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Abstract—In this paper the following assumptions are con-
veniently explored

i) there is no cognition without categorization

ii) concept formation is sign a mediated process which is
extended and developed in a formal and operational fashion.

iii) learning is involved with forward and inverse cognition.

A new framework for knowledge representation in cognitive
agents is proposed, whereby the formal and operational issues
of representation are faced through a systemic conception of
sign.

As a result of the systemic and integrative approach taken,
the basis of a cognitive theory for concept learning is set up.

I. INTRODUCTION

The main function of cognition is categorization. By
categorization we mean the action of grouping the perceived
items into the class. [11][12][22][18]

Categorization and cognition are here acknowledged as
equivalent terms, any cognitive system has to be able to
categorize. Within this rubric, a cognitive system can be
biological, from superior mammals to simple bacterias, or
artificial like cognitive robots. They are all agents able to
categorize, ergo cognitive agents.

This claim is untenable from the doctrine that assumes
that it is necessary to have a neural system in order to have
cognitive abilities. Under this assumption, only animals with
a sufficiently developed brain posses concepts and may be
adaptable agents in a changeable environment[3].

The positioning of this paper is radically different from
that view. The identification of cognition and all its properties
like memory, learning, representation etc. in the human
brain, is a relic of dualism dressed with topics of human
chauvinism.

A technical system, for example a cognitive robot, is not a
system deprived of sensors and confined in a unique context,
rather it is an agent with the ability to cope succesfully with
a dynamic environment.

The approach followed in this work is drastically opposed
with representation as the encoding of that which is repre-
sented. Such strategy assumes that knowledge is synonymous
to representation, consequently the knowledge about the
world would consist of the sum of sentences empirically
verifiable. Assuming that, Wittgenstein would be right in his
famed assertion that “the limits of my language mean the
limits of my world”[25].
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We are closer to the thesis defended by Bickhard that con-
ceives that knowledge is the ability to successfully interact
with the environment[2].

Although we find Bickhard’s interactive representation of
knowledge inspiring, we still are of the opinion that it is too
vague and hardly applicable to technical systems.

The thesis we propose is radically different from those
views. The cognitive agent is conceived as a ”sign hunter”,
counting on a repertory of sensors that enables it to acquire
loose input patterns from the environment and embed them
into signs.

II. THE PROBLEM OF REPRESENTATION

For the sake of clarity, we will begin with some definitions.

Etymologically, to re-present is to make something
present, bring before the mind[15] or to capture the structure
of that which is re-presented. It is worth noting that the
regular use of the word is wrought with a pictorial idea of
representation as a roughly accurate copy of reality.

Heylighen defines representation as “a formal structure
relating observable phenomena, as such, it provides a mech-
anism for deriving anticipated observations (output) from
actual observations (input)”’[13]. Of course, the external
phenomena can be a physical or an abstract thing. For
example, a sculpture in Madame Toussaud’s wax museum
or a plastic toy rhinoceros, are representations of physical
things. Similarly, the word “’love”, written on ink or pixels,
is a representation of an abstract thing.

Knowledge representation is a set of ontological com-
mitments that declares the category of existing things and
the process undergone by things in a given domain. The
ontological commitments are formally expressed through
a language or collection of propositions logically related,
which defines a model of the domain.

Traditionally, the problem of representation has been con-
ceived as a diadic structure. On the one hand the thing to be
represented and on the other the symbol that represents the
thing.

The classical theory is based on the aristotelian tradition
that establish that an item i fall under a concept C, i € C,
iff i satisfy a set of necessary and sufficient properties p.

Formally,

Hilp(@)p(5), p(7) N C # 0.

Such a conception assumes the existence of a morphism
between the external world and the agent’s world model.

Alternatively, the interactive representation model (Bick-
hard), is characterized by the emphasizes on features such
as action and expectation, disregarding the formal structures
that tend to attain an isomorphic representation of reality.



In the classical theory of representation, knowledge about
the world is a static picture composed of atomic entities that
can be formally described with propositions.

Operationally this is how it works; the internal objects
of the agent are represented by symbols that commit corre-
lations with the external objects. When the correspondence
between internal (symbols) and external objects (referents)
is an isomorphism', a perfect correlation between both set
of objects is achieved. In this case, the agent has an ideal
representation of the environment.

But this representation structure is unsuitable if we want
to build an artificial agent that copes successfully with
the external world. This is because the world is not static
but inherently dynamic and representation has to take into
account the fundamental categories of change and time.
Secondly, an isomorphism with the environment can only be
attained duplicating the environment, only in this case there
is not singular points, put simply for every pair of things in
the external world, there are their correlates in the agent’s
model. But this is a totally intractable strategy for building
cognitive agents.

In order to cope with an inherently dynamic and mutable
world, the cognizer needs of adaptative meta representational
capabilities. The ontology of concepts and their relations in
order to be operational, can not be invariant but malleable.

III. BUILDING A NEW THEORY OF COGNITION BASED ON
SIGNS

The theory of representation shown above, is dependent
upon insufficiencies as a consequence of the diadic structure
of representation, composed by the symbol and the concept
the symbol refers to, expressed by the tupla:

< symbol, concept >.

The trouble with such an approach, even if it can succeed
in the formalization issue is that it lacks an operational asset.
The representation of relations between the internal model of
the cognitive agent and the environment is dynamic, situated,
evolving and strongly interconnected with the cognizer. Thus,
it can not be defined following the formalization method used
in classical theory, by which the membership of an item to a
category is unambiguously established by a a set of axioms
and deductive rules.

On the other hand, interactive theory, which claims that
concepts are acquired dynamically, embodied and inherently
linked with senso motor components, supplies better opera-
tional capabilities but the formalization is hardly attainable.

The cognitive theory proposed here is inspired by Peirce’s
triadic structures formulation designated as a sign. In our
theory, a sign is a system composed by the next three
elements: symbol, concept and referent. Formally, a sign S
is the ternary tuple

S =< symbol, concept, referent >

The sign’s components are described as follows:

e Symbols are the most basic component of a sign, their

function is to share concepts in a community of agents

ILet v, 3 realizations of the same type of structure.An isomorphism & :
a — (3 is a structure preserving mapping 1:1 of o onto (3

attuned sensors

concept

Fig. 1. Sign structured composed by three components: symbol, concept
and external referent

by means of a consensual language symbols denoting
signs.

e Concepts are mental models nomologically related.
Concepts can be viewed like the intension of a sign.

o Referents are the objects and their properties that the
cognitive agent is capable to identify based on both the
agent’s sensorial properties and the ontology of concepts
possessed by the agent. Referents are the extension of
a sign.

The components of a sign are not basic primitives but they
are systems themselves as well. The simplest component of
a sign is the symbol which can function in the head of the
cognitive system as an icon, depicting one external object,
or as an index that enable the agent to refer a concept and
share concepts within a community.

According to this, signs are not symbols. Rather, a symbol
is a sign’s component, which is amodal and uni-dimensional
whereas a sign is multimodal and N-dimensional.

Hence, we now reformulate Peirce’s definition of a sign
’signs are something which stands to somebody for some-
thing in some respect or capacity” by ’’signs are sys-
temic structures which stands to somebody (who posses
the concept), thorough the sign’s component symbol, for
something(referent) in some respect or capacity(concept)”.

In [8] we propose, though incomplete, a naturalized theory
of concepts which are seen as embodied mental represen-
tations. Three different levels of cognition are explored:
linguistic, sub-linguistic and neural.

In [9] some important steps are given towards an expla-
nation of how the neural structures can ascribe meaning in
order to get the causal/computational isomorphism between
neural structures and their correlated concepts.

If we assume the hypothesis that the nature of concepts is
inherently multilevel and systemic, then language per se, is



not a necessary piece in a theory of cognition that explains
how we learn and categorize new concepts.

The search for a language of thought is a path that
can only give bias answers to questions such as how the
cognitive agent cognizes and what do we need to build
artificial cognitive machines. We, like Eliasmith hold that
. .starting with language or even focusing on language, when
constructing a theory of content is a dubious tactic”[5].

A. The process of categorizing for a physical object

Now we attempt to to explain the process of categorizing
for a physical object, as is depicted in Figure 1.

Let start upon the first step in the process of cognition,
perception. The referents of the external world are grasped by
the agent. This is because the world is populated by material
things which undergo processes which emit energy to be
captured and encoded by the sensors, as is shown in (Figure
1(1)). The sensory stimuli captured by the agent are objective
and quantifiable. The properties of the perceived object can
be measured, of course, the agent has perceptual limitations
about what can and cannot perceived, based on its sensors
and the way they are attuned.

The patterns are instantiations of concept’s properties for
certain kinds of perceptions (figure 1 (2)) that try to achieve
the matching with the encoded information of the sensor’s
channels (Figure 1 (3)). When this computation succeeds,
the referent is incorporated to the concept ontology. In other
words, the salient features or properties of the referent are
identified and related to the agent’s ontology of concepts.

The conceptual component of a sign is depicted in (Figure
1 (4)). In actual fact, it is an ontology of concepts which
represent things or processes with common properties. Ac-
cording to this, the ontology of concepts is nomologically
related by the relationship among the properties of the
concepts.

Due to the lawfulness of the concepts relations, learning is
possible; if the brain lacked this, that is to say, the properties
that belong to the concepts the perceived item from the
external world could never be classified. There it would be
an agent with deficient cognition and scattered options to
survive in a world ruled by laws.

Alternativelly, if the agent, as is the case in humans, has a
language or some other sign-denotative system of symbols,
the relation between the external referent and the ontology
of concepts can be by- passed by a symbol. The symbol
(Figure 1 (5)) serves as a vehicle to share concepts within a
community of agents. For example, a kid can learn to grasp
something before the mother gives him the symbol “grasp”
as the label that identifies the sign grasp that represents an
action in a community of common language speakers. It goes
without saying that the kid could have the sign grasp without
the symbol “grasp”, he can have the concept in his head
and can discern when someone is grasping something but be
unable to utter ’grasp” or react when hears such word.

These observations convey to us a new definition of
representation as the process of construction and relationship
of signs within a system of signs.

Accordingly, learning is to relate signs to system of signs.

Signs are therefore interpretations of patterns that tend
to capture features of both the environment and the own
cognitive agent. The cognizer through categorization can
make predictions about objects and events. The evolutive
advantage of anticipation has been extensively discussed
by Rosen[20] and Deacon[4] suggests a parallel between
conceptualization and Evolution Theory, ’concepts evolve in
social environments in much the same way that organisms
in natural Ulmwelt”.

B. A solution for the symbol-grounding problem

The so called symbol-grounding problem [10], arises from
the supposition that computers are disembodied machines,
processing symbols arranged as is established by a set of
syntactic rules, and consequently incapable to deal with
conceptual content and semantics.

The symbols, according to Harnad, are positively discon-
nected to the things they denote; this is because the symbolic
computation is totally decontextualized, it does not depend
on the medium in which it is implemented.

But the problem vanishes if we recognize the sign-
mediated nature of cognition. The cognitive agent, is able to
interpret the environment only when satisfies next require-
ments:

i It is sensorily attuned to the properties of the
perceived thing (Figure 1 (1)) and

ii It has models reified in the patterns used to match
the salient features of the perceived things (figure
1(2))

The system of signs, guides perception, categorization and
the motor action of the agent. To summarize, when matching
pattern succeeds (Figure 1 (3)), a sign is created and an
external phenomena and a portion of the internal model of
the agent are now linked.

IV. LEARNING CONCEPTS IN ARTIFICIAL SYSTEMS
A. Gardenfords’ conceptual spaces

Gardenfords[6] proposes to use conceptual spaces as an
alternative mode of representation to symbolic and associa-
tionist accounts. Gardenfords’ model is based on two main
principles:

o Economy principle: the items with similar characteris-
tics fall under common categories. Operationally, this
means that the items are stored in a common memory
space which defines a range of properties and their
admissible values.

o Non-monotonicity effects in reasoning: it seems that the
similarity between two items that belong to a concept
cannot always be expressed in terms of necessary and
sufficient conditions, but is based on prototype struc-
tures. Thus, the membership of an item to a concept is
a question of degree; the closer the item is to the gravity
center of the prototype structure (the dots in Figure 2),
the better representative of the category it is.

Voronoi’s diagram (Figure 2) defines a geometric space
that represents the prototype space of a concept. Following



this mathematical algorithm, the clusters are constructed
dynamically as long as new items are cognized. The ex-
planatory power of this approach is undeniable, and its
easy formalization and implementation makes of Voronoi’s
tessellations use in conceptual learning, a good candidate for
a concept learning model.

Fig. 2. A Voronoi diagram is decomposition of a planar metric space
determined by distances to a discrete set of points, in our case representing
items to be categorized. The simplest case is a plane, only two dimensions
with a number of regions that configure the different concepts where the
items can fall under.

In the practical case this model of learning can hardly
operational. If the cognitive agent is able to rely on multiple
and more accurate sensors, the number of properties in-
creases, and as every property, following Gardenford’s model
is represented by an axis; if we have the very plausible
number of four properties, the Voronoi’s diagram becomes
practically illegible, let alone if we continue increasing the
number of axis.

Recall that the domain is the set of dimensions that in turn
are the observable properties represented in axis. Of course,
the more properties are discernible by the agent the more
accurately the item can be categorized.

But the trouble here is that counting on more properties
does not necessarily help to categorize items in a more accu-
rate way, rather the proliferation of dimensions (properties)
makes the problem intractable.

B. Learning concepts in a theory of cognition sign based

In the previous section we presented a general purpose the-
ory of cognition. The theory emphasizes the triadic structure
of sign as the minimum structure of cognition and provides a
theoretical framework where models of particular cognitive
abilities like learning can be implemented and tested in
artificial machines.

In our model, for the sake of simplicity, we set aside
properties that are not directly generated by the sensors like
second order properties (qualia). That being said, is important
to keep in mind the fact that there are properties of a more
complex nature, we call them phenomenal properties similar
to Galileo’s second order properties. Phenomenal properties
only exist in the "head” of the cognitive agent, that is in
absence of a cognizer there is no such things as heat, redness
or fear.

On the contrary, the mass of a body or its velocity exists
by its own and is almost independent of the agent observing
it (totally independent if we exclude atomic interactions).

Figure 3) shows a general diagram of the control pro-
cesses involved in learning. Forward cognition consists of

representing in some physical support (biological or not),
the properties of the external referent.

Thus, in Figure 3, P = p1,p2,ps are the properties of
the external object perceived by a technical system which
are represented in its physical substratum as P = pf, p, ph

The properties captured by the agent determine the content
or semantic interpretation of the referent. The process of
learning starts when the properties of the referent are per-
ceived and measured by the cognitive agent. Why are these
and no other properties of the referent grasped by the agent,
or how the perceptive process is achieved by the agent is a
theme for another paper, we are focusing here on learning
and categorization and not in perceptual issues.

Once the agent recognizes and measures the significant
properties of the referent, Forward Cognition box in Figure
3, then the agent has a representation of the referent, given
by its measured properties P = (pf, ph, p5)-

The next step is to categorize the item perceived and
measured by its properties, Inverse Cognition box in Figure
3. That is to say, the items fall under concepts or categories
which express the space state that defines the lawfulness of
the relation between the properties.

Formally this can be expressed as follows:

Let P, the properties measured for an item i which belongs
to the category or concept (.

P = (plap% pn) € C

and let ¢, the Forward Cognition function implemented in
the technical system, then

@(p1, P2, --Pn)=(P1, Phs P3)

Consequently, the categorization process is formally ex-

pressed by the inverse function 1.

wil(pllapéapg)=(plap25 pn) € C

Forward Cognition is assimilated with perception and
Inverse Cognition with learning. We can determine, mostly a
priori, what and how a technical system with sensors perceive
the external objects. That is, the function ¢ that represents the
forward cognition of the system, can be calculated through
empirical studies, namely A = ¢(P) — P measures how
accurate is (.

Alternatively ¢~ is the implementation of learning?;

@~ (D1, Dby -0, =(07 s 15 -pyy) € CHff A = (P)" = (P)
is minimal. Put in another way, the technical system learns
that an item belongs to a category ¢ when the error in the
measured properties /A is smaller than for any other category.

For the principle of economy, the agent places each item
into a category, otherwise every single represented item,
would be different and unrelated with the rest of items and
the agent would perceive the lawfulness of the external world
as a chaos.

1

C. An example of learning in a technical system

To this point, we can say more about how a technical
system categorizes items. Recall that our theory is a general

2Note that the obtention of ¢~ is only pertinent in the ideal case of
isomorphism between the mental model of the agent and the perceived
object in the world
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Fig. 3.

Learning is involved with forward and inverse cognition, the properties of the perceived thing are represented in a physical substratum.The more

accurate is the representation of the perceive properties the less is the categorization error

and systemic framework for cognition and therefore is ap-
propriate for building a model of concept learning referred
to physical objects.

For illustrative purposes, let us consider an scenario with
a cognitive robot and an object moving in circles around it.
The robot count on the necessary sensors to measure the next
properties of the object:

mass(m), angular moment (L), velocity(v), acceleration(a)
and distance(d).

Thus, the perceived objects by the robot are represented
in a four dimension domain which compose the system of
reference. One dimension or axe in the system of reference,
represents the measured values of a property.

In Figure 3, the concepts cl and c2 are depicted, based on
the quantitative and objective measurements of the relevant
properties.

Suppose now that the robot is confronted with a first
object,its sensors measure the relevant properties in three
different instants with the next results:

For t=0:

P(tg)=(m=1kg,L=1kgm?s~!,v=1ms~!,a=0ms ~2,d=1mm).

0 Y(P(to)) € ¢, where ( is the item; that follows a ro-
tational trajectory (L # 0) with acceleration null. Therefore
the first item is categorized in the category ¢ which is equals
to the measured item, ¢ = item;

For t=1:

P(t1)=(m=1kg,L=1kgm?s~!,v=2ms~!,a=0ms~2,d=1mm).

o Y(P(t1)) € ¢, the item still has a rotational trajectory
with acceleration null. Therefore for the principle of econ-
omy it is placed the concept ¢

For t=2:

P(ty)=(m=2kg,L=0km?s~1,v=2s"1,a=1ms~2,d=1 mm).

0 Y(P(t1) € & a new category is created, the item has
not rotational trajectory (L = 0) and is undergoing a force
(a # 0).

The system of signs constructed by the robot is as follows.

S =< symbol, concept, re ferent > then,

Sy =< itemy, (p_l(P<t0)), (p(P(to)) >

S1 =< itemg,p~ " (P(t1)), p(P(t1)) >

Sy =< itema, p~ 1 (P(t2)), p(P(t2)) >

Then, Sy and S are two measurements, in two different
instants of time, of the same object, ¢temg, which belongs
to the class (, that groups objects with rotational trajectory
and null acceleration.

The sign S2 has as concept component a new category
¢. Indeed, the perceived object namely “items”, has a
different mass value, and its trajectory is accelerated and
not rotational.

Note that the attribution of class in this example has
not been defined here because we are presenting a general
purpose theory open to any the applicative use.

Thus, for example a robot that has to deal with moving
objects will categorize objects based in properties as velocity
and one robot evolving in a static environment will develop



categories from properties as mass or distance.

The advantage of the systemic and semiotic approach pre-
sented here is that the technical agent can builds a knowledge
base that reckons the inherent dynamic and malleability of
the real world.

V. CONCLUDING REMARKS

Accordingly, while our theory is still in its embryogenic
stage we can not give a formal account of the learning
process. However at the present stage we can provide the
next hints that will be tested in following works.

e every property is a property of a thing, there are no
properties by themselves, things undergo properties.

« arepresentational system is not necessarily a neural sys-
tem. The symbol grounding problem is a fake problem
or better said, a problem motivated for the classic diadic
conception of representation.

e learning processes require both forward and inverse
cognitive processes. In a technical system, the former,
formally ¢, measures the the relevant properties for
the perceived object, and the last, ¢!, through a
transformational procedure, group the item, represented
by its measured properties, into a class of items.

o the transformational procedure is a function ¢ that
maps physical objects into the domain of properties,
the learning process is complete only when ! is
determined; that is, the function maps the representation
of the properties (in the case of mammals the firing
of the neurons) into the class where the thing belongs.
Note that ¢! is the formalization of the categorization
process or learning.

It is worth noting that concept learning and categoriza-
tion are a difficult and fundamental problem in cognitive
science.lIt is not a problem that anyone should expect to solve
based only on theoretical assets about cognition.

Science must proceed testing the theoretical framework
against facts, empirically testable.

Eventually this theoretical effort will bear fruit a new way
of looking at things that changes the state of the field in
learning and cognition in artificial systems.
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