light or the frequency
of sound, are captured by sensory neurons attuned with those events, in the
form of receptor potential. When the receptor potential is bigger than the
threshold for that cell, an action potential is transmitted along the axon.
The greater the overpass of the threshold is, the greater is the frequency of
the action potentials in the axon. Similarly, the longer the stimulus duration,
greater is the number of action potentials that are transmitted. The neuro-
transmitters released by the sensory neurons interact with their counterparts
in the motor neurons and initiate a graded synaptic potential. If the mem-
brane potential in the motor neuron is greater than its threshold, an action
potential will be created which will again, cause the release of neurotransmit-
ters that produce the synaptic potential, able to create the final the action
potential in the limb’s muscle that results in the muscle contraction.

Intentionally, the above description is a simplification, for more detailed
descriptions the reader may consult any good manual of neurophysiology.
[223], [231] So apart from technical details, there is one important thing to
be said. The transformations of the stimulus into neural signals that con-
vey information are in fact, one-to-one maps, also called isomorphisms. The
pattern is hardwired in the path between sensory and motor neurons.

As a result of the isomorphism, the neural circuitry or pattern that will be
triggered by one concrete stimulus like a stretch reflex, is quite predictable,
likewise, the same stimulus will produce the same neural pattern. It should be
noted that the election of the above example, the signaling network between
sensory and motor neurons, is not casual. The information conveyed by the
sensory neuron acts directly on the motor neuron, producing the muscle con-
traction. Thus, an overt behavior can be registered in the animal. The study
of the neural circuitry of sensory neurons connected directly to the motor
neurons other than those in the skin, though for example visual or auditory
neurons, is much more difficult.

However, there is a more serious obstacle here. We live in complex en-
vironment with myriad of different stimuli to be processed by the sensory
neurons. The brain map at the simple sensorimotor interaction described
above is topographic, but the further we move towards associational areas
of the brain, such as the prefrontal cortex and parietal cortex, the less evi-
dence is found for the existence of topographic maps. The perceptual brain
is indeed topographic, but only up to V1 - beyond this, everything gets much
more complex. This is only one of the many visual areas in the brain.

7.2.3.2 The Meaningful Patterns in the Olfactory bulb

Walter Freeman, a Berkeley neuroscientist, remarkably gifted for electrical
engineering and mathematics, has investigated the general principles of brain
organisation during the last forty years. Freeman’s studies have focused on
the olfactory system of cats and rabbits. Simplifying, again this is how it
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Fig. 7.1 Connection specificity -a neuron is connected with some particular neurons- and

neural polarisation -within a neuron the signal is unidirectional- was discovered by Cajal.

Drawing of [16]

happens. The stimulus; an odor, goes into the receptor layer, the olfactory
sensory neurons in the nose. These neurons project axons to the olfactory
bulb (OB) of the brain. There, it is transduced into a pattern of action po-
tentials. Obviously, in order to be discriminated, the odorants must cause
different patterns. The bulbar “code” for olfaction is spatial, this means that
the odorant activity is represented in the OB by the activation of odorant
receptors with different spatial locations. With each inhalation there are fun-
damentally two sorts of spatial pattern neural activities that coexist in the
OB, the microscopic and the mesoscopic. The procedure of obtention of the
two patterns is very different, the microscopic is evoked by action potentials
in single cells, and the mesoscopic is by ensemble averaging.
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The microscopic pattern of single neurons, as it occurs in the sensorimotor
map, is topographic and 1 to 1; in other words, there is an isomorphism
between the stimulus and the neuron. On the other hand, the mesoscopic
pattern reflects how local masses of neurons organise their activity when
they are destabilized by a sensory input (odorant). The bulbar patterns do
not relate directly to the stimulus because each bulbar axon branches and
distributes its output over the cortex.

Both the micro and the mesoscopic pattern express properties of the stim-
ulus applied. But there is a main difference, the mesoscopic patterns capture
the meaning of the stimulus. But, how can we test the meaning? To that end,
Freeman elaborated the following experiment. A rat inhales an odorant O1

and is rewarded. After the rat inhales a second odorant O2 and no reward
is given to the rat. The EEG patterns of O1 and O2 are recorded. Later on,
the rat inhales again the same odorant but the stimulus is changed. Thus,
the rat smells the odorant O1 with no reward and then the odorant O2 is
presented followed by a reward. The EEG patterns of the odorants O1 and
O2 are recorded. The pattern of the odorant O1, when is presented prior to
a reward and when is given with no reward at all are different, though the
odorant is the same. Likewise for the odorant O2.

This showed that, as expected, different odorants give rise to different pat-
terns, but unexpectedly, given the same odorant again, the original pattern
does not reappear, rather a new one is created.

The conclusion is that the bulbar patterns do not relate directly to the
stimulus but to the meaning of the stimulus. The most important consequence
is that patterns are not directly shaped by the stimuli, rather the formation of
the patterns is endogenous. In other words, previous experience of the animal
with those stimuli, together with its own goals and internal motivations, are
triggered by the stimuli and as a result, a new pattern emerges. To sum up,
an odorant stimulus and the following pattern in the olfactory bulb are not
isomorphic, rather the pattern expresses the meaning of the stimulus for the
subject.

7.2.3.3 Meaning versus Information

The technical use of the term information comes from Claude Shannon’s 1948
classic “A Mathematical Theory of Communication”. In Shannon’s theory
only the syntactic aspect of information is considered, ignoring the semantics
or pragmatics. For some[232], the semantic omission in Shannon’s Theory
made possible its mathematical formulation. The direct application of Shan-
non’s Information Theory in biology is ill-founded because semantics is an
essential in biological systems [233], [234], [235].

In order to treat information as a reduction of uncertainty, Shannon’s
Theory needs two main assumptions i) the probability of occurrence, if each
symbol is known a priori and ii) an external to make sense (semantically) of



128 7 Towards a theory of brain structure, function and dynamics

Brain operatorWorld
stimuli basic sensory-motor units

The brainstate is an input 
for motor action and an 
output for sensory input

Fig. 7.2 Linear causality can tell us how a reflex response is caused by a conditioned stim-
ulus -basic sensorimotoric loop. Thus, a stimulus excites a sensory neuron, that excites the

sensory cortex, that transmits information to the motor neuron, that finally produces the

contraction of the muscle. The mechanisms for perception are not strictly linear but cir-
cular. Sensory input entails motoric consequences and likely, motor output affects sensory

input. In this light, the brain can be seen as an operator between the world and the body.

the symbolic exchange. Another conception of information useful in biological
systems is Bateson’s definition of information as “the difference that makes
a difference”. This recurrent definition, though apparently confusing because
the explanans and the explanandum are circular, is an attempt to exploit
the recurrent organisational structure in the interaction biological system-
ecosystem.

It ought to be remarked that information is used here in the usual sense of
the word, and not in the technical definitions utilised by Shannon or Bateson.
According to this view, we can state that information, for example, the precise
location and the types of the receptors that are triggered, is irrelevant, to
use Freeman’s words. It is the class of equivalence to which the activated
receptors belong, the kind of information that is relevant here. In order to
identify the equivalent class or category where the odorant inhaled belongs,
the olfactory bulb must generalize over spatial patterns of action potentials
that are transmitted to it.

This is contrary to the Information Processing Hypothesis (IPH) which
states that for each distinctive odorant, there must exist a spatial pattern of
bulbar activity. The IPH conjectures that the stimulus is represented directly
in the pattern, as it was previously described in the stretch reflex.

The thesis I defend here, is empirically rooted in Freeman’s studies in
mesoscopic spatial patterns in the olfactory system, that envisages the brain
as a processor of meaning rather than information. The odorant inhaled, oc-
casions a spatial pattern, but it is not until the brain builds the representative
class of the inhaled odour that the item of knowledge is created. The mean-
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ing is created by the interactions of intentional beings with each other in the
world.

vector of information

stimuli
sensory receptors

the stimuli are transduced
to action potential 
in the sensory neurons

representation
of the stimuli

Fig. 7.3 The Information Processing Hypothesis IPH conjectures that the stimulus is
directly represented in the spatial patterns in the brain. Thus, stimulus and representation

of stimulus are isomorphic.

7.3 Computational neuroscience and mathematical
neuroscience

Neuroscience owes a great deal to mathematics. The interpretation of how
neural activity relates to behavior would be impossible without the capac-
ity provided by mathematical/physical methodologies to quantify, generalize
and convey rigorous and clear ideas. For the sake of clarity I will distinguish
two main approaches; one is computational neuroscience and the other is
theoretical-mathematical neuroscience (theoretical and mathematical neuro-
science will be indistinctly used here). Computational neuroscience’s aim is to
build computational models that simulate phenomena occurring in the brain.
The variables used in these models enable us to quantify relevant aspects
in brain physiology like neural membrane potential, neural action potential
spikes or neural firing thresholds.
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Thus, computational neuroscience builds algorithms running numerical
simulations of neural phenomena. The subject is vast and tremendously pro-
lific, some basic introductory text are [236], Schutter:2001, Trappenberg:2002.
For more advanced research, there are a number of journal devoted to this
topic, such as, Journal of Computational Neuroscience, Frontiers in Compu-
tational Neuroscience or PLOS computational biology are some of the most
well respected in the scientific and academic spheres.

We are interested here in the theoretical models of neural activity that
help to elucidate the mechanisms leading to spatial and temporal patterns
that ultimately, mediates in cognitive functions like perception or memory.
[90]

The neural models that address perception, cognition and evolution may
be grouped into three major classes:

i set of differential equations whose variables are key neurophysiological
quantities

ii architecture that tells us how the neural structures are coupled together
to form ensembles (meaningful populations, cognits. . . )

iii formalism that allows the understanding of cognitive processes and neural
complexity

“In the future, when we describe mental disorders as circuit disorders, we
can expect the same precision with which we distinguish conduction defects or
arrhythmias in the heart”[237], [17]. Quantitative must not be confused with
realistic. As a consequence of this habitual misunderstanding, computational
neuroscience is, alas, equated with theoretical neuroscience. The reason lies
in the wrong assumption that the principles of neurosciences are known. It is
the fundamental principles which must be discovered through mathematics.

Theoretical neuroscience involves the creation of frameworks that inte-
grate a variety of phenomena and can provide insight into the fundamental
principles of brain function [80].

On the other side of the mathematical-like spectrum, we find theoret-
ical neuroscience, whose aim is to create frameworks that integrate dif-
ferent phenomena, providing insight into fundamental principles of brain
functioning[80]. In the brain the space that goes from molecular and cellular
physiology to cell assemblies, up to behavior has not been mathematically
matched yet. The matching that theoretical neuroscience is committed to is
structural rather than merely quantitative.matching.

It deserves emphasis that theoretical and computational neuroscience are
not the same thing, and neither one is included in the other. This misconcep-
tion can be put this way; as the principles in the nervous system are known
(just as they are known in, for example, robot dynamics) we do not need to
introduce new mathematical concepts or theories, but to running simulations
in order to attain a numerical matching between the data tossed by the simu-
lation and real data. Let us use the example of a simulation of a manipulator
arm doing some arc-welding. This allows the engineer to define which are the
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Fig. 7.4 The diagram tries to reflect the focus in the numerical matching without struc-

tural accuracy. The wide area between the cell physiology until the organism behavior
requires theories based on mathematics that matches structurally the phenomenon and

this must be done prior to do any computations [17]

trajectories that the robot can achieve and which are not. For example, the
singular points must be avoided. Thus, the computational model of a yet un-
built robot, makes it possible to understand the functioning and performance
of the real robot. This is because the dynamics of a manipulator is known,
and written in mathematical terms in 7.1.

τ = M(Θ)Θ̈ + V (Θ, Θ̇) +G(Θ) (7.1)

whereM(Θ) is the mass matrix of the manipulator, V (Θ, Θ̇) is the centrifugal
and Coriolis forces and G(Θ) represents the gravity force.

Recapitulating briefly, the laws are already known, and they are of course
general, the dynamic equations are the same for a 1 degree of freedom as for
a n degrees of freedom robot. A roboticist designs computational simulations
in order to evaluate the performance of the robot. This is at odds with neu-
roscience, where the principles, in the mesoscopic and macroscopic levels, are
still missing. To reduce theoretical neuroscience to computational simulation
is putting the cart before the horse.

7.4 The levels of organisation in the brain

The brain systems operate at many different levels of organisation, each with
its own scales of space and time. The brain, as any other physical system,
is hierarchically organised. In a strictly compartmental view, the modeling
of a system relies on a prior acknowledge of the different levels, later on
the components at each level are separated and the intra level relationships
identified. In this epistemology, the system is modeled as an ensemble of
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drawers, independent of each other. Every level is macro to those bellow it
and micro to those above it.

Level i +1

Level i 

Level i +2

Fig. 7.5 The exchange of information between levels in complex systems, like for example

the brain cortex, is not linear, rather the interaction is within the level’s components, but
also upwards and downwards.

But this picture falls very short of an explanation which deals with systems
that are not modular. In a complex system such as the brain, the different
levels interact and exchange information. As a result of the inter level inter-
actions, the global activity is characterised by complex dynamical patterns,
that may be chaotic as they occur in the brain of mammals.

However, precision is very important here. When we talk about the dif-
ferent levels of the brain e.g. microscopic level or macroscopic level, this is
just a façon de parler. The levels are not real entities like a neuron or the
waves generated by the brain in a particular moment. Rather, the measure-
ment technique that is being used, imposes its own scale, and restrains the
ontological reality that is being measured.

The main difficulty in modelling a complex system is that the coupling
between their components can produce emergent properties, that is, prop-
erties that are not shared by the components. An emergent property is a
non-local phenomenon that does not necessarily entail an insurmountable
obstacle for its modelling. Admitting that a genuinely complex system, using
Gerhard Mack’s words [238], cannot be understood as a whole by looking at
it locally, a reduction of its complexity is often possible only through local
considerations.
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7.4.1 Brain activity and measurement techniques

The spatiotemporal restrictions vary greatly between the different existing
techniques of brain activity measuring. So magnetic resonance techniques
(MRI), have a much better spatial resolution than electroencephalography
(EEG), while EEG temporal resolution in milliseconds, prevails over MRI
techniques which can take snapshots in the range of seconds. It should be
noted that this is not just a technical issue that will be resolve with time.
As soon as some technological improvement allows, the MRI scanners will be
able to take faster snapshots. Indeed, the signal that is measured by the most
common MRI technique, fMRI, peaks seconds after the neural firing begins in
an area. So a better temporal resolution in fMRI faster, than the metabolic
and blood flow, which is the phenomena that fMRI measures, won’t make
things any better.

The overproduction of fMRI studies that explore functional localisation,
has led to an oversimplification and ad hoc explanations based on a new breed
of phrenology. What fMRI really measures, is differences in the amount of
oxygen in the blood in different parts of the brain. The nerve cells, when
particularly active, consume more oxygen so there is a correlation between
neural activity and the oxygen amount. There is no a general agreement
about the real relationship between the neural activity and the metabolic
signal measured in fMRI [239], [240]. Brain imaging techniques like fMRI,
PET or SPECT, show metabolic patterns of blood flow which are subsidiary
to the actual neural activity.

The habitual approach used in brain studies for the localization of the
module of a particular behavior was:

• Focal ablation of the part where the functional aspect to be tested resides
• Focal stimulation to reproduce it and
• Electrical recording of the neural activity

This same strategy is followed in brain imaging studies (fMRI, PET,
SPECT). The extreme simplicity of the phrenological conception, a concrete
area local owns a particular behavior or cognitive ability, is at the core of
its massive success in terms of the number of practitioners, experiments and
results in the fMRI discipline.

Other techniques like EEG, ECoG or magnetoencephalography (MEG),
which focus on the electrical and magnetic fields, provide data closer to brain
dynamics than the metabolic data obtained from studies of exclusive brain
imaging. EEG represents synchronized activity over a network of neurons
and it is indeed the summation of synchronous activities of thousand or
even millions of neurons that have a similar orientation. The potential fields
measured with EEG are more accurate near the scalp than in deep areas of
the brain. Indeed, the signal dramatically falls off with distances of the order,
radiowaves

4 [92].
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The real challenge is to understand the mechanisms, from the micro level
of neurons all the way up to the macro level of the machinery of assemblies of
networks of neuron-systems, that underpins cognitive actions like perception
or memory. The main difficulty arises in the dissimilarity of levels. On one
hand, at the micro level of single neurons, EEG can provide all we need for
building the dynamics of single neurons. On the other hand, at macro level,
the MRI or PET spatial patterns of blood flow, provide localisation of the
cognitive action, but say little of the dynamics of the brain area involved.

Another problem is that causal inference between levels is more ambiguous
than within the same levels. An example of inference at the micro level, is
that the stimulation of one neuron induces an evoked potential in that neuron.
Par contre, at the macro level, what EEG shows is oscillations that represent
synchronized activity over a network of neurons. Based on the special charac-
teristics of the EEG signals, like frequency or amplitude, the neuroscientists
infer particular states in the brain functioning like during walking or sleeping.
For example, theta wave pattern (frequency range 4-7 Hz) is predominant in
relaxed and meditative states and gamma waves (frequency range 30-100 Hz)
in carrying out motor functions.

7.4.2 Linear vs Circular Causality

Conceptually, linear causality operates as follows. A stimulus S initiates a
chain of events in a linear temporal sequencing. No effect can precede or
occur simultaneously with its cause, and at some instant in the chain each
effect becomes a cause. Linear causality can tell us how a reflex response is
caused by a conditioned stimulus. But the reflex response is nowhere near
being able to explain the causes of perception or any other fairly complex
behavior. Linear causality is strictly determinist, A causes B causes, B causes
C and so on. For example, a stimulus excites a sensory neuron; that excites
the sensory cortex, that transmits to the motor neurons, that finally contracts
the muscle.

Circular causality was initially suggested by Marleau-Ponty [241]. The
action does not follow the sensation, rather both action and sensation are
both cause and effect of the “intentional arc”. Circular causality expresses the
interactions levels in a hierarchy. A hierarchical organisation like that of the
brain has, top down constraints that apply to lower levels of the organisation,
which in turn, constrain the higher level functions. In biology, it is very rare
to find one function that is located in a single component. Rather the function
arises from the interaction between several components. A possible exception
that confirms the rule, is the haemoglobin that transports oxygen in the red
blood cells of vertebrates. The interaction between components and levels in
a system is at the core of the bidirectional causation that circular causality
describes.
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Circular causality in brain network is created by virtue of synaptic inter-
actions between neurons. In linear causality, the stimuli are always injected
into a passive brain which has attuned sensor to the stimuli. Contrary to
this view, the concept of circular causality is necessary to cope with the
self-organising chaotic dynamics within the brain. In section 7.7.2 which is
devoted to neurodynamics, I explain how self-organised patterns of neural
activities are produced.

For a critique of the idea of Circular causality see [242].
5Technique name Spatial resolution Time resolution Pros&Cons

7.4.3 Granger Causality

Granger causality is a term for a specific notion of causality in time-series
analysis. Originally, the term was coined by Norbert Wiener and the No-
bel laureate economist Clive Granger, who applied the concept to economic
realm. In neuroscience, Granger causality analysis is used to understand the
relationship between network structure and network dynamics. It might be
remarked that the term network dynamics, in the context of graph theory
applied to neural systems, means network function. Data regarding local field
potential and recordings using EEG, MEG or fMRI have received a G-causal
analysis. Causal network analysis provides a radically new insight into the
mechanisms underlying higher cognitive functions, including consciousness.
The neural correlations are not explanatory and there is an urgent need for
theoretical concepts that connect the phenomenological aspects with neural
dynamics. Causal network seems to be useful in revealing the general princi-
ples governing causal interactions between long distance neural populations
and also as a framework to test the functional connectivity.

“Causality analysis makes no assumption about information processing
or neural code.[243]” However Granger, causality has been more successful
in generating heuristics for the analysis of biological data in bio inspired
robotics, for example in the robot Darwin-X, than in building theoretical
framework for the understanding the global functioning of the brain.

Some drawbacks of G-causality are: linearity, stationarity and dependence
on observed variables. The causal core analysis requires exhaustive knowledge
of structural and funtional connectivity which, currently can not be supplied
with real data, except for simulated environments.

On the positive side, the “causal approach” will strengthen the mesoscopic
analysis in brain connectivity and dynamics. This is a necessary step because
it has historically received minor attention if we compare it to the microlevel
of single neurons, or with the macroscopic level of brain systems.
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7.5 A Theoretical Framework for Connectivity in
Biological Networks

During the 40’s and 50’s the study of biological systems acquired a totally
new dimension. The pioneering work of cyberneticians like N. Wiener or D.
Cannon started a conceptual revolution in the study of life systems. The
introduction of mathematics and in particular control theory in the mod-
eling of biological process, made a rigorous understanding of principles like
homeostasis possible. Homeostasis is defined as the property of a system that
regulates its internal environment and tends to maintain a stable condition.
This is now accepted as a principle in physiology2. Living systems use con-
trol methods, hence we can use control theory to tease out the underlying
principles of such systems [9].

Theoricists like N. Rashevsky, in his effort towards a quantitative biology,
steer a new way of thinking in biology. The search for general principles in
biology gives rise to a whole new discipline, mathematical biophysics. Ex-
amples of the principles stated by Rashevsky are The Principle of Optimal
Design (POD) and the General Principle of Relation Forces (GPRF). POD
states that an organism, for a set of prescribed functions, has the optimal de-
sign with respect to the material used and the energy expended. It should be
noted here that the optimal design of Rashevsky, is not global but local, that
is to say, the existing structure is optimally modified by a function. A com-
pletely new structure is unlikely to appear, for example a thumb in bear[5].
In GPRF, the development of an organism tends to increase the number of
relations between the organism’s components, as well as the diversity in those
relations.

In this section I argue that the interactions, rather than the components,
constitute the very essence of the biological systems. Biological systems are
defined by the interactions between their components [244]. It is relevant, for
instance, that the biological components has an expiration date. Thus the
components of a cell at one instant t, represents only a tiny fraction of the
cell later on, at some instant t + k. As biological systems are hierarchically
organised, the same goes for cells within the tissues or for the individuals
that form a society.

In order to determine the functional state of a system we need to identify
and properly described all the links in the network. By network I mean an
abstraction that represents the relationships between objects. In biological
systems, the networks represent interactions within and between biological
systems. The networks are typically depicted as directed graphs and capture

2 The paternity of the concept of homeostasis is disputed between Claude Bernard and

Walter Cannon. However the concept comes from Bernard’s milieau interior which states
that the constancy of the internal environment is the condition for a free and independent

life
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the result of evolutionary pressure upon the biological system. It is interesting
to note that Darwin himself used this kind of formalism[124].

Every cell contains networks of thousands of interactions. More precisely,
within a cell, the links between molecular components are chemical reactions
or associations between chemical components. In the brain, the links are
synapses. Despite the gloomy complexity that biological networks can present
i.e. non linear interactions of highly coupled components, which have under-
gone continuous structural changes driven by external forces; we can formu-
late general laws of connectivity that apply to biological networks. Thus, the
details of the components may not be needed to understand the functioning of
the system and its evolution. According to Polsson [244], the interactions are
the dominant variables in the state of the system. However, even if we could
characterise all the links in a biological network, the phenotype of the biolog-
ical system would remain uncertain. This is because the possible functional
states in the network, grow much faster than the number of its components
or nodes.

For example, in the human brain, a network would contain 1010 nodes or
neurons and 1014 links or synapses. It goes without saying that apart from
the illegibility of such diagram, practical issues like knowing which neuron
is connected with which, or what is the shortest path between two distant
neurons, pose problems of non computability. In order to be operational,
the numbers of degree of freedom need to be drastically reduced. Let me
emphasise this point. However, in order to understand brain structure and
function, we need to search for its patterns. This search will be futile if we do
not constrain the search. What it is necessary is to surmise general principles
of the system, for example: stability, robustness, adaptability. The constraints
are embedded in those principles.

So far, I have aimed to make clear, that in essence, a biological system
is a network of interrelated elements and that the relationships between the
components play a major role. However, we must also remember that the
components themselves may not be neglected. In the neuroanatomy of the
cortex, the problem of how the cortical circuits work is still ontological. Stated
simply, the different types of neurons, their morphologies etc. must be pre-
cised. It is worth reminding ourselves that a complete synaptic map of the
human cortex has not been accomplished yet.

As an example of large variety of nerve cell types, the worm C.elegans
has only 302 neurons, despite this short number of nerve cells, White et al.
[245] have identified, nothing less than, 118 different classes of neurons. The
largest class has 13 neurons which have identical morphology and connectivity
patterns, but many classes contain one single neuron.

The current technologies for the morphological exploration of the brain
has lead to a embarrassment of riches. The few types of neurons identified by
Cajal and his pupil Lorente de Nó, provided a simplified taxonomy of neurons.
Today, as parameters that can be measured with new technologies increase
in number and precision, the taxonomy becomes unmanageable. Attending
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to the different neural properties that can be measured, it is possible to
characterise many classes of neurons, probably many more than what are
really necessary.

The criterion behind the emphasis in the interactions, is that the gulf be-
tween structure and function, can be bridged exploring the interplay between
connectivity and dynamics. The problem with delineating connectivity is that
in forming synapses, cortical neurons are promiscuous. Given that a neuron
is polineurally innervated what we need most is to identify the presynaptic
neuron of any particular synapse. Botzenger [246] showed that for some layers
is at least possible to account for most of the synapses, assigning a source to
every synapse.

This leads us at once to the question: how spatiotemporal distribution of
neural activity is shaped by the underlying network connectivity? In [247],
is suggested that brain changes of connectivity is a major mechanism for
learning.

7.5.1 Defining Brain Connectivity

Kids in the school learn that we have five senses: taste, smell, sight, sound
and touch. However, such classification, though didactically useful, is in the
words of Patricia Churchland “notoriously inept [248]”. Indeed, the nervous
system has receptors not only for the five senses but also for different things,
like for example, detecting changes in the position of the head, detecting
changes in the blood pressure, or in the oxygen level in the arteries. Besides,
the classification is careless with the senses of other animals. For instance,
bees can detect ultraviolet lights, and a magnetic compass for positioning has
been demonstrated in 18 species of migrating birds [249].

The senses are located in particular brain regions where specific type in-
formation is processed. The sensory neurons in those areas typically form
specific maps of the receptor sheet of cells in the proper organ -e.g. maps of
the body surface (touch), the retina (sight), the olfactory bulb (smell) or the
basilar membrane of the cochlea (hear).

The understanding of these maps is the first stage in the process of rep-
resentation in the brain, of the world in which we live. The neural maps for
sensory perception seen above, and also those representing the limbs’ muscu-
lature and specific movements are more or less are well-known. What is still
not fully understood is the ways in which these maps are interconnected. If
we know which are the preferred stimulus features for single neurons, we can
infer the function of a local assembly of neurons form its constituent neurons.
That is to say, only when we have a 1 to 1 mapping stimulus/sensory-motor
neuron, the anatomical structure of the neural set will be enough to determine
its function.



7.5 A Theoretical Framework for Connectivity in Biological Networks 139

Of course, this fortunate coincidence of the anatomical and functional
connection is marginal. A distinction between both is mandatory. However,
before getting into the difference between anatomical and functional con-
nectivity, it should be noted that this demarcation is not exhaustive and
other approaches are possible. In [250] a distinction is made between ef-
fective connectivity and functional connectivity. The former is akin to the
neuroanatomist’s effort in finding out how neurons connect each other and
form coherent networks and the last is associated with neurophysiology in
designating units of functional specialisation. More precisely, functional con-
nectivity means the temporal coherence among the activity of different neu-
rons, measured by correlating their train spikes and effective connectivity is
the simplest neuron-like circuit that produces some temporal relationship as
observed experimentally between two neurons. One possible example of ef-
fective connectivity is the axon and the muscle fibers it enervates, which in
[223] is referred as motor unit. Each muscle fiber is one single motor axon
that innervates several muscle fibers. For example, in the leg we find circa
1000 muscle fibers, while in the eye an axon is connected to fewer than 100
muscle fibers.

The effective connectivity can be traced by studying the sequence of sig-
nals that produces a reflex action and is transmitted all the way down the
axon to the muscle fibers. Let us see how. When a muscle is stretched, the
amplitude and duration of the stimulus are reflected in the amplitude and
duration of the receptor potential in the sensory neurons. The graded signal
is transformed an all-or-none signal. This happens only in case the receptor
potential exceeds the threshold for action potentials in that cell. The more the
receptor potential exceeds threshold, the greater the depolarization and con-
sequently the greater the frequency of action potentials in the axon; likewise,
the duration of the input signal determines the number of action potentials.
The frequency and number of action potentials, is the actual information
conveyed along the axon’s length to its terminals and determine how much
transmitter is released from the sensory neurons to the motor neurons. The
transmitter interacts with receptors on the motor neuron to initiate a graded
synaptic potential.

If the membrane potential of the motor neuron reaches its threshold, an
action potential will be generated and propagate to the motor cell’s presy-
naptic terminals where the action potential causes transmitter release, which
triggers a synaptic potential in the muscle. That in turn, produces an action
potential in the leg muscle, which leads to the final muscle contraction and
an overt behavior. This sequence of transformation constitute an example
effective connectivity with one sensory neuron and one motor neuron.
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7.5.1.1 Anatomical Connectivity and Functional Connectivity

Anatomical connectivity is a structural linkage such as synapses or diffusion
channels between two neurons or groups of them.[20] The anatomical con-
nectivity is spatially structured. The combined activation, through synapses,
of discrete and local assemblies of neurons give rise to spatial connections.
One anatomical local area connection may admit several functional imple-
mentations. This means that connectivity is not solely spatial but temporal
as well. The arrangement of neural networks i.e. the synapses, vary during
the realisation of cognitive operations. Thus, there is not a clear cut border
between structural and functional connectivity maps.

To exist, functional connectivity, needs two prerequisites; one is anatomi-
cal connectivity which must be already in place; and the second is a function
that sets up co-active states between the neurons. The more complex the
cognitive functions are, the more predominant the functional connectivity is
over the anatomical connectivity. Thus, even with the astoundingly detailed
and precise knowledge of the brain anatomy that technology is now mak-
ing possible [62], this won’t lead us to the understanding of the principles
underlying all cognitive function, on its own.

One habitual approach to get the neural substrate for the implementa-
tion of cognitive function in the brain, consists of identifying specific local
networks that participate in cognitive operations. Functional imaging tech-
niques have led to important advances to this respect [251],[252],[253],[254].
However, due to the poor temporal resolution of this type of technology, it
is easier to establish associations between large scale areas and highly inte-
grated cognitive functions, than to identify the local brain areas specialised
in medium-low level cognitive functions.

We know that a local area can be related to several functions. Thus, any
attempt to establish the function of local area is bound to be rather arbitrary.
The function of a local area network, depends on its pattern of synchronous
interconnectivity with other local networks. The patterns of the brain and
its dynamics are the subject of section 7.6.

7.5.1.2 Reformulating Hebbian rule for learning

Francis Crick, in [255] claims that in the neocortex the correlation of the
firing of neurons is stated differently, neighbor neurons seldom fire precisely
at the same time. But by the time Crick wrote this, no in vivo synaptic
mapping had been made. Thus, assuming Hebbian principles, Crick derived
that if neurons fire together, the also must necessarily wire together.

However, for the principle of economy, it is more likely that there is a
connection between two neighbor neurons, than between two neurons that
are far away. Obviously, if they are far, their exchange of information is more
energy consuming and slow than if they are close. The real significance of



7.5 A Theoretical Framework for Connectivity in Biological Networks 141

in vivo imaging of neurons, is that it dramatically challenges the “neuron-
point” notion. The cytoarchitecture and dendritic arbors become relevant for
modelling the physiological action of neurons.

A neuron is a cell body (soma) and a set of projections; axons and den-
drites, which extend out of the soma. This picture is a rough generalisation,
however. For example, there are neurons with axons and no dendrites, and
in the olfactory bulb we find neurons without axons and dendrites [248]. In
[256], Bullmore and Spoorns, using diverse experimental modalities in hu-
mans (structural and functional MRI, diffusion tensor imaging, magnetoen-
cephalography and electroencephalography) show that neurons and brain
regions that are spatially close, have a relatively high probability of being
connected; whereas connections between spatially remote neurons or brain
regions, are less likely linked. More evidence of this functioning principle can
be found in [257], [258], [259].

Cortical neurons, except when they are driven by stimulation, give very
low correlation coefficient of their time firings with those of their neighbors
(0.01 aprox.) [260]. This means that the fraction of the variance of the activity
of a single neuron that is covariant with the neighborhood is 1 in 10,000.

The basic biophysical process at the root of memory formation is the mod-
ulation of transmission of information across synapses. The cortical represen-
tation of our internal and external world are built by modulation of contacts
between neurons. It is through the comprehension of the connections between
the neurons that we can predict and control the behavior of the single cells
and the networks formed by them.

If there is one thing everybody agrees upon, and in neurosciences we do
not have that much parsimony, it is the central role of synapses in the making
of cognitive networks. However, the mechanism is not yet known by which a
synapse becomes a link, or a part of a link, in a cognit representing a memory
or a feature in the environment. Indeed the Hebbian rules do not exhaust the
possible explanations for synaptic linkage of networks of neurons with repre-
sentational content. Besides, in the formation of networks, the neurochemical
modulation, neurotransmitters like GABA (mostly inhibitory neurotransmit-
ter but not exclusively like Crick wrongly assumed) or NMDA, which induce
long synaptic currents facilitating the integration of non synchronic inputs.
are involved

To sum up, Hebbian principles are a still valid in guiding the understanding
of the formation of neural networks with cognitive significance, but as likely
as they are, they are not exclusive nor universal. Hypothesis from inspired
theoricists are now more pertinent than ever in neuroscience.
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7.5.2 Characterisation of Network Topology with
Graph Theory

The study of complex networks focusing on network topologies and using
graph theory concepts, has provided a fresh insight into the problem of neu-
ral organisation. Since Watts and Strogatz’ article in Nature, in 1998 about
graph theory and its application to complex biological networks[261], biolo-
gists began to see network theory as a promising theoretical framework for
quantifying the structural and functional properties of biological networks.
The network theory provides a quantifiable framework, making explicit terms
like connection density, path length or node degree distribution, that may be
used to explore the structural and functional connection properties in the
brain.

According to Ermentrout [262], it is possible to write the equation of the
network dynamics for point-like neurons (dendrites are ignored). Let vi(t) the
membrane potential of neuron i at time t and ui(t) the firing rate of neuron
i at time t. It is normally assumed that the firing rate ui(t), is a function of
the membrane potential vi(t). Thus ui(t) = Fivi(t).

The dynamics of vi(t) is given by

vi(t) =

t∫
t0

Gi(t− s)
∑

j

wijFj(vj(s− δij))ds (7.2)

where wij is the scalar that represents the synaptic weight. The connec-
tivity matrix w defines an effective geometry in which the dynamics of the
system evolves. Here, w shows the network topology but does not say any-
thing about the neural mechanisms that qualitatively affect the dynamics of
the network.

Let us give now some introductory notes about graph theory that we will
need next to identify some relevant network topologies. A graph is a collection
of nodes N and a collection of edges E, G = (N,E) that connect pairs of
nodes. A path is a sequence of edges that connect nodes. The number of
connections a node i has is called degree, Di. The degree distribution Pk is
the probability that a node has k connections. The average path ap is the
average of the shortest path between of every two nodes in the graph. The
complete description of a particular graph is provided by its adjacency matrix
w. Each of its elements wij characterises the connection between the node i
and j, for example the number od edges among these two nodes.

Taking this into account, I introduce three kind of network topologies:
random, scale free and small world.
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7.5.2.1 Random network

The main characteristics of a random network are: every two nodes have the
same probability to be connected, most of the nodes have a degree close to
the average degree and the degree of distribution P is Poisson. A random
graph, also called Erdos graph, is a statistical ensemble of all possible graphs
of N nodes and E edges, where each member of the ensemble has identical
probability of realisation. A random graph is obtained by starting with a set
of nodes and adding edges between them at random, as a result an inter-
esting property is generated: every possible edge occurs independently with
probability p. It ought to be said that ”random” refers to the assignment
of a probability value to a link between each pair of nodes, not to lack of
structure.

7.5.2.2 Small world network

Small world networks have as main features high clustering and short paths.
Put another way, most nodes are not neighbors of one another, rather they
can can be reached from every other by a small number of steps. In small-
world graphs a low percentage of the local connections is replaced with uni-
formly distributed long connections [263]. Small world graphs characteristics,
high clustering and short path, can be seen in cortical connectivity. Indeed
axons projecting long distances are few in number than local axons form-
ing clusters of neurons. An implication of the key features in small world
networks -high clustering and short path- is that they provide high speed
communication channels between distant parts of the brain, facilitating dy-
namic processes that require global cooperation between neurons, like for
example occurs in neural synchronisation [264].

Small world networks are more clustered than Random networks in the
sense that if for example A is connected to B, and B to C, then it is very
likely that A is connected to C. Thus, transitivity (A→ B and B → C then
A→ C) is a common property in small world neworks

According to [265], [266], [267], [268], the brain’s structural and functional
systems have a small-world topology, this means highly connected hubs and
modularity, both at the whole-brain and at cellular scales. Here I would
caution that presently, the only complete connection matrix that has been
accomplished is that of the C.elegans, a nematode worm of only 302 neurons
linked by some 7,000 synapses. The C.elegans has a special property that,
it goes without saying, animals more complex than this worm, are lacking.
This is the one-to-one map between the cells of the central nervous system
in different members of the C.elegans species.
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7.5.2.3 Scale free networks

Scale-free networks is a very interesting example of complex network topol-
ogy. The degree of distribution, pk, means the fraction of nodes that have
k links. Thus, pk quantifies how much connected are a node compared to
the other nodes. Differently from random networks seen above that have a
Poisson distribution, the scale free networks have a heavy tailed distribution,
pk decays slower than in a Poisson distribution.

pk = k−γ (7.3)

where γ = [2.1, 2.4]
Scale free networks are fractal in the sense that no single characteristic

scale can be defined [269]. They have structural self-similarity, or borrowing
the expression from modern physics, scale free networks present symmetry
under scale change.

In the cortex, scale-free dynamics are characterised by hierarchical self-
similarities of patterns of synaptic connectivity and spatiotemporal neural
activity [18]. One functional advantage of this kind of network is its resistance
to random failure, only crashes in hubs are critical to the global network
functioning. Of course, this same advantage turns out to be a weak spot
when one hub fails.

7.5.3 Connectivity and Network Dynamics of the brain

At this point, it is crucial to realise two things. First, the literature of brain
networks analysis using graph theory [256], [261], [270] assumes that net-
work dynamics is determined by its connection topology. Thus, the dynamics
changes as the connectivity matrix changes. So, in the network dynamics
equation 7.2, the membrane potential of a neuron depends on its synaptic
weights which are quantified in the matrix wij . But the only way of gener-
ating such association matrix wij , is by compiling all pairwise associations
between nodes and apply a threshold to each element of this matrix. Hence,
depending on the threshold that one chooses, different network topologies
arise. And the problem is that the threshold is arbitrarily selected.

Second, and more importantly, there is caution word to say about the use
of the term dynamics. In the “small world” literature, dynamics is used as the
algorithm that puts in order the network structure, that is, how the connec-
tions between the nodes are modified over time. On the contrary, this paper
defends a more fundamental interpretation of dynamics. Here, the dynamic
nature of biological systems is understood, not in the customarily sense as
the organisms’ evolution over time, but as the capacity to organise invari-
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Fig. 7.6 The drawing is from [18] and shows five types of connectivity distributions. Uni-

form: the distribution is constant, nearest neighbor: nodes have the same degree of connec-

tivity or 0, Small world: high clustering and short path, Power law: Poisson distribution
and Exponential

ant patterns. In chapter 7.7, dynamics is explored as the mechanism that
underlies the organisation of patterns in the brain.

7.5.4 Regular vs Complex network topologies

Lets remember the objective that we are trying to achieve here, is to char-
acterise the neural operations by which patterns of activity are created. As
stated in chapter 7.7, these patterns are dynamic structures evolving over
time. The difficulties we are facing are those that we find in the complex
systems. Suppose we have identified and modeled different subsystems, so we
are able to predict the future behavior of each subsystem treated separately.
Now if we plug them together, we no longer have the accurate control we had
when we dealt with the components separately. The coupling between the
different components makes the behavior of the resulting system not directly
reducible to their simple components. As the layman would say: the total is
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not just the sum of the parts. Circular causality rather than linear cause-
effect; and synthesis, rather that mere analysis, need to be in place before
dealing with complex systems.

However, when facing a complex system, a successful strategy is to sup-
press certain complications while highlighting others. More precisely, in the
study of large scale neurocognitive networks in the brain, we can identify two
main approaches. One is focused on the dynamics of the system and the other
concentrates more in the network architecture. Both approaches are sketched
in the next two sections.

7.5.4.1 Dynamics in regular network topology

In the study of dynamics in regular network topology, we assume that the net-
work architecture is regular and static. This facilitates the study of nonlinear
dynamics because we suppose nearly identical dynamical systems coupled
together in simple geometrically regular ways. Bellow there are four good
reasons for omitting the network complexity and focusing on local dynamics
[264].

1. Structural complexity: the anatomical connections can be extremely tan-
gled. This is problem in neural network because, in forming synapses,
cortical neurons are very promiscuous.

2. The plasticity of the network: the wiring is not static, it changes over time,
for example in the learning process.

3. Diversity in nodes and links: There are several kind of neurons and
synapses. There are several ways to classify the neurons:

a. Based on the morphology: pyramidal and non pyramidal.
b. Another possible classification is according to the spines on its den-

drites: approximately the 80% of neurons are spiny cells and the 20%
are non spiny.

c. The neurons can also be classified functionally in sensory, motor and
interneurons.
i. Sensory neurons: transduce physical signals into electrical signals
ii. Motor neurons: innervate the muscles to produce contractions. They

have large cell bodies and complex dendritic trees.
iii. Interneurons: connect sensory neurons (afferent neurons) and motor

neurons (efferent neurons) in neural pathways

The synapses are classified morphologically into two types:

a. Type I: The membrane is asymmetrical, thicker in postsynaptic cell
than in the presynaptic one

b. Type II: These synapses have symmetrical membranes
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This morphological classification has a major interest in physiological
terms. Remarkably, it seems that most type I synapses excite, while most
type II synapses inhibit [255].

4. Dynamical complexity: the nodes could be nonlinear dynamical systems.

In addition, these four complications do not act isolated from each other,
but rather they are connected. For example ii. affects i. because the anatomi-
cal connectivity varies with changes as the network evolve over time. Neurons
are created and die (apoptosis). To sum up, we can always assume that the
network is regular and static and focus on the dynamics of systems coupled
in uniform ways. The dynamics of local collections of non interactive neu-
rons can be represented with ODEs, recurrent feedback relations model the
relations between such local collections. The interactions between excitatory
and inhibitory groups of neurons create a mesoscopic order [271], [272] that
is typically tackled with Chaos theory in terms of state transitions between
wings of global attractors.

7.5.4.2 Complex network topology

Now that the dynamics of systems has been addressed, we put them together
in order to incorporate the network complexity aspects. But here lies the
problem, using Strogatz’s words

Unfortunately they lie beyond our mathematical reach - we do not even know how

to characterize their wiring diagrams. So we have to begin with network topology.

It is needed a different approach, complementary to the one seen above, that
copes with in the dynamics assuming that the network is regular. Now, what
is at stake is the network architecture. Thus, we sidestep the dynamics in
order to deal with complex architectures. I am using here architecture as
identical to topology. In the subheading 7.5.2, I sketched complex network
topologies using graph theory concepts and methods. Namely, random net-
works, small world networks and scale free networks.

I posit the idea that a mathematical breakthrough is necessary. The way
in which non linear dynamics of biological systems are coupled, according
to small networks or scale free networks, is a path worthy to be followed in
order to explain and predict how meaningful patterns -population of neurons
subserving cognitive functions- are formed and evolve. In order to encompass
the two complementary approaches above, we need to discover the organisa-
tional principles. Because structure necessarily affects function, the generic
properties, rather than properties of particular nodes in the network topol-
ogy, need to be worked out. I claim that principles like stability, robustness
and scale free, which are mathematical abstractions, as well as features that
can be found in the biological systems, must guide the move towards the
mathematical progress in brain sciences.



148 7 Towards a theory of brain structure, function and dynamics

7.6 The search for patterns in the brain

The term pattern is one of the most prominent in science today. For exam-
ple, crystallography studies the symmetry properties of crystals based on a
particular arrangement of atoms or pattern; in psychology and ethology the
behavioral pattern of an animal is common jargon; and in computer sciences
pattern recognition is one of the most prolific research areas.

The use of pattern in this section is restricted to the synaptic connectivity
in the brain cortex. As it is well known, the brain cortex is a most important
structure for human cognition.

The patterns of connectivity in the forebrain are not merely the effect of
processes such as memory or learning, which are possible due to the plas-
ticity and developmental characteristics of the brain. Additionally, to the
experiential and ontogenic aspects just mentioned, there is also a previous
phylogenetic pattern formation. It is evident that animals are not get born
with a tabula-rasa, rather we have, from the moment of our birth, basic pat-
terns of anatomical connectivity that represent basic actions and percepts.
The specificity of these patterns of anatomical connectivity is due the phylo-
genetic modulation, common within the same specie [273]. Morphologically,
the entire anatomical architecture of the cortex of a mammal, though not
complete yet, will be eventually achieved thanks to the improvement in the
current visualisation techniques. This claim is not a manifestation of positive
thinking or a religious wish, rather it is rooted in the fact that brain con-
nectivity is highly generic and redundant [274]. But, as mentioned before, a
complete map of the intricate anatomical connections, is not the same as a
functional map. The anatomical patterns undergo continuous changes over
the life span of the animal. Contrary to the innateness of the phylogenetic
patterns, the ontogenetic patterns are created through synaptic modulations,
elicited by cognitive factors such as emotion, memory or attention.

According to [275], [276], scale free and small world properties have been
found in cortical connectivity. The Caenorhabditis elegans is a worm which
is particularly relevant in brain studies because it is the one species with
a complete neural map available[277]. In the seminal article of Watts and
Strogatz[261], they demonstrated the existence of small-world network prop-
erties in the C.elegans. One decisive value of this paper, is that establishes a
quantitative analysis of complex networks and translates it to brain network,
concluding that at anatomical level, the large-scale connectivity of C.elegans
brain is not random or complete but small-world.

An attempt of this kind is powerless when dealing, not with anatomi-
cal level of fixed connections at in the C.elegans, but with the functional
connectivity and its dynamics. Now one remark is in order, practically any
cortical neuron or neuronal assembly can be part of many larger different
assemblies of neurons of functional relevance. Thus, at first glance, while the
anatomical arrangement is regular and fixed, the functional one manifests
more as a widespread constellation of activated areas all over the brain than
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as an ordered arrangement. This seems to suggest a strong contrast between
anatomical and functional connectivity. The way to conciliate this tension is
to acknowledge that the understanding of neural organisation requires the
integration of the anatomical, functional and dynamic approaches [278].

7.6.1 A first approach to meaningful patterns in the
brain

The cognitive operations are represented in functional maps which are im-
plemented in neural structures that evolve over time. The challenge is to
identify those maps of neurons that represent the cognitive actions. On this
basis, the term meaningful pattern is defined as a neuronal network with cog-
nitive representational power. Stated another way, meaningful patterns are
dynamic structures i.e. neuronal networks, that express cognitive operations.
In the brain, these patterns are meaningful neural networks that transcend
the anatomically observed modules of the brain. They are meaningful in the
sense that they are functionally relevant.

The concept of the functional organisation of the brain has undergone a
remarkable change in the last decades. The concepts of representation, pat-
tern and dynamics are pivotal in the understanding of the neural mechanism
of the functions of the brain.

It is very important to remark that I am using here the term cognitive
not in the usual way it is used as mental ability, but in a more radical sense,
keeping away from arguable terms like mind or intelligence. Here, a cognitive
state simply means an internal representation of a relevant feature for the
survival of the organism. Thus, in this framework, a cell cognizes. More pre-
cisely, a cell represents environmental states through a set of proteins called
transcriptional factors, which represents internal states of the cell that are
important for its survival in a complex and changing environment.

Here, I defend the view that it is at the level of internal representations
of the external reality, where the gulf between biological basis of for exam-
ple, perception or learning, and the mental constructs associated with those
mental aspects can be bridged. These internal transformations are driven
by dynamic neural processing mechanisms, resulting in patterns of neural
activity.

The study of perception has held as a central position in philosophy, psy-
chology and of course brain sciences. So, a lot is known about how our cortical
areas e.g. auditory or visual, transduce and internally represent the external
stimuli. These cortical sensory areas are defined based on cytoarchitectural
properties. For very simple and primitive features of the external world, the
final pattern of neural activity is isomorphic with the perceived reality. In this
case, the internal representation of the world is mainly topographic. But the
functional properties of neurons loose their specificity as soon as the internal
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representation is not isomorphic, so the topographic map is superseded by
patterns of connectivity able to deal with more abstract features.

To sum up, the neural representation of holistic perceptions are embed-
ded in recurrent patterns of connectivity. In order to understand the neural
mechanisms in a working brain, we need to challenge the concept of func-
tional representation. An agenda that acknowledges the crucial importance
of the representational power of patterns of connectivity and its dynamics
must be put in place.

7.6.2 Meaningful Patterns in the brain

A main premise is that all cognitive function takes place within and between
neuronal networks, mostly in the cortex. This assumption and how to deal
with it, is at the core of the gap between the neural sciences and the cognitive
sciences. The mind/brain problem is the philosophical stand for the same gap.

The above assumption can turn into a luogo comune, a old ancient one
indeed, when not addressed with the appropriate language. In the cognitive
sciences, cohabit concepts extracted from levels of description as disparate as
the mathematical models of activity of the neurons or even deeper, like the
molecular composition of neurotransmitter to the macro level descriptions
-i.e: in plain English- of emotions or social behavior. Surely, a new language
is needed to help bridge that gap.

It is now easy to see that the term meaningful pattern, that was introduced
above, relies on the characterisation of the cognitive structure of a neuronal
network. Similar to the concept of meaningful patterns defined here are the
term cognit coined by the UCLA based neurobiologist J. Fuster[279], the
neural populations at the mesoscopic level in the olfactory bulb studied by
Walter Freeman[20] or the concept of neurocognitive networks conceived by
S. Bressler as large-scale systems of distributed and interconnected neuronal
populations organised to perform cognitive functions [273].

Fuster’s cognits are the structural substrate of cognitive operations and
represents items of knowledge. Thus, a cognit is a cognitive representation
that evolves over time due to the maturational and experience-based process
undergone in the brain.

In Bressler’s view, in order to understand how large scale neural structures
organise to perform cognitive functions, we must be able to first identify the
meaningful networks or patterns that express those cognitive functions.

Freeman’s approach is mainly concerned with the introduction of an in-
termediate level, the mesoscopic, in which the dynamics of large number of
neurons is studied through empirical models in the olfactory system. The ol-
factory system is the simplest and phylogenetically oldest of all mammalian
sensory systems. The proper element for mesoscopic modeling is the local pop-
ulation rather than the more general concept of network of neurons. Contrary
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to local populations, the network of neurons are not necessarily local. Indeed
their neurons can be separated by large distances in the brain, for exam-
ple, networks connecting neurons of different hemispheres or cortico-talamic
networks. The locality property utilised in Freeman’s mesoscopic models, fa-
cilitate their own simplification, because the dendrites of neighbor neurons,
as opposed to the axons, whose operation is non linear, can be treated as a
linear integrator. So, focusing on locality we steer clear of the non linearity
in long distance axons connections.

7.6.3 The multilevel hierarchy of meaningful patterns

Within the micro level of single neurons, the relevant quantities to be mea-
sured typically are the firing potential and membrane potential of neurons.
Within this level there is a direct Input-Output recording that conveys a
linear causality between two observed events. In other words, there is an
isomorphism between the stimulus intensity and the firing rate of sensory
neurons. More precisely, there is an isomorphism between the firing rate of
motor neurons and the degree of contraction of the muscles. The models at
neuronal levels benefit from the linear causality.

The micro level approach, is based on taking data from the I/O pairwise
observation which is embedded into the linear causality schema. Despite its
success in unraveling the structural and functional properties of neurons, it
fails to explain how assemblies of neurons can express cognitive function. One
major consequence of this is that the formation of patterns at the level of
populations of neurons , that is the pattens PLi

at level Li , though arising
from an inferior level in the hierarchy, Li−1, for example single neurons,
cannot be explained directly from the immediate inferior level patterns PLi−1 .

The micro level patterns are occasioned by the coordinated and synchro-
nised activity of single neurons. While at the micro (neuron) level the causal-
ity is linear; at superior levels it is circular, and the I-O relationships are not
as clearly defined as in the microlevel. The epistemology in the macrolevel is
necessarily different than that of the level of single neurons, which has clear-
cut components. Contrarily, in the macrolevel, the components are inherently
coupled with multiple feedback pathways.

It ought to be noted that meaningful patterns are not only associated
with the macrolevel neural basis of cognitive functions such as language or
logic reasoning. There are meaningful patterns at the level of single neurons
as well, for example in simple sensorimotor actions. In the mesoscopic level
of local population, a meaningful pattern, is that that precedes the stimulus
that the subject has learned to expect. As it is referred in 7.2.3, the bulbar
patterns do not relate directly to the stimulus, but to the meaning of the
stimulus.



152 7 Towards a theory of brain structure, function and dynamics

7.6.3.1 What is a pattern made of?

The role of patterns is of the greatest interest for the understanding of the
functional architecture. However, one precautionary remark should be made
before making headway in this direction.

A pattern, as almost any other structure, is made up of its components and
relations between them. This very same postulate sets up the agenda of the
science of systems. Put in neural terms, a pattern is made up of components
and relationships, namely, neural assemblies and the connections between
them.

Thus, the research proceeds by first finding a meaningful elementary unit
and then developing consequences, that is to say, seize the linkage between
those neural assemblies and understand how higher order assemblies emerge
from the interactions between simpler components.

An attempt of this kind may be understood in at least two ways. In the
bottom-up approach, the content of networks is reducible to their components,
and these reducible to their inputs. In this approach, the periphery governs
and the meaningful patterns are 1 to 1 maps of stimulus-neurons. On the
other hand, in the top-down approach, the patterns, are not directly related
to sensory and motor neurons as occurs in bottom-up approach, rather the
representational networks are the product of complex, non-linear and highly
coupled interactions between neural assemblies sparsely distributed.

Almost needless to say, the patterns are not fixed, but evolve over time, for
that purpose, and in addition to the identification of the meaningful pattern
we need to understand its dynamics. In chapter 7.7 a detailed account on
neurodynamics is given.

7.6.3.2 Where the patterns are found?

In 1957 V. Mountcastle discovered the columnar organisation of the cortex,
put in his own words there is an elementary unit of organisation in the so-
matic cortex made up of a vertical group of cells. However the concept of
cortical columns was not completely new, for example Berger in 1929 us-
ing the rudimentary electrophysiological techniques of the time, showed that
cells of similar function -e.g: Primary-Visual, Motor, Somatic, are grouped
in vertical bands. For a historical and condemnatory account of the cortical
columns see [280] [281], [282], [283].

The idea of the cortex arranged in the form of regular columns proved very
appealing and subsequent research produced even more. Huber and Wiesel
renowned studies in the visual cortex confirmed the discovery of Mountcastle.
They reported the existence in the visual cortex of orientation columns. The
problems came when trying to put borders on the columns. For Mountcastle,
Huber and Wiesel, the cortical columns are discrete slabs with a sharp border
between them. Inside each column, all the cells share some common salient
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Fig. 7.7 Huber and Wiesel study of the visual field claimed that the orientation columns

are 50µm width and represent a shift in angle of 10
o
. A complete set of columns subserving

the 180
o

is called hypercolumn. There are two types of ocular dominance columns (L,R) and
two kind of orientation columns. For purposes of illustration, Hubel and Wiesel depicted the

two sets of columns are orthogonal but there is not evidence of such relationship between
them [19].

property. Such a point of view has been today proved to be, at best misleading
and at worst fallacious. In actual fact, these columns lack borders. This fact
can be empirically noticed, orientation is not quantal, the 22 orientation shifts
found by Huber and Wiesel are arbitrary, but varies smoothly across most of
the cortex [284].

It is worthwhile repeating that the columns initially represented basic mod-
ular units of the cortex. In 1988, Rakic found what He coined “ontogenic
columns” serving the basis for the radial unit hypothesis of cortical forma-
tion. [285]. As Mountcastle’s original columns were larger than Rakic ones,
Mountcastle coined a new term, minicolumn which was baptized as the new
basic modular unit, dispensing the cortical column of that honor.

To sum up, minicolumn is the basic modular unit and the neurons within
it encode similar features. The superposition of a group of minicolumns form
a columnar module whose neurons share common functional properties. This
now leads me to raise some concerns; first, how many minicolumns are typ-
ically in a column; and second, is the minicolumn a functional unit of the
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cortex, or it is instead the column to play that role? There is no common
agreement on the first point, according to [273], “perhaps 50-80 minicolumns
are aggregated into a macrocolumn” 3. The answer to the second point is
no. The functional role assigned to columns is not justified. The rationale of
this is twofold. First, because single neurons have multidimensional receptive
fields, this means that different properties that map onto a given cortical
surface can never be simply detached into separate “modules”. Secondly, it
has been impossible to find the canonical circuit isomorphic with the cortical
column. This does not disprove the existence of canonical or local circuits in
the brain, rather it draws attention to the fact that it can not be as simple
as clipping out a cylinder of cortical tissue in the hope that it contains such
circuit. Systems biologists are committed to this task and network motifs
such as negative auto-regulation and feed-forward loops have been identified
in microorganisms [286]. In order to understand the success of systems bi-
ology in dealing with the design principles of biological systems, we need to
acknowledge that, on one hand, from the technological improvements in high
throughput sequencing techniques, a huge collection of data arose, and on
the other hand, the use of mathematical terms has provided a whole new
language able to deal in a more satisfactory way with issues, like molecular
interactions in biochemical reactions, that were exclusively tackled with plain
words. The transition from a purely descriptive biology to an axiomatic one,
has just started and seemingly will keep going towards a direction of mathe-
matisation. The strategy I am proposing to be pursued here, strives to track
down the underlying principles, written in formal-mathematical terms, that
explain and control the organisation of the cortex and other major areas in
the brain.

To conclude, the search for meaningful patterns can not rely on anatomical
structures seen as modular units, rather it is only through the understand-
ing of organisational principles and their formulation in mathematical terms
how the patterns and their dynamics, can be satisfactorily be apprehended.
Mountcastle, the champion of the columnar organisation of the cortex, seems
to be aware of this, since he writes[287]:

These cortical sensory areas do not always fit classically-defined cytoarchitectural ar-

eas. They are defined by their patterns of connectivity and the functional properties
of their neurons, as well as by their cyto- and myeloarchitecture.

3 The cortical column is used in so many ways that a remark is necessary here. Corti-
cal module, cortical column, Hypercolumn and Macrocolumn are synonymous, meaning a
group of neurons which have nearly identical receptive fields.
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7.7 The dynamics of the meaningful patterns.
Neurodynamics

Dynamics has different connotations depending on the context is being used.
While in classical and molecular physics, dynamics refers to the motion of
bodies and the impressed forces that caused it, in neurosciences, dynamics
or system dynamics is concerned with the behavior of complex systems, i.e.
the brain.

In system dynamics, a dynamical system is a mathematical formalisation
consisting of a 3-tuple, (T,M,Φ), where T is the time, M is the space state
and Φ is the evolution of the system, Φ : T ×M → M . Thus, Φ associates
each point of the space state m ∈ M , with an unique image m′ ∈ M , for
every instant t ∈ T .

The concept of a dynamic pattern is rooted in the famous aphorism,
wrongly attributed to Heraclitus, “Panta rhei” or everything flows, which
entails the idea that systems are made of flow patterns whose components
are self-maintaining features of the flows.

In the natural sciences, e.g. Physics, Biology, Chemistry, dynamic patterns
refer to those patterns that are created and evolved by a process of dissipation
of energy. For Prigogine [288], dynamic patterns are dissipative structures
which feed on energy to dissipate as heat. Notorious examples of dynamic
systems are Lotka-Volterra study in the change of the size of the population
of fish in the Adriatic sea, Turing’s Theory of morphogenesis [289] or Hodgin-
Huxley model that explains how action potentials in neurons are initiated
and propagated. Brain functioning is based on organisation of large number
of neurons into coherent dynamic patterns. In neurosciences, neurodynamics
is based on spatiotemporal patterns in brain activity. The patterns are indeed
dynamic structures [20].

The dynamic pattern theory is indeed a mathematical tool useful to de-
scribe the qualitative change in the creation of an emergent property in the
system that is not present in any of the components that form the system.
Changes take place by rapid and repeated jumps from each pattern to the
next defining a flow.

Prior to trying to work out the dynamic model of a system, for example the
brain, the state variables must be declared. The level at which we are access-
ing to these variables, microscopic, mesoscopic . . . necessarily imposes strong
restrictions in the model. As noted above, the brain operates at different
levels of organisation, each with different components and its particular epis-
temology. As a result, there is a gap between levels. While the state variables
and their mappings at microscopic level are well known, those at masoscopic
and macroscopic level are not. The mapping among the state variables of
the micro and the macro levels, that explains accurately how local actions of
single neurons give rise to the global brain states, is still missing.
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7.7.1 The I/O Newtonian approach in brain dynamics
modeling

The success in the obtention of models of the dynamics of single neurons is
owing to the application of the classical I/O approach. The state of a neuron is
defined in terms of variables or quantities that can be measured and controlled
e.g. membrane potential, firing rate. The way in which the neurons interact
with each other is calculated by a rule, typically a differential equation, able to
express the relationship between the output and the input variables. In order
to be solved, the experimenter sets the initial conditions of the equations.
As the inputs of the equations are controlled by the experimenter, we can
analytically obtain the I/O relations of the micro state variables included
in the equations. For example, in the Hodgkin-Huxley equation the action
potential in the giant squid axon is obtained through the ionic current and
the capacitances.

˙Vm =
1
−Cm

(
∑

i

Ii) (7.4)

Thus, the derivative of the potential across the membrane, ˙Vm, is directly
proportional to the sum of the currents in the circuit,

∑
i Ii, and inversely

proportional to the capacitance, Cm.
The microscopic studies of the brain have benefited from the fact that a

neuron’s output is simply the action potential it sends down its axon Herein
lies the linear causality assumed at the microscopic level of the neurons which
is inherited from classical Newtonian Physics. Similarly to this approach,
the Newton-Euler equations used in industrial robotics for calculating the
movement of the manipulator arm created by the applied torque, is similar
to the linear ODE cascaded equations used in the model (K0 set) described
by neurobiologists that represents the dynamics of a local non-interactive
neurons. The KO and the rest of K-sets are described in 7.8

This approach operates appropriately at the microscopic level of sensory
driven activity and it has made it possible to define the topographic pathways
of sensory and motor areas in the cortex. The neural activity in those areas,
is imposed by the stimulus input. Thus, the stimulus and the pattern that
expresses synchronous actions between neurons, are isomorphic.

However, not all the stimuli are as easy as an electrical impulse directly
applied to a sensory receptor. The perception of a landscape or the remem-
bering of a past event, needs of a different approach than the topographic
mapping of stimulus-response in single neurons. The I/O approach in neu-
roscience assisted in the obtention of the mapping of topographic pathways
is useless when dealing with the creation and deletion of perceptions and
memories.

To sum up, the dynamics of mesoscopic and macroscopic levels are built
upon patterns that are not identical to external stimuli, and neither can be
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inferred from them, this is also the case in microscopic level. Within the meso-
scopic and macroscopic levels, patterns capture the meaning of the stimulus
in a given context. Therefore, a different approach is required which may be
able to cope with activity patterns of large neural populations, rather than
with single interacting particles.

7.7.2 Neurodynamics

Neurodynamics is mainly concerned with the study of spatiotemporal brain
activity patterns. The dynamics here is about the changes that the brains
have undergone by the jumps from one pattern to another. Hence, the main
objective in neurodynamics is to extract patterns and then model the state
transitions or jumps between these patterns. The link between microscopic
sensory data activity and mesoscopic constructs may be explained using the
state transition of global attractors. Chaos theory can help us to understand
how mesoscopic order is created from microscopic disorder. For example, the
mesoscopic activity on the olfactory system is chaotic.

7.7.3 EEG/ECoG recording and theoretical hypothesis

As it was shown before, the term pattern may have different meanings. In
[261], Watts and Strogatz use pattern as equivalent to topological connectiv-
ity. The 302 neurons and 7000 synapses of the C.elegans are mapped into a
graph. For the C.elegans, the pattern of neural activity is merely the topol-
ogy of the graph. The reduced number of neurons and their interactions,
suffices to explain the neural basis for cognition and behavior of this worm.
In these kind of organisms, there is only microscopic level to deal with, the
mesoscopic, and macroscopic levels do not exist.

In order to tackle the mesoscopic and macroscopic properties of the neu-
ral system, the depiction of a graph with the structural connectivity is not
enough. Techniques like EEG or ECoG that capture the patterns of connec-
tivity at the macroscopic level of thousands or even millions or neurons are
needed.

Before one starts searching for meaningful patterns in the brain, two issues
must be promptly addressed however. One is to determine the technique
that is going to be used in the experimental analysis. The other, is in the
theoretical ground, as we can easily get lost in the data. Therefore, sound
hypothesis based on empirical work must be made. Certainly, the empirical
and theoretical flows of information are bidirectional.

As it was shown in section 7.4.1, EEG/ECoG recordings provide data more
closer to brain dynamics than the metabolic data obtained with a fMRI.The
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main difference between EEG and ECoG is that EEG is recorded from the
scalp while ECoG recording is taken directly from the cortical surface. Both
EEG and ECoG depict brain waves that represent synchronized activity over
network of neurons. The waves are indeed the summation of synchronous
activities of thousands or even millions of neurons. Thus EEG/ECoG waves
are macroscopic/mesoscopic manifestations of the collective action of a myr-
iad of neurons and their action potentials. It ought to be noted here, that
brain science at the macroscopic level, is not strictly causal in the sense that
the macroscopic waves are correlated and not causally connected with the
microscopic action potentials.

The theoretical claim is as follows: neocortical connectivity and dynamics
are scale free. The empirical basis for this statement was shown in section 7.6.
Additional empirical support for this claim can be found in [18]. The scale free
dynamics could explain how brains with huge differences in size e.g. the brain
of a whale is 104 times bigger than the brain of a mouse, can still operate at
the same time scales. Moreover, it provides a different interpretation of the
hot spots shown in fMRI, rather than the physical localisation of cognitive
functions, which can be understood as the hubs in scale free connectivity
network.

Despite the differences among nerve cells, the basic mechanisms of electrical signaling
are surprisingly similar. This simplicity is fortunate for those who study the brain.

By understanding the molecular mechanisms that produce signaling in one kind of

nerve cell, we are well on the way to understanding these mechanisms in many other
nerve cells [223].

The same idiosyncrasy can be found in the Theory of Neuronal Group Se-
lection (TNGS) [15] or The Global Neuronal Workspace (GNW) [290], these
theories capture macroscopic patterns, exploiting self-organising features of
neural populations across the corticothalamic loop [291].

However, further investigations by neuroanatomists and neurophysiologists
are still needed to precise the correctness of this hypothesis that for the time
being seems well founded. There is a question that needs to be addressed,
however. How do brains perceive the meaning of stimulus. The answer to the
question is: through the construction and binding of percepts. The percepts
are the stuff that makes possible perception, in other words, a percept is the
neural correlation of a perception. This is a theoretical claim that requires an
empirical counterpart. Placing ECoG electrodes in the cortical surface, it is
possible to record brain waves, that reflect the electric activity beneath the
electrodes. Clearly, the brain waves are not the neural activity per se, rather
they are epiphenomenal to that activity.

So the brain waves alone cannot provide the answer to the above question,
but they can help, because these wave packets carry the patterns or percepts,
associated with the content of what is being perceived. Here, patterns are
used as equivalent to the meaningful patterns previously described in section
7.6.2.
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At this point it is very important to realise that the term pattern is an
abstraction, a mathematical object, and not any particular physical instance.
In order to be able to apply the concept of pattern, we need to instantiate it
into real structures in the brain. Now it can be shown that the meaningful
pattern specified in section 7.6.2 and the spatial patterns of ECoG waves
that are going to be explored next, are two sides of the same coin. Thus,
for example, in a C.elegans, the meaningful pattern is associated with the
topological connectivity perceived with electron microscopy. And in a more
complex nervous system e.g. the human cortex, the meaningful patterns is
related to the wave patterns, more precisely the spatial amplitude modulation
of ECoG waves. A meaningful pattern occurring in a perceptual process is a
percept.

7.7.3.1 The AM patterns in EEG/ECoG recording

In this subheading I will show the way in which a percept or a meaningful
pattern can be identified by the spatial pattern found in the ECoG wave
packets.

It was already stated that stimulus and percept are not identical. The
information processed by the sensory receptors corresponds to some features
of the stimulus, but it is the percept that conveys the content of the stimulus.
When a conditioned stimulus is presented to an animal, there is a latency
between that instant and the moment in which the wave pattern appears.
The temporal difference is due to the time required for the formation of a
percept of meaningful pattern. For example when a cat has learned that a
particular stimulus, for example, a specific odor that precedes the ingestion of
food, a spatial pattern that captures the meaning of the situation is created.

In order to get the spatial pattern a ECoG weave burst we need to sample
the ECoG signal at different points, for example, recording from a matrix of
8x8 electrodes placed in the cortical surface. Now, observing the characteris-
tics of the waves in all the 64 points being measured, the waveform is similar
everywhere but the amplitudes differ across the surface. The spatial patterns
of amplitude modulation, AM patterns, are the best candidates to express
the meaning of a conditioned stimulus. Freeman[92] found these patterns in
the olfactory system and it is coherent to expect, based on the fact that the
olfactory system is the oldest and its structure probably pioneered the de-
velopment of other areas, to find them in the other sensory cortices. Thus, it
may be a critical mechanism to understand perception.

There is evidence for the existence of locally coherent domains in the cor-
tex. This means that there is a common waveform, reflecting high frequency
oscillatory activity, across spatial extent. The amplitude and phase of the
wave are both spatially modulated [292]. The spatial pattern of AM has been
related as a categorical perception of conditioned stimuli [293], [294]. Spa-
tial integration is inherent in the activity of a population of neurons and
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EEG/ECoG is so far the best placed method to observe this phenomenon.
The spatial “code” for olfaction is spatial, it has been proved also at the
molecular level [295]

It is important to realise that AM spatial patterns do not encode the
features of the stimuli, rather they categorise the stimuli according to the
context in which the animal is perceiving the stimulus and its past experi-
ence. Indeed, two different AM patterns arise from the same stimulus, this is
because AM patterns are generated endogenously based on the internal state
of the animal e.g. motivation, memory etc. and therefore the AM pattern
cannpt be obtained directly from the stimulus.

stimulus ◦AM pattern−1 6= id
The pattern of phase modulation, PM patterns, does not seem to have a

correlation with perception as AM patterns have, but can help to delineate
the borders of the coherent domain within the AM patterns that encode the
meaning of the stimuli. For example, in the olfactory bulb, the AM patterns
are longer than the cortical columns; so the PM patterns can be seen as an
alternative to the strict boundaries imposed by the anatomical areas like the
cortical columns. The PM patterns have a conic form, which suggests that the
AM patterns do not occur simultaneously everywhere in the domain, rather
the epigenesis is the apex of the cone4.

A typical AM pattern involves from 103 to 107 neurons [92]. Thus, an
AM pattern is a manifestation, at the mesoscopic level, of the process of
integration of the information arriving from different sensory modules e.g.
auditory, visual, somatosensory etc. Irrelevant details, like the firing rate of
a particular neuron, are removed. The AM pattern, expresses the percept, so
the percept can be reconstructed through the pattern. To sum up, the wave
is the carrier of what is being perceived, and the AM pattern of the wave
expresses the content of what is being perceived, namely the percept.

In [296], it is hypothesised that AM patterns plays an even more important
role in cognition than categorical perception, AM patterns would represent
the state of the area in which they evolve, in relation with the other areas
with which they are interacting. Thus, each area’s spatial AM pattern would
exert a mutual constraint and as a consequence of the interaction, a consen-
sual state would emerge as the global neurocognitive state, representing the
assessment of organismic state. In this view, consciousness is an emergent
property of the interaction of cortical areas. Disruptions of this process of
synchronisation between AM patterns could result in pathological issues like
schizophrenia, Alzheimer’s disease [297] or autism [298].

4 The simulitude between the PM cones and the colimit in Category Theory can not be
merely coincidental
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7.8 The K-Sets hierarchy model

Freeman K-sets theory is a nested hierarchy of models that describe the
dynamic behavior of neural masses at the mesoscopic level which comprises
104 neurons with 108 synapses.

The definitive attribute of the neural mass is the set of functional connections which

are the channels through which neural activity is transmitted[20] .

Thus, the K-sets are hierarchically organised. K0, KI and KII are elec-
trophysiological models that fall under the domain of the experimentalist,
namely, the anatomist and the physiologist. KIII is the lowest model in the
hierarchy that copes with behavioral aspects which are mainly located in the
limbic system -e.g: amygdala, hippocampus. On that account, KIII is within
the experimental domain of the psychology. The dynamics of olfactory system
are now fairly clear and can be modeled by a KIII set in the K-sets theory.
KIV models cognitive abilities such as navigation. The hippocampus and its
navigational and perceptual features have been modeled using KIV sets [299].
KV is proposed to model scale-free dynamics in mammalian cognition and
as far as I know, is still underdeveloped.

Freeman in [20], provides a comprehensive and educational exposition of
the theory of K-sets until the KIII level. The KIII is proposed as a model for
key features in the olfactory system like learning and pattern classification.
K-sets takes into account both the anatomical and functional aspects in the
brain areas. The topology of connections is modeled using flow diagrams likely
those used in Control Theory. The dynamics, that is to say, the variation of
the state of the neurons, is expressed trough ordinary differential equations
(ODE). The parameters of the equations are chosen in accordance with the
topology of the network dynamics that is being modeled.

Owing to the mathematical nature of the K-sets, it is possible to measure,
in quantitative terms, how good the dynamic model is, by comparing the
state of the system predicted in the ODEs with the responses experimentally
observed. K-Sets hierarchy designates a topological hierarchy for neural sets.
Freeman identifies eight basic topologies that represent six possible patterns
of connections among neurons. Convergence is the axon of two or more neu-
rons joining on a different neuron, Divergence means the axon of one neuron
ends in two or more neurons, Linear when the output is transmitted in suc-
cession, Parallel when neurons receive from a common source and propagate
to a common target of neurons, Autofeedback is a neuron with feedback onto
itself, Excitatory positive feedback, Inhibitory positive feedback and Negative
feedback.

Only one neuron may have circa 105 synapses, therefore it seems not pos-
sible or worthy to describe all its possible connections. Besides, a neuron is
not an uniform cell, there are cells with no axons, other with no dendrites
. . .
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Fig. 7.8 Topological patterns of connection described in [20] (a) Convergence. (b) Diver-

gence. (c) Serial transmission. (d) Parallel transmission. (e) Autofeedback. (f) Excitatory

positive feedback. (g) Inhibitory positive feedback. (h) Negative feedback.

The K-sets transcend the anatomical and electrophysiological issues and
put the focus on modelling the domain of cooperative activities. The main
factor in the assignment of one or other level in the K-hierarchy seen above,
is the number and scope of the feedback connections.
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7.8.1 K0

K0 is a collection of non interactive neurons, that is to say, the neurons
in a K0 set have no functional interconnections. Typically, a K0 set may
contain 103 ∼ 108 neurons. The problem of assigning a value to each of these
points, which is the normal procedure in the physical sciences when dealing
with systems that are simple enough, is that it may result a computationally
intractable problem.

Thus, it is assumed that the activity in a K0 set is continuously distributed
in both time and space. The closer two neurons are, the more similar their
state of activity. A K0 set can be modeled as a single average neuron whose
activity function is given by a activity density function φ(x, y, t) Thus a K0
set has only two possible topologies, linear or parallel, sharing a common
source of input (for example, a common stimulus like odor, light intensity or
pressure on skin receptors) and common sign of output (+ for excitatory and
- for inhibitory).

Two K0 sets connected without feedback channels form another K0 set.
Inside a K0 the neurons are whether excitatory, forming KOe or inhibitory,
KOi. K0 is the basic unit or primitive in the K-sets theory, and models the
open loop dynamics of a neural population.

7.8.2 KI

KI, similarly to K0, has a common source of input and common sign of
output, but conversely to K0 there is interaction within the set. There are
two types of KI sets, KIe, made up of mutually excitatory neurons and KIi
of inhibitory neurons. For example, a K0e set with interactive neurons is
KIe, likewise an interactive K0i set is a KIi.

Owing to the interactions between the neurons, the active state of KI can
not be represented as an average neuron, as seen with K0 sets. The ODEs
for KI have an additional parameter, the feedback gain which describes the
interaction within the system. The feedback gain is a collective or emergent
property in the sense, that can not be measured at the level of the synapse
between two neurons. A number of K0 and KI sets exclusively connected by
forward mechanisms forms another KI set.

7.8.3 KII

KII models the feedback interaction of KI sets. There are four types of KII
models. KIIee if both KI are excitatory, KIIie and KIIei if one component is
KIi and the other KIi and KIIii when both are KIi. Thus, in a KII set each
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excitatory neuron can interact with either excitatory or inhibitory neurons,
the same goes for the inhibitory neurons.

7.8.4 KIII

KIII is a set of two or more KII units connected by feedforward and delay
feedback connections. In [300], [301] a KIII based model of the olfactory
system is applied to classify linearly non separable patterns. The advantage of
KIII pattern classifier, over traditional neural network is the reduced training
period that is required in the former. The drawback is that, of course, the
ODEs have to be solved. At this level of complexity an analytic solution for
the equations is unlikely, so the time required for the computational algorithm
that gives a numerical solution can be a critic factor. However stochastic
models like neuropercolation can help in this limitation.

The figure 7.9 shows the modelisation of the hippocampus using a KIII set.
Each K set emphasizes a particular feature, for KIII is that of the creation
of chaotic background activity [21].

Fig. 7.9 The figue is from [21], and depicts the relationship between the hippocampal

formation and the sensory cortex KIII sets. In the hippocampal side, DG is dentate gyrus,
CA1-3 is cornu ammonis and on the olfactory cortical side, PG is periglomerular, OB ol-

factory bulb, AON anterior olfactory nucleus and PC prepyriform cortex. Chaotic behavior
in KIII is the result of the competition between 3 KII components of the hippocampus,

CA1, CA2 and CA3. The dentate gyrus (DG) is modelled as K-I set .

7.8.5 More complex models: KIV and KV

In [22], [302] the sensory cortex and the hippocampal formation are modeled
as KIII sets and integrated in the KIV level. The KIV model is a bio inspired
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architecture of modeling sensory-perceptual-intentional action cycle, using
nonlinear dynamical principles. KIV which is schematically depicted in figure
7.10, has been successfully implemented in mobile robots operating in virtual
and real environments in classification, basic learning and navigation tasks
[303], [304].

Fig. 7.10 The KIV consists of three KIII sets, which model the cortical and hippocampal
areas, and the mid-line forebrain, respectively. [22]
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7.8.6 Categorizing K-Sets

The main objective of this section is to show that any mathematical structure
forms a category if we define a homomorphism for such structure. More pre-
cisely, the Category of Sets Set is explored and a formulation is provided for
its use in the Freeman’s K-Sets models. A categorisation of K-sets is sketched.

The hierarchy of models of K-sets epitomizes a very important statement
that should never be overlooked. The levels of organisation in the brain, as
was pointed out previously, are not necessarily two nor three, but many more,
describing different levels of structural and functional operations. Therefore,
a previously unique class of network model can never capture such diversity,
instead what we need is a framework where scale free models can be put in
place.

The category of sets, Set, can be employed to categorise the K0, KI, KII,
KIII and KIV sets, as is shown bellow. In doing so, we do not just reformulate
sets into more abstract objects, namely categories. Indeed, the final objective
is to provide the mechanisms that enable us to formally describe the interac-
tions between models at different levels. Figure 7.11 shows shematically the
K-sets hierarchy.

Category theory is a generalisation of set theory, a set is defined in terms
of the objects -their properties-, in category theory, a set is defined in a more
general -categorical- way in terms of the morphisms that map to or from
them.

The K-sets model theory follows the drawer-like paradigms: different mod-
els explain phenomena at different levels of description. As a consequence of
this clear cut distinction between levels, a global view of the whole system
encompassing all the levels is missing.

K0 are non interactive single neurons that can be modeled by ODE with
second order non-linear transfer functions. Thus, the category K0, C(K0) can
be put in categorical terms as the category whose objects are single neurons
N , and the arrows are endomorphisms or arrows with the same source and
target a : N → N . There are two types of neurons in N , excitatory neurons
Ne and inhibitory neurons Ni. Of course no arrow between two Ne or two
Ni exists. The category C(K0) is discrete because the only morphisms are
the identity morphisms. Any given set S is a discrete category if the only
morphism defined is the identity.

KI sets represent the coupling of either two excitatory neurons or two
inhibitory neurons in C(K0). Thus, the category K1 C(K1) is the category
whose objects are the same objects of C(K0), and two kind of arrows se :
KO → K0 and si : K0→ K0.

KII sets have either KOe and KOi nodes. Put in categorical terms, KII is
the functor between two categories in K0, K0e and K0i. Thus F : K0e →
K0i

KIII can be categorised as the natural transformation N : F → F ′ between
the two functors F : KOe → KOe and F ′ : KOi → KOi, as previously
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Fig. 7.11 K-Sets hierarchy designates a topological hierarchy for neural sets. In [23].

defined in C(KII). The dynamics generated by this kind of structure is non-
zero fixed point or limit cycle behavior.

In order to categorise the top set in the hierarchy KV, we do not need
anything more abstract than natural transformation. In order to categorise
KV we must exploit the universal constructs seen in section 3.2.2.1. Notably,
the colimit, as the object that acts as the “glue” of patterns of neural con-
nectivity. This idea deserves to be carefully explored in future works.





Chapter 8

A theory of hippocampus structure
and function based on Category
Theory

8.1 The nature of spatial representation

Prior to get into the biological basis of space and the major role of the hip-
pocampus in spatial representation, I will give a brief keynotes on the different
conceptions of space in modern science (since Galileo). Those indifferent to
philosophical and theoretical debates may skip this heading and pass directly
to 8.2.

In physics, the main concern is with the properties of the physical space,
which is mean to be that inhabited by things, belonging to the external
world and independent of the minds that perceive them. One of the oldest
disquisitions in natural philosophy1 is the absoluteness or relativeness of the
physical space. While there is a common agreement in that the psychological
space necessarily needs to match aspects of the physical external universe,
the disagreements begin when one asks about the nature of space.

Newton, built his laws around the metaphysical concept of absolute space
as a “thing” with no relation to anything external to it and inaccessible
to the senses. In Newton’s dynamics, the concept of absolute motion leads
naturally to that absolute space, the last must exist because the former is
real. For example, the centrifugal force creates an centrifugal motion in a
body which is an absolute motion that can only be understood assuming
that it occur within an absolute space. Even though we can not experiment
the absolute space because is inaccessible to our mind, we can measure the
effects of the bodies embedded in such a space.

Leibniz is the champion of the notion of relative space which is, of course,
neatly at odds with Newton absolute space. For Leibniz, space cannot exist in
the absence of objects, not any object, but monads which a very special object
conceived by Leibniz as are a sort of metaphysical object because have no
mass nor extension. The main characteristic of monads is their continuous
changing internal state. In Leibniz, the space arises form the relationship

1 the actual physics is the modern natural philosophy
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between monads. Thus the space is the whole collection of places. We say
that i has the same place as j had before when i has the same relations than
other thing j had.

In Kant, the conception of space lays on the one hand on Newton absolute
(physical) space and on the other on Euler hypothesis of space as purely
psychological but not derived from sensations of the external world. Kant
postulated his famed “space is synthetic a priori”. The space is pure intuition
and is given prior to all other perceptions, and contains in itself the principles
that relate the perceived objects[305]. Now is time to turn to those principles.

In Euclidean geometry we are concerned with three type of objects: points,
lines and planes which are not defined and neither can be discovered by
repetitive acts, rather they are intuitively given. In this rubric our minds are
not only hardwired with these three notions also the basic relations between
them are also given[306].

After the discoveries of new geometries in the XIX th century by Riemann,
Lobachetsky and others, the Kantian assumption that Euclidean geometry
necessarily reflected the structure of the physical world was no longer tenable.

However, it might be said that the existence of Rienmann geometry does
not invalid the idea that the spatial framework is innately given, a synthetic
a priory, in Kant’s words, rather it is the metric of the framework that must
be revised.

Poincaré’s model of space states that the geometrical space is a matter of
convenience, we choose one geometry or other depending on our needs. In
Poincaré the space is representative, which means the space of introspection
that lacks the neutral qualities of the Kantian’s space: infinite, continuous,
homogenous and isotropic. In this conception, the space is more egocentric
and is related to the perceptual experience given by the senses .e.g: tactile
space, motor space . . . Hull used the Poincare’s ideas in his study of spatial
behavior in rats. He coined the “habit-family hierarchy” which is an applica-
tion of the mathematical group theory used by Poincaré, displacement group,
the group of the different movement patterns that can bring the system .e,g:
a rat, to a previous situation[307]. Thus spatial concepts would arise in the
mind through the equivalent movements (physical or thought) for the same
external change.

Gestalt theory borrowed terms from relativity physics, notably the concept
of field which is an overload term. The neural processes conform a psycho-
logical field, the individual parts of the field lack phenomenological meaning,
rather the entire pattern or field is isomorphic to a percept. Gestalt theory
can not provide a basis for objective spatial representation and is unable to
cope with learning [308].
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8.2 The hippocampus as a representational device

How does the mind represent physical space? This is a question that has kept
philosophers busy for centuries. In 1975, the philosophical discussions about
space representation acquired a extremely powerful and fresh insight when
O’Keefe and Nadel, discovered the place cells in the hippocampus of the rat.

The experimental study of spatial representation has since then exploded.
The 70’s was the decade of the place cells, neurons that discharge when the
rat is in a particular position. In the 80’s head direction cells, neurons that
discharge significantly whenever the rat’s head changes direction, acquired
the attention of scholars. Since 2005 we have been in the grid cell “era”.

These discoveries are of major importance in different research fields. In-
deed the theory of the cognitive map [308] is rooted in the discovery of place
cells in the hippocampus. One derivative of this theory is the map-based nav-
igation capability, that some animals have, and that engineers have been able
to replicate in robots[309].

8.2.1 The cognitve map hypothesis

The concept of cognitive or mental map arises naturally from the place cells.
The existence of these cells seem to somehow validate the Kantian conception
of the space as an a priori intuition independent of the experience. The cog-
nitive or mental map can be seen as the biological realisation of the mental
space that in Kant epistemology was an a priori intuition.

A remarkably usual argument against Kant a priories -space, time- is that
there are other geometries than Euclidean geometry like for example Rien-
mann. Kant, was a son of his time and could not possibly know about the
future theoretical developments in mathematics and physics, of course Kant
could never guess what Rienmann mind would fabricate!. The problem with
this criticism, as I see it, is that there is the expectation that the theory
postulated by Euclides -axioms and theories- must be implemented in the
brain to validate Kant’s view. It goes without saying that axioms can hardly
be hardwired in the brain, but, and I think this is where Kant is correct, the
concept of distance or metric actually is embedded in our neuronal tissue as
the grid cells show.

The concept of mental map is presented as the tool that allows animals to
explore the environment, search for food or find their way back to their nests.
An extreme case is to find the nest after long migrations, like for example in
the artic tern, which is seabird that makes a round trip of 70,900 km between
the artic and the antartic poles every year.

It might be mentioned that the ability to build cognitive maps that rep-
resent the world was known before the discovery pf place cells; notably E.C.
Tolman, working with rats, proved that this animal construct field maps of
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the environment[310]. More precisely, Tolman demonstrated that rats have
place learning ability in more or less complex mazes.

In the formation of the cognitive maps, the landmarks or external cues,
play a major role. However, it might be remarked that place cells do not
merely reflect sensory stimuli, like for example visual cues. It is known that for
a rat in a familiar environment, the landmarks can be removed and the place
cells in the hippocampus of the rat will continue firing in the same firing fields.
It is evident that for an animal, to navigate in a efficient way obtaining food,
hiding from potential enemies or finding the nest, it is necessary more than
having a mental representation of individual places. These places must be
included into a metric system that allows the animal to for example calculate
the distances between two points or know the direction taken.

The cognitive map was challenged by a more complex conceptualisation
of the hippocampus as the locus of path integrator. Information like velocity,
direction is integrated into a navigational position.

The omnidirectionality property which at the root of the idea of the al-
locentric map is not valid when the rat is an unidirectional space -e.g: mov-
ing in a straight alley. In this case, place cells are not omnidirectional but
direction-dependent, put simply, different neurons are active for the same
place, depending on the direction taken.

This finding does not discredit the idea of the cognitive map, rather it
forces us to question about how the maps are effectively created in the brain.
The map can not be created exclusively based on visual cues, other inputs
must be considered like for example speed or direction. The cognitive map
mechanism needs to be thought in a wider context, to be incorporated into a
more dynamic and systemic perspective. A map is a static object that does
not match in a changing world.

Besides, there is the problem of the overlapping maps stored in the very
same population of place cells. If we think the problem of navigation and
spatial representation in terms of dead reckoning or path integration, the
problems disappears. The animal needs are other than visual cues or land-
marks, self-motion are necessary too in order to have a metric that allow the
animal to calculate distances and optimal routes.

The debate about whether the brain generates a map like or not, seems
to have shifted in favour of those who back the cognitive map theory. In-
deed the discovery of place cells, head cells and recently, grid cells suggest
so. Yet the underlying nature of the cognitive map remains elusive. Is the
representation purely metrical or is topological? or are the maps constructed
in the hippocampus without paying attention to the features of the envi-
ronment i.e:metrical maps, or do they reflect the relationships between the
environmental features i.e:topological maps?

The role of the hippocampus is to associate internal and external coordi-
nates systems and to accommodate cue conflict situations (reinstantiate the
context when there is a mismatch between internal and external relation-
ships). Rather than debating whether the hippocampus is the depositary of



8.2 The hippocampus as a representational device 173

the declarative memory or the index access of a collection of maps, it may
be more productive to ask What is the role of hippocampus in navigation
and memory? With this mind, in “The hippocampal debate: Are we asking
the right questions?” [311], Redish suggests that there are multiple memory
systems in the brain and multiple navigation systems.

8.2.2 The hippocampus: anatomy and connectivity

In order to understand the function, one has to deal with the structure first.
This motto is elaborated here, and both the anatomy and the architecture of
the hippocampus are explored.

The hippocampus is an allocortical structure in the medial temporal lobe.
The most studied cell in the nervous system is the pyramidal cell of the
hippocampus. One of the main reasons why it has been invested so much
time and effort in investigating the anatomical and functional aspects aspects
of the hippocampus, is its simple architecture of three layers, simple if we
compare it with the six-layered cortical structure.

The modern name to refer to the allocortical structures of the brain, is
limbic system. The limbic system includes the amygdala, the hippocampus,
the entorhinal cortex and the hypothalamus. It is commonly assumed that
the limbic system plays a major role in the emotional aspects of the animal,
so emotions and feelings like love, hate, fear . . . would be “located” in this
allocortical areas of the brain.

It is more correct to talk about hippocampal formation than hippocampus.
The hippocampal formation, is a group of brain areas consisting of dentate
gyrus, hippocampus, subiculum, presubiculum, parasubiculum and entorhi-
nal cortex. The connectivity in the hippocampus follows a random law, this
is very different to the power law connectivity of the cortex.

The pioneer work of David Marr in computational hippocampal models,
assumed the unidirectionality of connections. Anatomists today, has shown
that this assumption is not completely accurate, there is bidirectionality be-
tween, for example, the dentate gyrus (DG) and the CA3. However, the flow
of information is largely unidirectional. The general picture of the hippocam-
pus connectivity is as follows: the signal input to the hippocampus from the
cortex arrives via the entorhinal cortex (EC) and other parahippocampal re-
gions. The output projects back to parahippocampal cortices primarily via
the subiculum and projects to subcortical structures via the fornix. The out-
put signal is not conveyed exclusively to the EC, additional output pathways
go to other cortical areas like the prefrontal cortex, and large output goes to
the limbic system .e.g: lateral septal area.

This scheme of connections can be simplified if we cluster the regions:
entorhinal, perirhinal, parahippocampal cortices and the amygdala under the
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label medial temporal lobe (MTL). The MTL regions shape hippocampal
processing and are in turn often shaped by it.

MTL (entorhinal, 
perirhinal, 

parahippocampal 
cortices, amygdala)

Hippocampus

Fig. 8.1 Simplification of the usual schema of connections modules in the hippocampus.

The medial temporal lobe (MTL) is influenced by and influences the hippocampus proper.

8.2.3 Place cells

Place cells are neurons located in the brain hippocampus that fire in com-
plex burst whenever an animal, for example a rat, moves through a specific
location in an environment.

The striking thing about place cells is that they code the Cartesian posi-
tion, irrespective of either the direction from which the position is reached
or the behavior of the rat at any precise instant. Thus, there is a direct link
between the neural activity of a single cell to a Cartesian position.

How does the animal know that it is in a particular position? Appar-
ently this could be done by computing the allocentric space, landmark or
visual cues. The most important property of these cells is the omnidirection-
ality property and it can be observed in their conical shape (the firing rate
increases when the rat approaches the location, independently of the direc-
tion is heading when it does it). Thus, the place cells are necessarily, coding
explicit (no contextual) locations in the environment and not particular sen-
sorial cues.

The region in which a place cell fires the most is called place field. Thus,
there is a correspondence place field/place cell. One cell has a place field
when the firing rate within the field is much higher than outside -e.g: from
20 Hz to 0.1 Hz. For a given environment, we can determine a collection of
place cells whose associated place fields cover the whole environment. Nobody
denies that under certain circumstances, the hippocampal pyramidal cells
show place fields -location-based firing.

Notwithstanding, it is less clear what they really represent; there are those
who argue that place cells can be an epiphenomenon, produced by the spatial
nature of the experiments where these cells are discovered. Granted that place
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Fig. 8.2 Drawn of the hippocampus and its circuitry drawn by Ramón y Cajal. The super-

ficial layers of the EC (layers 1,2,3) provide the most prominent input to the hippocampus,

and the deep layers (layers 4,5,6) of the EC, receive the most prominent output.

cells are correlated to space, the question that arises is: Are the place cells the
only neurons correlated to space? The other possible representational content
of theses cells and of the assemblies they form, can serve to further question
how the hippocampus contributes to spatial representation, navigation and
episodic memory.

8.2.3.1 Place cells as representational entities

The interest in these cells is rooted in the fact that they are candidates to be
the direct representation of the external space. A place cell, fires maximally
when the animal is in a specific position or place field, so the firing rate of a
cell can be used to decode the position of the animal within the environment
with striking accuracy.
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The existence of place cells was not accepted until Muller [312] came out
with the numerical method that allow to quantify the place fields.

At this point, we need to formally define the term place field. A place
field F , for a place cell, is an open ball of radius r and center x in a normed
vector space V such that fr(F) > k. Being k a constant that represents the
threshold or firing rate, and fr a function that returns the minimum firing
rate for all the pixels (vectors) that fall into the vector space F 2.

Fig. 8.3 The picture shows the 36 place fields one of each of 36 rat hippocampal CA1

place cells. Thus, as it is shown in the figure the position of the rat is contained in the

firing of these cells. The place fields are cone shapes, this means that that the firing rates
increases irrespective of the direction from which the rat arrives.

8.2.4 Grid cells

Grid cells, likewise place cells, are place-modulated neurons. The firing lo-
cation of a grid cell is multiple, contrary to the place cells which are mono
field. The multiple firing location of a grid cell is indeed a grid with a most
striking property, it is an array of equilateral triangles.

Fig. 8.4 Grid map of a rat running on a linear track after 10 min [24].

2 In the initial notation of Muller, the function fr uses 6 colors to represent the firing rate,
the darker the colour is, the higher is the firing rate of the cell at that pixel
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It might be noted that grid cells were discovered, while researchers inves-
tigated whether place cells activity was endogenous to the hippocampus.

The hypothesis was that CA3 and DG are the intra-hippocampal inputs
to CA1, which is the area in the hippocampus where one can find most of
the place fields. This idea was proven wrong, after removing CA3 and DB,
the CA1 inputs, the spatial firing in CA1 persisted. So place signals did not
exclusively arise within the hippocampus, spatial signal was brought to the
CA1 from outside the hippocampus.

In 2004 Fyhn et al.[313] discovered a group of neurons in the medial en-
torhinal cortex (mEC) that shows spatial related firing. The mEC cells have
sharply tuned spatial firing, much like the hippocampal place cells do, but
with one difference, each of the mEC cells, has multiple firing fields rather
than one as is the case in the place cells. One year later, Hafting et al.[314]
discovered that the many firing fields of each neuron, generate a grid. Thus as
the animal moves, the grid cells tile the environment with periodic triangles
that reflect the changing position.

The grid cells have been found in the mEC, from the six layers of this
cortical structure, it is in layer II where we find the highest density of this
kind of cells.

The neurons in the layer II of the medial entorhinal cortex (mEC-II) are
the main input of the place cells, but in contrast the entorhinal cells are
activated throughout the environmental terrain, whenever the animal is at
the vertex of some equilateral triangle, forming a tessellation or grid.

In short, both place cells and grid cells are neurons with spatial located
firing, in other words, they have spatial representational power, allowing the
animal to know its position and to navigate in an environment, for example
find the way back home after eating. The difference, apart from the fact
that place cells are hippocampal neurons and grid cells are in the mEC, is
that whereas a place cell has a single firing location, a grid cell has multiple
firing fields with a striking geometric regularity; the firing fields form periodic
triangular arrays, tiling the entire environment available to the animal.

8.2.4.1 Grid field

Three parameters totally describe the grid of a cell (grid cell): spacing is the
distance between contiguous fields, orientation the rotation angle of the grid
referred to the reference axis, spatial phase is how much the grid is translated
relative to an external reference point.

A grid field for a grid cell is a set of open balls Gi : 1..n, where for every
ball Gi, fr(Gi) > k, that is to say, it has a significative firing rate. Thus, so
far, the definition of Gi is identical to place field seen in 8.2.3.1.

Additionally, every ball Gj of a grid field, form a equilateral triangle with
its two other closest balls Gi and Gk in ∪1nnG or G to abbreviate. The grid
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field G is identified by the three parameters, spacing, orientation and phase
that can be trivially obtained from the metric of the space defined above.

The processing of the place signal is therefore not an exclusive privilege of
the hippocampus, the mEC plays a major role in the spatial representational.

Table 8.1 Place cells and Grid cells, similarities and differences

Brain area Type of map Activation

Place cells Hippocampus static need input from mEC

Grid cells mEC dynamic active instantaneously in any

novel environment

The majority of cells in mEC-II and mEC-III have grid properties, this
means that most of the cortical input to the hippocampal place cells that have
to do with spatial representation, come from grid cells in the mEC. Grid cells
can be found just one synapse upstream of the place cells[314]. Therefore,
acknowledging that grid cells and place cells are intrinsically connected, to
claim that place field may be extracted from grid fields[315] deserves to be
appropriately explored.

Mathematically, using Fourier’s analysis, several grid fields with different
spacing can combine linearly to yield a place field. In [316] is presented a
computational model showing that place field can arise by the sum of 10-50
grid cells. When the spatial phase variation in the grid-cell input was higher,
multiple, and irregularly spaced firing fields were formed. This idea has been
very appealing in the hippocampus community, has produced a large number
of models with a common tenet: place cells in the hippocampus compete to
receive the summed firing pattern activity of the cortical grid cells.

The problem with these kind of models that transform grid patterns into
place pattern is that they do not tell us that much about the mechanisms
that underlie the spatial firing pattern of grid cells and place cells. Besides,
it is debatable that a linear sum of grid cell pattern which has a metric is the
correct way to model a place cell pattern which represents topologically the
environment without metrical relations.

It might be remarked that the models of grid field formation deal with
timing rather than with structure or connectivity, and this is because they
assume that the structure is already known, a single cell, whose firing activity
needs to be understood, in the best case scenario, or merely simulated in a
computational models, in the majority of cases.
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8.2.5 Head cells

Head direction cells (HD) are neurons with direction-based firing, that is to
say, these cells fire when the head of the rat is pointing a particular direction
regardless of the location of the rat or even the angle of the neck. The head
direction neurons are found in the postsubiculum (between the hippocampus
and the EC) but also in some limbic structures.

It has been conjectured that HD work as a compass, but the attractor
magnetic field is not the earth’s magnetic pole but some arbitrary reference
direction. HD provide information of the direction that may be integrated
with information of the speed and location and would allow the animal to
navigate using path integration.

The direction system poses important problems to the cognitive map the-
ory.

Experiments with rats in rectangular boxes showed that place cells do not
remain invariant to the modification of the box. Indeed place fields changes
sizes, split into two and even disappear. O’Keefe suggestion to this discon-
formity with place cell location selective discharges that himself discovered
is that the rat calculated the size of the box by triangulation on the basis of
visual cues, the heights of the wall. McNaughton, less confident on rats geo-
metrical skills, suggests that distance is calculated based on self-motion cues.
As the rat moves, it remember the physical contact with the walls and com-
pute the vectorial distance (amount and direction of movement). The idea
is that direction is obtained outside the hippocampus and delivered to the
place cell system. The hippocampus would act as an integrator that calcu-
lates shortest distances between landmarks based on direction, velocity and
position information. We must take into account other cues, notably the ve-
locity, for [317] the firing rate of single cells is a function of location and also
speed.

8.3 A theory of brain spatial representation based on
category theory

One of the highlights of this work is that it exemplifies the theory of categories
in strong non-algebraic categories. Indeed, the crucial aspect and novelty in
this work needs to be met in the categorical construction of biological (non
algebraic) categories.
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Fig. 8.5 Firing rate vs. head direction plot that shows the preference of this cell around

the 180o [25].

8.3.1 The category of neurons

Let us define a category of neurons CAT-Neur as a category whose objects
are either neurons or sets of neurons. CAT-Neur as any other category,
consists of three things, i. a set of objects O, ii. a set of morphismsMor(A,B)
for any two objects A,B of O, and iii. a rule of composition that fulfills the
properties of associativity and identity .

We identify three possible categories for the category CAT-Neur that are
useful for the development of the theory introduced in this paper.

i the category Neur.
ii the category Neur+.
iii the category Neur*.

The category Neur, whose objects are neurons and the morphisms are the
synaptic paths between them, with the convolution of paths as composition.

The category Neur* which is the category of neurons where the objects
are topological spaces of neurons (N, θ) and the morphisms are continuous
maps.
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A function from two topological spaces f : (N, θ) → (M,υ) is continuous
if f−1(B) ∈ θ whenever B ∈ υ.

And the category Neur+, which has as objects, metric spaces, and as
morphisms, Lipschitz maps for λ = 1 that preserve distances.

Note that a Lipschitz map is always continuous but the contrary is not
true. The morphisms in Neur+ preserve distances between metric spaces
which exemplify neural assemblies.

8.3.2 The category of metric fields

Now we will define the category of place fields, that is the physical locations
that produce the spike firing in the grid cells and place cells.

The category Field+ has as objects metric spaces (including hexagonal
grids) and as morphisms contractions. And the category Field* is composed
of topological spaces and continuous functions.

place cell i

place cell j
place field i

place field j

Space Y of physical 
locations

Space X of 
Hippocampus place cells 

 f: X -> Y

Fig. 8.6 (X, d) is a metric space where X is the set of place cells in the hippocampus and
d the euclidean metric distance, (Y, e) is a metric space in the bidimensional plane with

identical distance e = d. The mapping between the metric spaces f : X → Y preserves the

distances if e(f(x1), f(x2)) = d(x1, x2). f is said to be an isometry and is immediately a
monomorphism (Demo: x1 6= x2, e(f(x1), f(x2)) = d(x1, x2) 6= 0 ⇒ f(x1) 6= f(x2)). Then

an isometry that is an epimorphism is an isomorphism

Empirically speaking, it makes no sense to take the space (Y, e) in figure 8.6
as a metric space, for example closed points in the space are not necessarily
mapped onto closed place cells in the hippocampus.

Thus, objects in the category of neurons can not be mapped directly onto
metric spaces.
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The category of metric spaces is of course defined by objects and mor-
phisms. An object is a metric space (X, d) and a morphism is a mapping
between two metric spaces (X, d) → (X ′, d′). As in any other category, the
composition of morphisms must satisfy associativity and identity.

Let us define first a metric space. The structure (X, d) for X a set and the
function d : X ×X → R+ satisfies:

1. d(x, y) = 0 when x = y
2. d(x, y) = d(y, x) and
3. d(x, z) ≤ d(x, y) + d(y, z)

The Euclidean distance is a map d : Rn × Rn → R+. For n = 2 the
distance is d((x1, y1), (x2, y2)) =

√
((x1 − x2)2 + (y1 − y2)2).

Typically the function d is assumed to be the Euclidean distance, but of
course, other distances are possible. One example of a metric that satisfies
the three axions above is the “Manhattan distance” or d : Rn ×Rn → R+,
so for a two dimension space, d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.

Definition 8.1. A mapping f : (X, d) → (X ′, d′) preserves distances if for
all pair of points, x1, x2 ∈ X, it holds d(x1, x2) = e(f(x1)f(x2)).

Definition 8.2. A function f : (X, d) → (Y, e) between two metric spaces
is continuous at x0 ∈ X if for all ε > 0 there exists δ > 0 such that if
d(x, x0) < δ then e(f(x0), f(x)) < ε

A contraction is a Lipschitz map with λ < 1, while a map between two
metric spaces f : (X, d) → (X ′, e), is such that d(x1, x2) = e(f(x1)f(x2)),
is a distance preserving map . Note that every Liptschitz function is contin-
uous and as a contraction is a Lipschitz map with λ < 1, contractions are
continuous [133].

Now we are able to define the category Met of metric spaces and Lipschitz
maps that are structure preserving maps. The composition of Lipschitz maps,
gf , is a Lipschitz map and the properties associativity of composition and
identity idx : (X, d)→ (X, d), are trivially demonstrated.

The topological spaces are useful when we are interested in closeness and
continuity rather than in distance as it is the case in metric spaces. The cat-
egory of topological spaces Top is one that has topological spaces as objects
and continuous maps as morphisms.

8.3.3 Functor between Neur and Field

At this point we wish to define the functor between the categories that have
been defined.

Let us suppose that Neur+ is a category whose objects are sets of neurons
and the arrows all the functions between them, so in the case that there is only
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one place cell, the category Neur+ is a set of a single element or singleton.
For an object of category C, there is an unique functor F : C → 1. Thus,
there is an unique functor from the category of metric spaces and Lipschitz-
distance perserving maps, Field+, and the category of one place cell 1.

Functors preserve isomorphisms, so given the functor F : C → D, the
isomorphisms in category C are preserved in category D.

An interesting feature of functors is that they may preserve properties.
For example, since functors preserve composition of morphisms ◦, and iden-
tities, id, they preserve every property that can be positively expressed in the
language of ◦ and id. In particular they preserve commutativity of diagrams
[318]. So given a functor F : C → D, for certain objects, arrows or composi-
tion of arrows in category C, that have the property p, the functor F brings
such property to the F -image.

Definition 8.3. Let C and C′ two categories, a covariant functor F from
C to C ′ is defined as a rule which associates for every object A in C an
object F (A) in the category C′ plus a rule that associates for every morphism
α : A→ B in C a morphism F (α) : F (A)→ F (B) in the category C′. Then
F must satisfy the following two conditions:

ii.a The composition is preserved: for the diagram A
α- B

β- C in C,
F (α ◦ β) = F (α) ◦ F (β)

ii.b Identities are preserved: for any object A in the category C, F (idA) =
id(FA)

Now, the functor (more precisely a covariant functor) from a category
of neurons CAT-Neur to the category Met of metric spaces, F : CAT −
Neur →Met is such that i and ii.

i every object N in the category of neurons CAT-Neur is mapped onto an
object F (N) in the category Met,

ii every morphism α : N → N ′ in CAT-Neur is mapped onto a morphism
F (α) : F (N)→ F (N ′) in the category Met. F preserves composition and
identity.

ii.a The composition is preserved, so A
α- B

β- C in CAT-Neur,
F (α ◦N β) = F (α) ◦M F (β) (both sides of the equation are morphisms
in Met)

ii.b Identities are preserved, so for any object A in the category CAT-
Neur, F (idA) = id(Fa) (both sides of the equation are morphisms in
Met)

The physiological interpretation of the functor is as follows. i means that
it is possible for any object N in the category of neurons CAT-Neur to have
associated a metric space (X, d). As it was stated in 8.3.1, the objects in the
sets of category CAT-Neur are sets of neurons.
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Note that this is different to assign a location to a set of neurons, rather
we are associating a set of neurons with a metric space N → (X, d), where
d : X ×X → R+.

For example, let Met1 be the category of metric planar space of diameter
1, (M,υ), that is, d(m,m′) ≤ 1 for all m,m′ ∈ the open ballM. Then F (N),
F : N → (M,υ), represents that the object N , a set of neurons, falls into a
circumference of diameter 1 in the two-dimensional space M .

On the other hand, if we take for the category CAT-Neur the category
Neur, then condition ii can be interpreted as follows, whenever there is a
synapse between two neurons n, n′, α : n→ n′, there is a relationship between
the metric spaces associated to each of the synaptic neurons, F (α) : F (N)→
F (N ′), such that F is a map that preserves composition and identity.

Let A
α- B

β- C, then F (α ◦ β) = F (α) ◦ F (β) simply means that
the map associated to a synaptic path is equivalent to the map associted to
the synapses.

The other requirement, identity is preserved, can be interpreted as there
is always a metric space for any neuron.

It might be remarked that the functor F defined here, does not preserve
the metric space defined in the category Met. This is in accordance with the
empirical fact that the brain has no metric or at least not a Euclidean-like
metric based on the distance.

Indeed, what F does is to bring the structure of the category of neurons
over to the category of metric spaces Met. The very different nature of the
two categories that are being mapped by F , makes difficult to see how F
works.

With an example we will try to make this point more clear. Let the objects
of Neur be place cells, that is, neurons that fire when the brain occupies a
position in a plane surface like for example a maze or a box. The metric
space for the environment is given by the category Met. For every synapse
α coupling two place place cells, N and N ′ in Neur. F (N) and F (N ′) are
called the place fields of N and N ′ respectively in the category Met

Thus, the mapping F , in order to be a functor needs to be a struc-
ture preserving map between Neur and Met, the two categories being
mapped by F . In the case that CAT-Neur is Neur whose objects are
neurons, the relationship between the place field of the postsynaptic cell
F (N ′) and the place field of the presynaptic cell F (N) may be exemplified
by d(F (Ni), F (Nj)) ≤ d(N ′

i , N
′
j), where Ni, Nj are in category Neur, and

N ′
i , N

′
j in category Met.

8.4 A new framework for place and grid cells

Here we propose a radically new theoretical framework for the formation of
place cells from grid cells. The computational models of the hippocampus
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[319], [320], [321] state that the sum of a set of elements, grid cells, directly
produce another element, a place cell. In doing so, these models take for
granted that the properties of the sum are directly reducible to those of its
components. This strict form of reductionism is at odds with the nature of
complex systems. It is necessary to tackle the system as a whole, and bring
to light the way in which the components interact, producing higher levels
of complexity, exemplified in new systemic properties that are not present in
the single components.

It might be remarked here, that this is not a criticism of the reductionist
approach. Indeed the reductionist analysis is arguably the best plan of action
that one may follow in order to understand how a system works. But this
is just the half of the work, the synthetic endeavor must follow after the
analysis.

In what follows, we describe the effect in injecting the concepts of co-
product and colimit from category theory into the problem of place cell for-
mation in the hippocampus.

The classical reductionism credo states that the whole is no more than
the sum of its parts. Therefore the properties of the sum are reduced to
those of its components, without introducing new properties. This is what
the categorical concept coproduct exemplifies.

In a given category, all one needs to know is about the components Ai

in the coproduct
∐

iAi, this is possible because all the components play a
symmetrical role in the construction coproduct.

cP

s

colimit

coproduct
∏

if

i

Fig. 8.7 The family of objects A1, A2, A3, A4 has both a colimit cP and a coproduct‘
i Ai. The coproduct is linked by s to the colimit. The link s express the transit from the

coproduct to the colimit and embodies the symmetry breaking in the relationship between
the family of objects Ai and the colimit
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Definition 8.4. A coproduct of two objects A and B is a an object A + B

together with the arrows A
ι1- A+B and B

ι2- A+B, such that for any
object C and the pair of arrows A

α- C, B
β- C, it exists an unique

morphism π that makes the diagram commutes.
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""E
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EE
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��3
33

33
33

33
33

33
33

B

β||xxxxxxxx

ι2

����
��

��
��

��
��

��
�

A+B

π
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C

A generalised diagram of coproduct also called direct sum is shown next.

C

‘
i Ai

(h)

OO

Ai

αi

bbEEEEEEEEE
πioo

On the other hand, the colimit cp embodies the collective operations made
by the family of components Ai which are made possible because the com-
ponents cooperate by means of the links that connect them [12].

The colimit in a category of a family of components Ai without any arrow
between them is the coproduct.

The colimit, contrary to the coproduct, entails a non symmetric relation-
ship with its components. As the figure 8.7 depicts, the coproduct can be
compared to the colimit cP . This symmetry breaking process may be some-
how quantified by the arrow s.

8.4.1 Place field as colimit of grid fields

The cooperation of the grid fields gives rise to the colimit which is a place field.
Thus the colimit of the metric system depicted can be seen as an integrator
of the information contained in the metric system components. It might be
remarked that the colimit is an object of the category Field, a sort of complex
object that actualizes the internal organisation of the objects that is binding.
Colimits and limits do not exist for all diagrams in all categories, but if they
exist, they are unique up to isomorphism. The mathematical definition of
colimit needs a prior definition, that of diagram.
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Definition 8.5. A diagram D in a category C is a collection of vertices and
directed edges consistently labeled with objects and arrows of the category
C. Thus, if an edge in the diagram D is labeled with an arrow f such that
f : A → B in C, then the vertices this edge in the Diagram D, must be
labeled A and B [127].

Definition 8.6. Let D be a diagram in a category C with objects labeled
Di and morphisms labeled fk : Di → Dj . We call cocone K for diagram D to
the apical object B, together with the set of morphisms gi : Di → B forming
a commutative diagram, that is, gj ◦ fk = gi

Given the cocones K ′ and K ′′ for D, a cocone morphism h : B′ → B′′ is
a morphism in C such that g

′′

i = h ◦ g′i. To simplify the notation we denote
the cocone morphism determined by h as h : K → K ′. Directly, the cocones
form a category, the category of cocones cocD.

Definition 8.7. A colimit for the diagram D is an initial object K in the
category cocD, that is, for any other cocone K ′ for diagram D, there exists
a unique cocone morphism h : K → K ′.

It follows from the definition that all colimits are isomorphic because all
initial objects are isomorphic.

The figure 8.8 shows that grid fields and grid cells in the medial entorhinal
cortex (mEC), are linked by a map, likewise there is a map between place
cells and place fields. Therefore for each grid cell there is grid field which is a
metric space with the form of a regular hexagon, and for each place cell there
is one place field which is also an object of the category of metric spaces,
Field, but in this case, its geometry a simple point rather than a hexagon.

We can assume that the neurons -place cells and grid cells- depicted in
the bottom of the figure, are in the category Neur having as objects neurons
and as morphisms synaptic connections.

However, this is not always the case. For example, a category of neurons
whose objects contain several neurons connected between them forming pop-
ulations of neurons, rather than single neurons. In this line, it is particularly
valuable to shed light on how populations of grid cells contribute to the
formation of one place cell. The colimit is the mathematical structure that
allows us to encode the emergence of place field and the relationship between
grid fields.

Now let us focus on the grid fields depicted as hexagons in figure 8.8 and
their morphisms. It has been said above that regular hexagons are objects in
the category Field, now we need to investigate the morphisms between the
grid-field object in this category.

A contraction between two grid-field objects G1, d, o, ψ, G2, d, o, ψ is a
continuous function f : (G1, d, o, ψ) → (G2, d, o, ψ), satisfying d(f(x, y)) ≤
d(x, y) and o(f(x, y)) ≤ o(x, y).

This restriction is in accordance with the experimental finding that shows
that spacing in grid fields, increases along the dorsoventral axis in the medial
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y

x

Grid cells in mEC

Grid fields

Place field

Place cell in 
hippocampus

Functor (3)

Colimit

(1)

(4)

(6)

(8)

(2)

(5)

(7)

Fig. 8.8 The figure depicts a colimit where (4) acts as the place field of a place cell(6)
in the hippocampus. The colimit is produced by several grid fields (one grid field(1) is

produced by one grid cell(5)). (3) is a Functor between the colimit (4) and the physical

location (8). (2) are connections among grid fields (1), generating produces the tesellation
of the arena (7).

entorhinal cortex (mEC). This fact appears to be correlated with the increase
in size of place fields along the dorsoventral axis of the hippocampus [322],
[323] .

Neighbor cells in the mEC have similar spacing and orientation. However,
there is no evidence that anatomical cell clusters, correspond to functionally
segregated grid maps with their own spacing and orientation[315].

On the other hand, the phase of the grid, does not follow the restriction
of continuity that spacing and orientation have. Indeed, firing vertices of
colocalized grid cells are shifted randomly, that is to say, the mapping between
vertices in the grid field and the external reference grid is not continuous. This
is in fact how fields of neighboring hippocampal place cells behave.

The colimit is a universal property which is a remarkable fact that deserves
to be explained. When a mathematical construction, in our case a colimit,
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satisfies an universal property, one can forget the details of the structure and
focus on the universal property because all that has to be known about the
colimit, is exemplified in the universal property.

One important point that needs emphasis is that the existence of a col-
imit, which imposes constraints, not only on the diagram of grid cells that
determine the colimit, but also on all the objects of the category. Besides,
the colimit, if it exists, is uniquely determined (up to isomorphism) but the
reverse is not true, one colimit can have several decompositions. Put it in
the context of figure 8.8, this means that when the coordinated activity of a
group of grid cells produce a place cell, this is a colimit and it is unique. But
given a place cell, its place field cannot be uniquely determined by a group
of grid cells, as a matter of fact, several grid fields are possible for that place
field.





Chapter 9

From cells to memories. A categorical
approach

The original and innovative aspects of this thesis reside in its radically new
insight into the structure, function and dynamics of the brain. I focus on
the most complex system, the human brain. The theory that is described
in this chapter, although at first sight may seem too pure and universal in
contrast with the spurious biological realm, where the particular prevails over
the universal; it may lead to a new and deeper insight into the structure and
the representational power of the brain.

A theory that fully explains and predicts the highly complex cognitive
abilities like perception, memory or learning has not been produced yet. Our
society needs to deal with diseases like for example Alzheimer’s disease that
is ravaging a big sector of the population. It goes without saying that to shed
light on the role played by the hippocampal system in cognitive functions
like memory and learning can be of extraordinary value for the future of our
own species.

We must exploit the important fact that from the point of view of neurobi-
ological knowledge, memory and perception share the same neural substrate.
The time is ripe for a mature and rigorous approach to brain structure and
function that sets the basis for a shareable scientific framework, able to carry
out knowledge, commonly understandable among the different actors in the
brain sciences.

In this chapter I present a mathematical formalism based on the theory of
categories for modeling declarative memory.

9.1 Types of memory

Just as any other higher cognitive function, to try to give a definition of
memory seems hopeless. The definition in the MIT encyclopedia of cognitive
sciences [324] is open enough to satisfy everyone: “the term memory implies
the capacity to encode, store, and retrieve information”. However, it is also
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too unrestricted to provide a clear idea about what memory is and how it
works.

Certainly, memory is not an univocal term, it has several forms that de-
pend on different brain mechanisms. So a well-founded strategy to get an
understanding of how memory works, is to investigate how such cognitive
process is implemented in the brain. The idea behind this is that the lay-
man’s view of memory, which is still commonly used, which will become
irrelevant once the biological mechanisms of memory have been uncovered
and, if possible, described in mathematical terms.

Long term memory involves an anatomical change in the brain, any new
memory “engenders”, somehow, a new different head that you had before
the memory is formed. Of course memory and the processes involved like
for example learning can be tackled at different levels, like for example bio-
chemical -PKIZ is a molecule that plays a critical role in erasing memories-,
anatomical . . . .

A great deal of what it is today known about memory in humans is due
to one patient called Henry Muleson, better noticed as H.M. . H.M. suffered
violent epileptic seizures and in 1953 the epilepsy was surgically treated by
bilateral excision of the hippocampus. As a result, the epilepsy disappeared
but the secondary effect was dramatic, H.M. lost completely his capacity to
recognize people that He saw everyday, the ability to remember the content of
anything he read or saw vanished after the surgery. Scoville and Milner [325]
concluded that the hippocampus, as H.M. case clearly showed, was related
to memory functions. In essence, the hippocampus made long term memories
out of short term ones. H.M. could remember his childhood and all the impor-
tant events that happened prior the operation, but he could not hold on new
information for more than a few minutes. The damage of hippocampus and
some surrounding structure in H.M. entailed the impossibility to create new
episodic-declarative knowledge. Nevertheless the patient’s procedural mem-
ory, remained intact. In other words, H.M. could remember motor skills, and
this explained that the manual works requested to H.M. in the laboratory
improved with practice; but He could not remember at all what he did one
hour ago. Thus, the distinction between declarative memory and procedural
memory was clearly established.

Declarative memory can be episodic or semantic, the former encode events
of one’s past and the last encodes semantic knowledge that can be consciously
retrieved and formulated. Declarative memory is involved in modeling the ex-
ternal world, that is to say, in storing representations of objects, episodes,
and facts. Episodic memory underlies the capacity to reference personal ex-
periences in a given context of time and space.

Semantic knowledge, on the other hand, is largely a context-free kind of
memory. An example of semantic memory is when we build a class of similar
items; if we know how a chair looks like, we will be able to, every time we
see a chair, recognize it as another element of the class chair, and we do so
without remember the details of the first chair we ever saw which was the
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first instance in the class chair. Put it simply, the semantic memory is the
meaning of things.

Procedural memory is also called non declarative memory and is more an
umbrella term for all those memories that are not declarative. Procedural
memory includes procedural skills and the development of habits through
repetition of appropriate ways to respond to stimuli. It might be noted that
procedural memories are not real memories at least not in the idea of memory
reminiscent to Marcel Proust madeleine, as the retrieval of an event from the
past; rather they are skills, like for example, drive a bike or play video games,
that are done increasingly better as a result of the experience.

Another major difference between these two types of memory is that while
declarative memory is believed to depend on the hippocampal-entorhinal
system; non declarative memory is not a construct of the hippocampal system
itself, rather it involves other areas areas like the amygdala or the cerebelum.
In some sense, memory is the persistence of perception. Memory, knowledge
and perception are three terms that refer to a single thing, the formation of
a neural structure with significant informational content, that in general can
be consciously retrieved.

Memory =

Declarative memory

{
Episodic
Semantic

Procedural memory

9.2 A theory of declarative memory (episodic and
semantic) based on category theory

The dual role of the hippocampus in formation and retrieval of concepts is not
surprising, especially considering that the formation of new memory (knowl-
edge) requires the retrieval of the old one. Thus, memory is knowledge, and
perception is a condition of possibility of memory and therefore of knowledge.

The main point that is being explored in this heading is that despite the
diverse nature of episodic and semantic memory, it is possible to connect
them via categorical objects like product, pullback or colimit.

Let us begin by the introduction of the categorical concept of product
and its application in a navigational task in one dimension, after the results
will be expanded to navigation in a two-dimensional arena and the use of the
categorical concept pullback. The heading finishes with a general formulation
in categorical terms of the creation of semantic memories from episodic ones.
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9.2.1 Categorical product in acquisition of middle
point concept in 1D navigation

Suppose a rat is placed in a track (one dimensional environment), the ani-
mal immediately starts moving back and forth in order to get and idea of
the dimensions of the environment. As the rat moves from one point to the
other, episodic memories are created. Thus the animal is able to make the
association of self-centered information with the temporal order in which the
different positions are reached.

Episodic memories are not explicit, contrary to the episodic memory, the
explicit ones may be retrievable independent of the internal state of the rat.
Suppose there is no any particular visual or smell stimulus that can make
the rat remember any particular position. One may think that after a while,
the rat will acquire an explicit memory, for example the concept of middle
point which exemplifies the position in the track, from where it needs the
same amount of time to get any of the extremes. A cognitive behavior in-
volves integration of information. The categorical concept of product is a
formalisation of integration. Moreover, as it will be shown later, a product
in a category that admits a final object, is an instance of a more general
categorical form, pullback.

Definition 9.1. In a given category C, a product of two objects A and B, is
another object P equipped with two morphisms, P

p1- A and P
q1- B,

such that for any pair of morphisms, X
f- A and X

g- B there is an
unique morphism h making the following diagram commutes.

X

x1

~~~~
~~

~~
~
h

���
�
�

x2

  A
AA

AA
AA

A Pp1
oo

p2
// B

Note that the broken arrow h means that it is unique, and the morphisms
p1, p2 are usually called projection morphisms. The main characteristic of a
product is that the constituents are retrievable via the projection morphism.
The following diagram indicates the categorical product for the acquisition
of the middle point.

X

x1

}}{{
{{

{{
{{

h
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�
�

x2

!!C
CC

CC
CC

C

WA Pp1
oo

p2
// WB
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For our purpose, the categorical product given by the object P and the
morphisms p1, p2 is a statement about a cognitive behavior of the rat, whereas
X and x1, x2 is a constraint on what constitutes a valid product, rather than
a specific claim about cognition.

Note that there is not any particular commitment in the morphisms p1, p2.
In fact, p1 can mean the travel time to reach the wall A, WA, but also the
number of steps needed.

In figure 9.1, is represented one possible experimental setting, that could
be use to explore the biological plausibility of our theory in the acquisition
of the middle point concept in a rat moving in a single track maze. Thus P ,
WA and WB are objects in the category C of memories or mental objects
that will be described with more detail in future works.

9.2.2 Categorical pullback in acquisition of middle
point concept in 2D navigation

Now suppose the rat is removed from the one dimensional track depicted
in figure 9.1 and put upon a plane. The rat’s capacity to build the explicit
memory for the middle point of the arena can be seen as analogous to the
generalised product -i.e: a pullback.

Definition 9.2. In a category C, a pullback of two morphisms with common
codomain A →f C ←g B is an object P together with a pair of morphisms
P

p1- A and P
p2- B that form a commutative diagram f ◦ p1 = g ◦ p2.

Moreover, the morphisms are universal among such squares because for
any pair of morphisms Z

z1- A and Z
z2- B such that f ◦ z1 = g ◦ z2,

there is an unique morphism h such that the following diagram commutes

A pullback may be seen as a constrained product, being the constraint
given by f and g, f ◦ p1 = g ◦ p2.

P p2
//

p1

��

WB

g

��
WA

f
// WC
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Fig. 9.1 WA and WB are the two walls that the rat will meet when moving in a single

track maze. After reaching both walls, the animal would develop the concept of middle
point P

9.2.3 Pullback and grid cell formation

The concept of pullback may be useful in dealing with grid cells. The way
in which grid cells are calculated in literature is tricky. One of the three
parameters refers to how accurate the representation outside the cell is. In
doing so you are putting the outcome of the system in the input.

P p2
//

p1

��

B

g

��
A

f
// C

In the diagram above, P can be seen as a grid cell where the projection
morphisms p1 and p2 refer to the orienting and the spacing respectively. The
morphisms f and g impose additional restrictions in the grid cell, like for
example the constant value of those parameters all over the arena.
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Chapter 10

Discussion and Future work

Brain science is still in adolescence[26]. The brain networks associated with
higher cognitive functions, neurocognitive networks in Bressler’s words[296],
arise over broadly distributed connections of large number of components,
highly coupled with non linear dynamics. As a consequence, the resulting
behavior of the neurocognitive networks are, in many cases, impossible to
control and predict.

A mathematical explanation of how the brain is structured and how it
achieves cognitive functions like perception, conceptualization or learning is
seen for cognitive scientists, especially for those of humanistic background,
as an extreme reductionism that obviates essential human capabilities like
agency, intention, intuition, emotions or feelings.

The so called ”hard sciences” have achieved mathematical certainty about
the world, and although it has been always the case that formal systems fall
short of capturing reality completely, this is not because these systems (mind
included) are impossible to formally explain, rather it is us, as modelers who
seem to have limited (perceptual) access to reality, so that we, unfortunately,
usually only get partially valid descriptions.

The main claim of this thesis is that the object of study of the cognitive
sciences, how the brain works, is still in a pre-scientific stage. The progress
from an immature science to a mature one must pass through the construc-
tion of appropriate mechanisms with explanatory power. In brain science we
must learn from the lessons geneticists have learnt in the hard way. The
genome tells us nothing about how proteins fold and interact with each other
or whether a particular gene plays in different functions. We face a similar
problem in cognitive and brain sciences.

This thesis strives to carefully re-evaluate whether the reductionistic ap-
proach is reaching its own limits and will provide a new impulse to the scien-
tific enquiry of brain and mind. The brain’s structural and functional systems
have complex features but all share commonalities. I identify three major fea-
tures hold by biological networks (BN): BN evolve over time, BN are robust
and BN are purposive or intentional. The topology of the biological network
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changes with time, that is to say, the components and the links between them,
are not static but are continuously changing due to their our internal laws of
functioning and to external environmental conditions as well.

The time is ripe for developing new alternatives to those short-sighted
strategies and conceptions. The strategy I am proposing to be pursued here,
aims to track down the underlying principles, written in formal-mathematical
terms, that explain and control the organisation of the cortex and other major
areas in the brain. In this vein, category theory is an analytical tool for
investigating the common properties of certain objects. A pattern, as almost
any other structure, is made up of its components and relations between
them. This very same postulate sets up the agenda of the science of systems.
What we need is to capture the patterns that occur at all the levels and put
them in mathematical terms. As it was conjectured before in 7.5, the brain
functioning and dynamics is scale free and on that account, category theory
is the best equipped mathematical language to deal with such feature.

The time has come to set the agenda for a “hard cognitive science”. To
that end, I propose to translate into mathematical terms, some key concepts
like perception or mental objects that until now have been used loosely, and
are lacking mathematical structure. The applications shown in this work,
depict the suitability of Category Theory as a language for complex system
modeling, and as sophisticated toolkit for mental theories.

The hypothesis that has been explored and developed in this thesis is that
neocortical connectivity and dynamics are scale free. The scale free dynamics
could explain how brains with huge differences in size -e.g: the brain of a
whale is 10,000 times bigger than the brain of a mouse, can still operate at the
same time scales. The hypothesis provides a radical new interpretation to the
hot spots shown in fMRI, rather than the physical localisation of cognitive
functions, and may be understood as the hubs in a scale free connectivity
network.

The thesis has developed three specific objectives:

1. to identify the meaningful patterns, which could serve as the building
blocks for a unified theory of the brain/mind.

2. to work toward the discovery of the general principles, that mediates in
the formation of meaningful patterns.

3. to provide is a real case scenario application of the theory.

The mathematical theory of categories is presented as the theoretical
framework to achieve these objectives. In particular, in chapter 8, I propose
a radically new theoretical framework for the formation of place cells from
grid cells and in chapter 9 I present a mathematical formalism based on the
theory of categories for modeling declarative memory.

This thesis is an attempt to shed some light on the nature of brain (and
mind), creating new pathways and exploring fresh insights, that will lead to
the comprehension of the recurrent patterns and structures that are neces-
sarily involved in any cognitive process.
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10.1 Future work

The study of the structure-function problem in the brain requires a systemic
theory based approach that can attain a system level understanding that
favours the construction of models that are not merely descriptive, but ex-
planatorily powerful and scalable.

The complex sciences promote the use of mathematical theories and will
bring rigor and comprehensive tools in the multilateral neuroscientific com-
munity. The theory provided in this thesis will allow to set the necessary to
build on its strengths so as to develop the theories and models able to deal
with multilevel interactions of coupled elements with non linear dynamics.

The work outlined in the present document is a extremely rich either in
the purely conceptual mathematical side as in the experimental one. It may
diverts towards many different possible ramifications. We can identify four
critical challenges that are covered in the thesis and that they will need to
be fully explored in the future

1. Fundamental issues and conceptual analysis
2. New mathematics of the brain
3. Complete mapping of the human brain
4. Integration and Implications

In particular, we can identify the following five future developments of the
work presented here:

• To characterize the polychromous neural groups by a categorical property
able to extend the Cohen-Grossberg-Hopfield differential (including delay).

• To define patterns of connections that serve as building blocks of the net-
works, and colimits of patterns that are meaningful patterns or neural
masses with representational power

• Investigate which are the general principles that rule the emergence of
meaningful patterns in the brain. The mechanisms by which patterns are
created and maintained, need to be tackled based on the mathematical
formulation of terns like stability, robustness or autoregulation studied in
Control Theory.

• The hypothesis established in the thesis: co-operation of the grid fields
gives rise to the colimit which is a place field, must be empirically validated
with humans, analysing EEG data streams from the hippocampus and
other brain areas involved.

• Despite the diverse nature of episodic and semantic memory, it is possi-
ble to connect memories via categorical objects like product, pullback or
colimit. Place and grid cells will be tested as possible building blocks for
episodic memory.

In science, many problems are still unsolved, otherwise there would not
be scientists, but technicians. And many questions that we want to solve
today will never have an answer, and not necessarily because they are too
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complex to be solved, but because they will just disappear from irrelevance.
In the end, brain function and behaviour depend upon the interaction of
elements (cells, networks, brains). The neural and cognitive sciences, deal
with complex components (assemblies of cells, brains) and out of necessity
will follow a mathematical strand. Science moves in little steps, but also
makes its progress with revolutionary discoveries and concepts that sweep
away whole and entire edifices of thinking and replace them with new theories
that explain more with less.

The participation of experimentalists that provide EEG data analyses, and
carry on test in order to validate and contrast the methodologies and theories
exposed here, is the immediate future of this work and its real value for the
future.
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271. J. A. S. Kelso, J. P. Scholz, and G. Schöner, “Nonequilibrium phase transitions in coordi-

nated biological motion: critical fluctuations,” Physics Letters A, vol. 118, no. 6, pp. 279

– 284, 1986.
272. J. Kelso, Fluctuations in the coordination dynamics of brain and behavior. Singapore:

World Scientific, 2000.
273. S. Bressler and E. Tognoli, “Operational principles of neurocognitive networks,” Int. J.

Psychophysiol., vol. 60, pp. 139–148, 2006.

274. O. Sporns, “Connectome,” Scholarpedia, vol. 5, no. 2, p. 5584, 2010.
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