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Abstract

In this paper we describe the approach taken in the UPM Au-
tonomous Systems Laboratory for the development of tech-
nology of full, bounded autonomy. This effort is taking us
into the study of the phenomenology of consciousness espe-
cially in relation with the construction of mechanisms for sys-
tem self-awareness. The progress of this work can be tracked
in our ASys and SOUL projects webpages. The ASys Project
is a long-term project that deals with the development of an
engineering process and a collection of assets for the imple-
mentation of autonomous systems. The SOUL Project de-
velops a generic architecture for self-aware autonomous sys-
tems.

The Frontiers of Control Technology
The field of control technology addresses the different engi-
neering aspects involved in the construction of control sys-
tems. Control systems are subsystems designed to improve
operation of certain systems of interest constituting an inte-
gral part of them. There are plenty of control systems out
there even when in most cases they may pass unnoticed to
the point that Karl Åström, a major control guru, said of this
technology that it is a hidden technology.

Control systems can be found in the heating of our homes,
in the landing gear for planes, in our CD players, in heart
pacemakers or insulin pumps, in keeping the electrical net-
work stable, etc. In a sense, control systems do keep work-
ing in sufficiently good condition the technological infras-
tructure of our modern lives.

Research in control systems (see for example www.ifac-
control.org) has been dealing with the different aspects of
this technology and the science that supports it. From the
theoretical underpinnings of control systems to the purely
practical applications in several domains the field of control
has always dealt with the issue of autonomy. In many cases
limited to the system being able to address certain limited
classes of perturbations, but there are many reasons for pur-
suing the objective of fully autonomous machines.

∗We acknowledge the support of the Spanish Ministry of Ed-
ucation and Science through grant C3: Control Consciente Cog-
nitivo and the European Commission thorough Grant ICEA: Inte-
grating Cognition, Emotion and Autonomy.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Reducing operating costs and improving system perfor-
mance —that is maximizing the benefit— were the main
factors behind the drive for improved automation in the past.
During the last years, however, a new force is gaining mo-
mentum: the need for augmented dependability of complex
systems. This is a problem that classical control theory nor
standard software engineering cannot deal with. This is the
reason utimately grounding the very core of our research
into the deeps of artificial consciousness.

Autonomy for cost reduction and performance
In many cases, automated system performance is much
higher than manual system performance. This is due to
many reasons: 1) Automated systems do not get tired; 2)
automated systems are usually faster; 3) automated systems
are more precise; etc.

There are even technical systems that cannot be manually
operated at all due to the intrinsic limitations of humans —
for example in high-speed machining— or practical or legal
issues typically associated with worker health —for example
in space exploration, foundries, chemical plants, etc.

In many practical cases the problem of building a con-
troller for a well known production process in a well con-
trolled environment is mostly solved; only minor details per-
sist related with continuous optimisation.

The problem for control engineering appears with uncer-
tainty. When the plant is not so well known, or when the
operational and/or environmental conditions are of high un-
certainty the traditional control system strategy fails. This is
so because having a good knowledge of the plant is the first
necessary step to building a good controller for it (Conant &
Ashby 1970).

There are many textbooks on controller design in general
terms, centered in particular kinds of controller designs or
centered in concrete application domains. In the last case,
the domain typically constrains the kind of implementation
that a controller may have (e.g. table-driven controllers
in resource constrained electronic control units in vehicles
or software-less controllers in some safety-critical applica-
tions).

Industrial-level control system engineering is a well es-
tablished professional practice that addresses the task of
controller construction in six steps:



Figure 1: A standard hierarchical (supervisory) control scheme.

1. Specify requirements for the controlled system (i.e. the
systems composed by the plant and the controller)

2. Model the plant, e.g. build a mathematical model of the
plant suitable for the purposes expressed in the require-
ments.

3. Design the controller to fulfill the requirements of 1) for
the model of plant obtained in 2).

4. Build the controller, usually using computer-based infor-
mation technologies.

5. Deploy the implementation into the real setting.
6. Test and if it doesn’t pass go back to 4, 3, 2 or 1 depending

on test failure.

Steps 2 and 3 have been considered the traditional do-
main of control systems science. It assumes that we are able
to model the plant to the precision enough for designing a
controller for it. This focusing implies that the modeling
& design tasks shape the whole engineering process. The
vast majority of control technology restricts itself to simple
modeling approaches due to the limitations of controller de-
sign methods (e.g. most control systems are based on linear
models and controllers; models which are, in general, far
from real plants).

Figure 1 shows a typical structure of a real-world super-
visory control system for a large plant. In operational con-
ditions, the controller is controlling the plant through the
actuators by means of some calculation that is done using
knowledge about the plant (a plant model) and information
about the present plant state obtained through the sensors.
In many cases, the knowledge about the plant captured in
the plant model is not stored explicitly into the controller
but embedded into its very implementation (then it being a
controller tuned to a specific class of plants).

The reason why it is called supervisory is because, due to
uncertainties (in plant knowledge and in plant disturbances
during operation), the controller-plant system may depart
from the specification. Then another, higher level control

loop enters the scene modifying the controller behavior to
adapt it to the new circumstances. In some cases this super-
vision is done automatically (this is usually called adaptive
control) but in others this is done by humans (then called
supervisory control).

We are then entering another world of control, one where
knowledge is less than perfect and systems dependability be-
comes a critical aspect. This is, to our understanding, the
main reason for pursuing research on machine conscious-
ness. Not because we think that this is intelligence-on-
steroids but because some of the properties perceivably as-
sociated to consciousness are of relevance to the dependabil-
ity desiderata: self-awarenes, diachroneity, cognitive robust-
ness, introspection, etc.

Qualia (Nagel 1974), however, remains untargeted mostly
due to the lack of understanding of its evolutionary advan-
tage; but it may well be the case that it will emerge as a
side-effect or as an intrinsic co-property of some of the de-
sign patterns under development.

Autonomy for dependability
Dependability considerations have always been a matter of
worries for real-world engineers. But today, in many com-
plex technical systems of our environment —transportation,
infrastructure, medical, etc.— dependability has evolved
from a necessary issue just in a handful of safety-critical sys-
tems to become an urgent priority in many systems that con-
stitute the very infrastructure of our technified world: utili-
ties, telecoms, vetronics, distribution networks, etc.

These systems are complex, large-scale and usually net-
worked structures built to improve the efficiency of human
individuals and organizations through new levels of physi-
cal integration, cognitive integration, control and communi-
cation. However, the increased scale, distribution, integra-
tion and pervasiveness is accompanied by increased risks of
malfunction, intrusion, compromise, and cascaded failures.
Systems do not only fail due to their defects or their mis-
matches with reality but due to their integration with others



that fail. Improving autonomy into these systems can mit-
igate the effect of these risks in system dependability and
even survivability.

Survivability (Ellison et al. 1997) emerges as a critical
property of autonomous systems. It is the aspect of system
dependability that focuses on preserving system core ser-
vices, even when systems are faulty or compromised. As an
emerging discipline, survivability builds on related fields of
study (e.g. security, fault tolerance, safety, reliability, reuse,
verification, and testing) and introduces new concepts and
principles.

A key observation in survivability engineering —or in de-
pendability in general— is that no amount of technology
—clean process, replication, security, etc.— can guarantee
that systems will survive (not fail, not be penetrated, not be
compromised). These is so because the introduction of new
assets into the system, while solving some problems, will
add new failure modes both intrinsic to the new assets or
emergent from the integration.

Of special relevance in the case of complex autonomous
information-based systems is the issue of system-wide
emerging disfunctions, where the root cause of lack of de-
pendability is not a design or run-time fault, but the very
behavior of the collection of interacting subsystems. In this
case we can even wonder to what degree an engineering-
phase approach can provide any amount of increased surviv-
ability or we should revert to the implementation of on-line
survivability design patterns than could cope in operation
time with the emerging disfunctions.

In the following sections, we shall try to explore how the
concept of autonomy is understood in artificial systems and
how the ASys and SOUL projects are addressing these is-
sues and entering the deep waters of machine consciousness.

Product Lines for Autonomy
The ASys Project is a long term project of our research
group that is focused in the development of science and tech-
nology for autonomous systems. The project has addressed
so far the implementation of intelligent control technology
and integration infrastructure.

Now our main involvement is the development of technol-
ogy to increase the level of autonomy in complex systems by
means of metacontrol loops. These metalevel control loops
implement strategies similar to those of supervisory or adap-
tive control but the focus of the control is both:

• the already addressed rejection of disturbances in the
plant and, more interestingly,

• the rejection of disturbances in the contoller itself, that is
gaining in importance as the controllers grow in complex-
ity (Sanz et al. 2000).

Engineering Product Lines and Families
The ASys development plans follow a product line/product
family strategy (Bass, Cohen, & Northrop 1996). As the SEI
software product line says1:

1http://www.sei.cmu.edu/productlines/about pl.html

A software product line is a set of software-
intensive systems that share a common, managed set
of features that satisfy the specific needs of a particular
market segment or mission and that are developed from
a common set of core assets in a prescribed way.
So, our approach can be described as a product line ap-

proach to real-time cognitive systems engineering. We plan
to provide technological assets for engineers building real-
time cognitive systems. This implies many different aspects,
from core embeddable real-time controllers to high level
thinking mechanisms or integration infrastructure. The core
aspect under current research is a set of architectural assets
to support system self-awareness and meta-control.

A product line is characterised for it addressing a specific
application niche (e.g. intelligent control systems). This is
a perspective from the side of the user. A product family is
characterised for products being built from a common asset
base. This is a perspective from the side of the developer.
Obviously, what we try to do in ASys is to build product
lines as product families; this is the most effective approach
to product line engineering. If we are successful we will
be able to provide resources to real-time intelligent systems
developers to build concrete systems that would fit custom
set of requirements.

An Autonomy Product Family
Autonomous systems are constituted by physical and logi-
cal subsystems —the body and the mind. The particular im-
plementation of each one will depend on the characteristics
of the activity, the environment and the resources available
(Sanz, Matı́a, & Galan 2000). The autonomy product line
addressed by ASys has minds as its central niche product.
Bodies are typically application-bound but this seems to be
not the case of minds, where a general purpose mind seems
more plausible (obviously with the corresponding load of
trade-offs).
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Figure 2: The Psy-Phi frontier between physical and logical
subsystems of an autonomous system. The physical aspects
of the body and surrounding world impose real-time con-
straints in the operation of the mental part.

The ASys project has as central requirement the scalabil-
ity of the technology for autonomy across many dimensions:



• Space (localisation): from localised systems to complex
wide-area plants.

• Time (multiple time-scale loops): from slow to fast and
to hard real-time.

• Rationality (levels of thought): from minimal intelli-
gence to human-level and beyond.

• Size (problem dimension) from embedded to mainframe
hosts.

• Precision (uncertainty) from crisp to fuzzy processing.
These problems have been addressed —with more or less

success— by diverse control system technologies but one
of the remaining big challenges —in a sense the only re-
maining challenge— of any control design paradigm is be-
ing able to handle complex systems under unforeseen un-
certainties. This is the old-age problem of dirty continuous
process plants or the core problem of mobile robotics (or of
any technical system that must perform in an uncontrolled
environment). This problem is not restricted to embedded
control systems but appears in many large system situations;
e.g. web server scalability or security problems in open tele-
command systems are examples of this.

The problem can be traced back to the difficulty of design-
ing a strategy for survivability that can be scaled in the same
dimensions. Extant solutions for resilient system technol-
ogy do not scale well. This is the reason why we have added
a new aspect into the ASys core requirements: the capabil-
ity of the technology to handle itself. This has also been
addressed in other fields —e.g. autonomic computing—
but not considering the problem of domain-neutrality of the
technology and its scalability. This adds a new dimension to
the previous list:
• Awareness (meaning generation): from world to other

minds, self and consciousness.
So the current technological objective of ASys is the elab-

oration of design patterns and reusable components for sys-
tem self-awareness. Obviously, this objective is in strong
relation with other researches in artificial consciousness
(Chella & Manzotti 2007) but in some aspects it departs
from some of the core ideas centered around phenomenol-
ogy. Our main concern in this endeavour is not qualia but
self —both perception and control.

Operational Aspects of System Autonomy
The general principle for autonomy in artificial systems is
adaptivity. This enables systems to change their own config-
uration and way of operating in order to compensate for per-
turbances and the effects of the uncertainty of the environ-
ment, while preserving convergence to their objectives. A
series of aspects are studied in artificial systems in order to
enhance adaptivity: cognition, modularity, fault-tolerance,
etc.

From an analytical point of view, the adaptation process
depends on three system aspects:

1. the intrinsic adaptability of the system in the sense of min-
imisation of real structure (López 2007) — cf general sys-
tems theory

2. the observability of system state — cf control systems
theory

3. the capability of structure modification by the system it-
self

Is in the point of observability where self-awareness play
a critical role. The approach that we must take to provide
the required generality implies the formulation of a general
theory of how a system can observe its own functional state
and derive actions from it. This implies not only the pos-
sibility of measuring certain system quantities but also the
need of understanding the functional implications of the ob-
served state. This understanding and the associated adapta-
tion mechanism imply that the mind is able to separate the
physical part of Figure 2 into body and world, i.e. the au-
tonomous agent has a perception of its selfhood (see Figure
3).

This approach to system organisation and adaptivity is
what we are pursuing in the development of the SOUL ar-
chitecture; a novel, general architecture for real-time, self-
aware cognitive controllers.

The nature of “self” in ASys
From the perspective of the ASys theory of autonomous sys-
tems, the perception of any entity is necessarily based on
the existence of a mental referent for such an entity (López
2007). These mental referents are organised into integrated
models that sustain mental operations (see next section).

This implies that the observation and understanding of the
system by the system itself requires for it to have a mental
referent for itself. This mental referent, this model of itself
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Figure 3: The Psy-Phi frontier between physical and logical
subsystems of an autonomous system. The physical aspects
of the body and surrounding world impose real-time con-
straints in the operation of the mental part.



that the system necessarily has to perceive its own state con-
stitutes the very “self” in the ASys theory.

The perception of system self state follows a similar struc-
tural path as the perception of the state of the world (flows
6 and 1 in Figure 4). This implies that the mechanics of
self-awareness must be the same as the mechanics of world-
awareness. This is in strong opposition to other theories
of consciousness that require very different mechanisms for
both (Gallagher & Shear 2000).

This also implies a very interesting fact for artificial sys-
tems: the possibility of unifying perceptual patterns into
general frameworks, reducing the development effort and
maximising reusability.

Seven Principles for Consciousness
Instead of following the axiomatising approach proposed
by Aleksander (Aleksander & Dunmall 2003) we propose
seven guiding principles for the ASys research line on ma-
chine consciousness (Sanz et al. To appear). These prin-
ciples are based on the core idea that minds are integrated,
model-based controllers.
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Figure 4: The autonomous system perceptor organisation
following (López 2007). SS = sensory system, RS = repre-
sentation system, PM = perceptual memory, SC = substratal
coupling, MC = marginal coupling.

The principles are:
1. Model-based cognition — A system is said to be cogni-

tive if it exploits models of other systems in their interac-
tion with them.

2. Model isomorphism — An embodied, situated, cogni-
tive system is as good as its internalised models are.

3. Anticipatory behavior — Except in degenerate cases,
maximal timely performance can only be achieved using
predictive models.

4. Unified cognitive action generation — Generating ac-
tion based on an unified model of task, environment and
self is the way for performance maximisation.

5. Model-driven perception — Perception is the continu-
ous update of the integrated models used by the agent in

a model-based cognitive control architecture by means of
real-time sensorial information.

6. System awareness — A system is aware if it is con-
tinuously perceiving and generating meaning from the
countinuously updated models.

7. System self-awareness/consciousness — A system is
conscious if it is continuously generating meanings from
continously updated self-models in a model-based cogni-
tive control architecture.

Obviously, these principles translate the understanding
and engineering of consciousness into the problem of mean-
ing, that in the ASys approach is based on the application of
value systems to potential trajectories in systems state space.

Conclusions
The development of the SOUL architecture is at the begin-
ning phases. Current work is addressing the construction of
a software ontology for autonomous systems and the devel-
opment of system and software models using state of the art
technology for model-driven development.

The hope in ASys is that we will be able to use automatic
transformation of ASys/SOUL models to generate the very
models that the system is using in real-time operation. This
includes the referents used in perception —including self —
and the inverse models used in action generation.
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López, I. 2007. A Foundation for Perception in
Autonomous Systems. Ph.D. Dissertation, Universidad
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