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Abstract

Hybrid discrete/continuous systems, those exhibiting discrete and continuous state dynamics are important
in chemical engineering. The transitions between different modes, the distinctive feature of these systems,
are subject to the constraints, sometimes implicit, imposed by the solution manifold and, even when the
transition functions contain relevant information in a hybrid model, there is still weak support on current
software packages to help the engineer formulate valid transitions. On the other hand, the theoretical
developments to obtain consistent reinitializations are in some way hiding the real degrees of freedom of
the modeller.
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Introduction

Process simulation is a routinely used tool in chemical engi-
neering and process analysis. While steady state simulation
can be considered, more or less, a mature technology, dy-
namic models still pose challenges that increase with the
incorporation of new features or formalisms that improve
the capabilities of the software packages. One of the conse-
quences of this continuously evolving and developing tech-
nology is the existence of applications with incomplete func-
tionality, inaccurate algorithms or inefficient codes. Just to
mention a decent process simulator that disappeared some
years ago, SPEEDUP, notwithstanding the big claims of the
comercial brochures, it was limited to index 1 differential-
algebraic equations (DAEs), it was unable to correctly detect
state events, support for model building (the Specify envi-
ronment) was a little bit primitive and, to the surprise of the
users coming from the steady-state world, one of the princi-
pal problems they have to face to run a simulation was to get
initialized the model, solving a system of nonlinear algebraic
equations.

Nowadays, a field in dynamic simulation where further
research is needed is that of hybrid discrete/continuous sys-
tems, those exhibiting discrete and continuous state dynam-
ics, important in many areas of science and engineering, in
particular in chemical engineering. Several modeling for-
mulations have been proposed to describe hybrid systems.
In this paper we will refer to the hybrid automaton repre-
sentation (Back et al., 1993; Galán & Barton, 1998) with
embedded DAEs.

In the area of hybrid systems, one of the problems ap-
proached by researches in past years is that of transitions
between different modes, specially when there is a discon-
tinuity in the state variables or in the forcings. When the

continuous part of the system is modeled by DAE, the so-
lution is contained in a manifold, what imposes constraints
not necessarily explicit on the variables, reducing the de-
grees of freedom. Only transitions leading to a consistent
initialization in the new mode (consistent transitions and con-
sistent reinitializations) are correct. Consistent initialization
is related to the index of the DAE system, but the important
quantity here is the dimension of the solution manifold.

Usually it is desired to keep continuity of the state vari-
ables over the transition (what is direct with ordinary differ-
ential equations, ODEs), but due to the manifold constraints
several variables not known a priori may jump. Different
authors have proposed methods to obtain consistent initial
values in the new state after the transition when there is no
explicit specification for the transfer of the states (the transi-
tion functions), leading to, e.g., the use of successive linear
programming (Gopal & Biegler, 1999) or the so called nat-
ural transition functions (Barton & Lee, 2002; Reißig et al.,
2002).

Brüll & Pallaske (1992) study classes of nonlinear index
1 DAEs, and in some cases are able to identify functions of
the state variables that remain continuous at a discontinuity
in the forcing functions, yielding fully determined consistent
initialization problems. Majer et al. (1995) also study classes
of nonlinear index 1 DAEs and identify subsets of state
variables that remain continuous, yielding either fully or
under determined consistent initialization problems.

Gopal & Biegler (1999) consider linear time invariant
(LTI) DAEs of arbitrary index subject to discontinuous forc-
ing. They argue that the dependence of an underlying ODE
(UODE) of the DAE on the derivatives of the forcing func-
tions may be employed to identify which state variables are
continuous at such discontinuities. In general this yields an
under determined consistent initialization problem because



the number of continuous state variables may be less than the
degrees of freedom available. Barton & Galán (2000) show
that in fact, for LTI DAEs of arbitrary index, this consistent
initialization problem can be viewed as always fully and
uniquely determined. One may conjecture that this observa-
tion extends to general nonlinear DAEs, but proof appears to
be very difficult.

Rabier & Rheinboldt (1996) develop a comprehensive
existence and uniqueness theory for linear DAEs with dis-
continuous forcing when the coefficient matrices are smooth
functions of time. These authors remark that, at least in
principle, there is a unique and calculable jump in the state
at a discontinuity in the forcing. In closing, they develop
highly tailored numerical algorithms for the index 1 and in-
dex 2 cases (only), based on the ‘reduction procedure’ also
employed for their theoretical development.

Mosterman (2000) considers that a minimum norm ap-
proach can be applied at transitions when algebraic con-
straints are activated, but since in general the mapping ob-
tained using this method is not physically sound, derives an
approach based on the Kronecker Canonical Form (KCF).
The result is similar to the one in (Barton & Galán, 2000)
that also anticipated the use of the generalized upper tri-
angular form of a matrix pencil, which can be computed
stably, for example, with the subroutine GUPTRI (Demmel
& Kågström, 1993b,a), as a practical approach to the use
of KCF for transitions. The drawback is the inherent den-
sity of the matrices required for the transformation. Later,
Mosterman (2003) will apply this solution.

Reißig et al. (2002) present an elegant method to compute
consistent transitions for LTI DAEs, providing a relatively
simple justification to the use of the Laplace transform and
developing a practical method to compute the solution using
LU factorization. This approach is the base for the natural
transition functions mentioned in Barton & Lee (2002)

Unfortunately, those methods are not always applicable
and are in many cases arbitrary since they exist other valid
solutions. The main thrust of this paper is that there is no
shortcut to the correct specification of the problem, which
must include explicitly the transition functions. But the
theory and software for modelling hybrid systems provides
weak support for that specification.

To shed light on a sometimes controversial issue that para-
doxically is somewhat conceptually simple, the almost clas-
sical example of the coupling/uncoupling rotating masses,
used by some authors to illustrate their approaches, is revis-
ited, showing where the border separating mathematics and
physics lies. This problem is modelled by LTI DAEs, the
simplest case for which the general analytical and numerical
behaviour is well understood. For general nonlinear DAEs,
structural methods are the common practical approach for
consistent initialization in real problems: The results are
valid in most of the cases.

Hybrid Systems with Embedded DAEs

We will consider a system described by a state space S =⋃nk

k=1 Sk where each mode Sk is characterized by:

1. A set of variables {ẋ(k),x(k),y(k),u(k),p, t}, where
x(k) ∈ Rn(k)

x are the differential state variables, y(k) ∈
Rn(k)

y the algebraic state variables and u(k) ∈ Rn(k)
u

the controls. The time invariant parameters p ∈ Rnp

and time t are independent variables. For convenience:
z(k) = [x(k),y(k)]T .

2. A set of equations:

f (k)(ẋ(k),x(k),y(k),u(k),p, t) = 0 (1)

usually a coupled system of differential and algebraic
equations. In the mode Sk the specification of the pa-
rameters p and the controls coupled with a consistent
initial condition Tk(ẋ(k),x(k),y(k),u(k),p, t) = 0 at
t = t(k)

0 determines the evolution of the system in
[t(k)

0 , t(k)
f ).

3. A (possibly empty) set of transitions to other modes
described by:

(a) Transition conditions:

L(k)
j (ż(k), z(k),u(k),p, t) j ∈ J (k)

determining the transition times t = t(k)
f at which

switching from mode k to mode j occurs. The
transition conditions are formed by logical propo-
sitions that trigger the switching when they be-
come true.

(b) Transition functions:

T(k)
j (ż(k), z(k),u(k), ż(j), z(j),u(j),p, t) (2)

associated with the transition conditions, relating
the variables in the mode Sk and the variables in
the new mode Sj at the transition time t = t(k)

f .
A special case of the transition functions is the set
of initial conditions for the initial mode S1.

In practice for many problems the transitions between
modes affects only a few equations and variables and the
specification of the model is concise.

Transition Functions

When the event is triggered by a transition condition the map-
ping between the variables in the previous mode (Sk, S−)
and the new mode (Sj , S+) is described by the transition
functions at time t−f :

T−
+(ż−, z−,u−, ż+, z+,u+,p, t) = 0 (3)

Not all transitions functions are valid. Only transition
functions that provide consistent initialization in the new
mode (consistent transitions) are well posed. The consis-
tency feature means that the initial state is contained in the
solution manifold.

For DAEs the solution manifold is, in general, implicit,
what makes difficult to specify the transition functions. In a
first approach, we can consider three cases depending on the
dimensions of the solution manifolds in the predecessor (δ−)
and successor (δ+) modes at a transition:



1. If ∆± = δ+ − δ− > 0 it is compulsory to specify at
least ∆± additional transition functions, provided that
it is possible to assume state continuity for the rest.

2. If δ+ = δ− may be possible to assume state continuity
without specify transition functions.

3. δ+ − δ− < 0 it is compulsory to specify δ+ transition
functions even if they are state continuity functions.

Linear Time Invariant DAEs

Let us consider the linear constant coefficient DAE:

Aż + Bz = F(t) (4)

This system is solvable if λA+B is a regular pencil (Brenan
et al., 1996). In this case, there exist nonsingular matrices P
and Q such that:

z = Qw (5)
PAQẇ + PBQw = PF(t) = F′(t) (6)

A′ = PAQ =
[
I 0
0 N

]
, B′ = PBQ =

[
C 0
0 I

]
(7)

where N is a matrix of nilpotency ν (the differential index).
The dimension δ of the solution manifold z(t) is equal to the
dimension of I in A′ and the transition function to the mode
cannot specify more than δ values of z and ż.

The resulting system after the change of coordinates is:

ẇ1 + Cw1 = F1 (8)
Nẇ2 + w2 = F2 (9)

The second equation has the only one solution, that depends
on the forcing functions:

w2 =
ν−1∑

i=0

(−1)iNi ∂
iF2

∂ti
(10)

algebraic equation that defines the solution manifold:

w2 = Q−1
2 z (11)

with Q−1 =
[
Q−1

1

Q−1
2

]
(12)

If:

T−
+(z−, z+,u,p, t) = T−

+(z+, t) = 0 (13)

is the transition function from mode − to + a sufficient
condition for it to be a well posed transition is that:

T−
+(z+, t−f ) = 0 (14)

w+
2 = Q−1

2 z+ (15)

is a solvable system. If, additionally, transition functions are
linear in z+, these are well posed if and only if the previous
system is nonsingular.

Example

Let consider the mechanical system formed by two rotating
masses used by Mattsson (1989) and whose transitions were
studied later by Barton & Lee (2002). The masses, whose
axis of rotation coincides, can be connected by a rigid cou-
pling or a slip coupling. When the slip coupling is acting, the
physical system can be described by the following equations:

I1ω̇1 = τ1 + τ2,1 (16)
I2ω̇2 = τ2 − τ2,1 (17)
τ2,1 = d(ω2 − ω1) (18)

where I1, I2 are the moments of inertia (subindex 1 and
2 refers to each mass), ω1, ω2 the angular velocities and
τ1, τ2 the torques, known functions of time. The damping
coefficient d relates the transmitted torque τ2,1 to the slip
velocity. When the coupling is rigid, the last equation is
substituted by:

ω1 − ω2 = 0 (19)

For this example:

F(t) =




τ1(t)
τ2(t)

0



 z =




ω1

ω2

τ2,1



 (20)

In the slipping mode:

A =




I1 0 0
0 I2 0
0 0 0



 B =




0 0 −1
0 0 1
d −d 1



 (21)

changing B when the coupling is rigid to:

B =




0 0 −1
0 0 1
1 −1 0



 (22)

The dimensions of the solution manifolds are δ1 = 2 and
δ2 = 1 for each mode, being the index of the systems ν1 = 1
and ν2 = 2 respectively. Let us concentrate on the transition
from mode 1 (−) to mode 2 (+). According to Eq. (11):

w2 = Q−1
2 z =



−
I1I2

I1 + I2

I1I2

I1 + I2
0

0 0 1








ω1

ω2

τ1,2



 (23)

Also:

F2 = P2F =




0 0 −

I1I2

I1 + I2

−
I2

I1 + I2

I1

I1 + I2
0








τ1

τ2

0





(24)

and:

N =
[
0 0
1 0

]
(25)



From Eqs. (10), (23) and (24), the solution manifold is
determined by:

ω1 = ω2 (26)

τ2,1 =
I1τ2 − I2τ1

I1 + I2
(27)

Thus, from purely mathematic arguments, there is still a
degree of freedom left to specify the transition functions. If
we use physical considerations, a reasonable constraint is the
conservation of angular momentum:

I1ω
−
1 + I2ω

−
2 = (I1 + I2)ω+

1 (28)

or equivalently, the energy balance taking into account the
dissipated energy:

1
2
I1(ω−

1 )2+
1
2
I2(ω−

2 )2 =
1
2
(I1+I2)(ω+

1 )2+
I1I2(ω−

1 − ω−
2 )2

2(I1 + I2)
(29)

Barton & Lee (2002) apply the theorems developed by
Reißig et al. (2002), (the analysis of those theorems is out
of the scope of this paper), to obtain the natural transition
function for this case, what happens to be precisely conser-
vation of angular momentum. This fact suggest that it is
possible to implement on software packages methods to au-
tomatically derive the (natural) transition functions relieving
the engineer from that task, and even that there is a physical
foundation for these transition functions incorporated in the
mathematics.

Revisiting the example considered, what we are deal-
ing with could be seen as a simplified model of a clutch.
Actually, it is at the transition where the complications of
the phenomena occurring during engagement and disengage-
ment are radically reduced. This is one of the reasons to
use hybrid discrete-continuous models: to obtain simpler,
efficient models that retain the essential characteristics of the
system. But the price to pay is not so extreme simplicity, we
still have degrees of freedom left to model the transitions and
introduce the relevant information there. In fact, we must
model the transition and we do it, either explicitly or relying
on the program that, in the best case, will find the natural
transition functions.

For the example of the clutch, a more realistic transition
condition in form of energy dissipation (Howrie, 1987) is:

E =
1
2

I1I2

(
(ω−

1 )2 − (ω−
2 )2

)

I1

(
1− τ−2

τd

)
− I2

(
1− τ−1

τd

) (30)

where τd is the dynamic torque clutch capacity, function of
the friction coefficient and the clutch engagement force.

Conclusions

The specification of the transition functions in hybrid dis-
crete continuous systems is a modelling issue. It is necessary
the implementation of software tools in modelling and simu-
lation environments that enforce valid transition functions,
differentiating what is a mathematical requirement and what
is a reasonable help.
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