
Sanz, Lopez, Bermejo 1

A Rationale and Vision for Machine
Consciousness in Complex Controllers

Ricardo Sanz, Ignacio López and Julita Bermejo-Alonso
Autonomous Systems Laboratory
Universidad Politécnica de Madrid

In: Chella, A. & Manzotti, R. (eds.) (2007) Artificial Consciousness. Exeter, UK:
Imprint Academic.

Abstract

The science and technology of computer-based control is facing an enormous challenge
when increased levels of autonomy and resilience are required from the machines that
are supporting our ambient. We can say, without any doubt, that control systems
complexity is boosting. In some sense, software intensive controllers are becoming too
complex to be built by traditional software engineering methods, this complexity
appearing as an increase in size and a decrease of system dependability; this last being
the most frightening one. Systems must be more aware and more responsible of
themselves that they are today. A question emerges: Can artificial consciousness be a
solution to the performance/dependability problem? This paper describes the initial
ideas guiding our research. We try to develop software intensive controllers for
autonomous robust behaviour based on self-awareness, qualia being left for future
endeavours.

Complexity raising in control systems

Control systems are becoming extremely complex [Aström 2000]. Science and
technology of computer-based control is facing an enormous challenge when increased
levels of autonomy and resilience are required from the machines that are supporting
our ambient: electricity networks, cars, telecommunications, etc. All these systems
include as a necessary component for the provision of the system functionally an
enormous amount of embedded control software. We can say, without doubt, that
control systems complexity is boosting and leading to a construction problem. We may
even ask the question: Are control systems becoming too complex to be built under the
required performance and safety constraints?

In some sense, software intensive controllers are becoming too complex to be built by
traditional software engineering methods. Old age engineering processes fall short when
dealing with increased levels of required functionality, performance, connectivity,
robustness, adaptability, openness, etc. Non-functional requirements are pressing
towards a world of control systems that cannot be built by conventional human-based
engineering processes.

Sanz, Lopez, Bermejo 2

There are two main effects of this increased complexity that we would like to consider:

• Increase in size, that supposes a necessary increment in effort to build the
system and that implies a whole new bunch of development and management
practices.

• Decrease in designability (i.e. the capability of effectively calculate and/or
predict the characteristics of the system when built). This may suppose a
decrease in performance or more worrying a major decrease of dependability.

A decrease in dependability in office software is not a very big problem –as we all

know. This is not the case of technical systems where dependability (both as reliability
and maintainability) is a critical aspect. A chemical plant control system can be
composed of thousands of computers –from intelligent sensors to top level management
information systems– and kill thousands of people when not working properly (see
Figure 1).
Providing the required dependability is a major problem and the origin of specific
information technology practices to build safety-critical systems. The problem is that
these methods do not scale well for complex applications and that limitation forces a
trade-off between features and robustness [Gunderson 2003].

Common control system failures may be associated to unexpected events –changes in
the plant– or to control design errors –in a sense similar to the former from an
epistemological point of view. Many control strategies have tried to cope with this kind
of change: robust, self-tuning, adaptive controllers are well known examples. However,
in complex, software intensive controllers, the failure modes due to faults or errors in
the software are becoming a very significant part. In these systems the unexpected not

Figure 1: A simplified diagram of a distributed control system for an industrial continuous

process plant. These systems may include thousands of interconnected computers.

Sanz, Lopez, Bermejo 3

only comes from the plant under control and its environment but from the controller
implementation itself.

A possible path to the solution of this increasing control software complexity problem is
to extend the adaptation mechanism from the core controller to the whole
implementation1 of it.

Adaptation of a technical system like a controller can be seen from two main
perspectives: adaptation during construction and runtime adaptation. A paradigmatic
example of the first type (construction) is reusable component retargeting to adapt it to a
particular execution platform. A paradigmatic example of the second type (run-time) is
fault-tolerant control.

We have reached the conclusion that the continuously increasing complexity makes
almost impossible the only use of construction-time techniques because they do not
scale and prove robust enough. Designers cannot guarantee by design the correct
operation of a complex controller [Benveniste 2003].

The alternative approach is to move the responsibility for correct operation into the
system itself. That means moving the adaptation from the implementation phase into the
runtime phase. During runtime the control system perceives changes –not only in the
plant– and adapts to these changes to keep the mission assigned to it during the design
phase.

Analysing the characteristics of this problem –action by reflection– we have identified a
common problem structure –isomorphism [Bertalanffy 1969]– between this situation
and the situations analysed in consciousness studies. We hence wonder whether
artificial consciousness can be a potential solution to the performance/dependability
problem in artificial control systems.

The Business Case

It may sound strange to claim for the existence of a business case for conscious
machines when there is even disagreement on the role that consciousness plays in
natural systems and its evolutionary value. This is clearly shown in the fact that there is
even a school of thought that claims that consciousness is an epiphenomenon, i.e.
nothing we can't live without.

Obviously, we do not think that way, and the best proof of its evolutionary value is our
own everyday perception of consciousness: What do you prefer? a conscious or an
unconscious taxi driver? What do you prefer? a conscious or an unconscious
neurosurgeon? It is quite clear that consciousness does play an important role in the

1 The percentage of code that corresponds to the implementation of the real controller is
less that 1% for controllers of minimal complexity. The rest of the code is supporting
and peripheral software.

Sanz, Lopez, Bermejo 4

correct execution of tasks, in the exercising of adequate behaviour in the presence of
uncertainty.

But beyond exploring ideas on what consciousness is and how can it be manifested by
an artificial agent we may consider the question of real needs for this technology. Is
there any real business case for it?

Indeed it is. Not one but many business cases. Let's mention just two in quite different
niches and then do some analysis that may serve as a general business drive for this
technology.

The first business case is the case of the software systems we use to support human
activity processes; our laptops, PDAs and mobile phones are full of software and
communications because today's computing environment is changing from the isolated
isles of productivity around a productivity toolset to the open sea of web services and
dynamic applications. There is no longer a central deity that decides when to release a
new complete update of our suite. There's nobody in charge of our whole environment
anymore. We must strive for keeping our working environment in line with evolving
realities out there. And the task is not easy at all: this new Flash 8 media file that can't
be properly executed on my Linux Firefox browser; this just-released sequencer plug-in
that my OS X music software rejects to incorporate. All they are changing in the world
out of a coherent configuration management. There is no single authority that can do
that.

The second business case is the case of electrical system internetworking between
countries. National power production plants, transport and distribution grids are
operated by companies or governments that have quite different objectives and
strategies. Cross-border interconnection seems necessary from many points of view
(e.g. robustness, efficiency, policies, etc.). But, from a purely technical point of view,
the task of controlling such a system is hopeless. There's nobody in charge anymore.
Subsystems are built using different technologies and operated under different ruling
agencies. While the technical issues may be solved relatively easily (standardisation
bodies do help in this) the main problem remains: integrated and unified decision-
making. The local operation decisions can be contradictory at a system-wide scale.
Autonomous distributed decision making processes mine the technically sound
operation of the global network. These processes are not only political or commercial
decision processes but also include technical, even automatic, decision processes that
happen ubiquitously in the network and that can produce electrical ripples that may
manifest catastrophically in a remote place. We are engineering systems that suffer
butterfly effects. That old wildly free character of some natural realities is becoming a
daunting fact of our infrastructures.

What do these two cases have in common? The answer is relatively easy to identify: the
behaviour of the global system is driven by interaction of local systems that are not any
longer under a common change authority. It may look like the problem is that of proper
physical integration, but not only. The main issue, the really daunting thing, is that the
bottleneck, or to be more precise, the key of the path to the solution is the capability of
cognitive level metareasoning and integration. The question is for a technical system to
be able to reason about i) how it is able to think and act ii) how others do the same and

Sanz, Lopez, Bermejo 5

iii) how can I communicate with them to achieve my objectives. Some of these topics
have been addressed in the agents community, but agent technology still lacks the level
of self-awareness that is needed to properly vehiculate these processes.

The business case is clear: software intensive systems -real-time or not- are getting so
complex that we're no longer in the position of fully controlling them and their
environments to make them robust enough. The classic zero-defect engineering or
replicative fault-tolerance approaches do not scale well to systems of such a size and
such a rate of uncoordinated change.

The possibility we envision is also clear: make systems responsible for providing their
function. Instead of having a single production engineer -producing either software or
electricity- in charge of change let the systems take care of themselves. Make the
systems self-aware. This is somewhat happening in the field of software (IBM's
autonomic computing or Sun's conscientious software). We need it to also happen with
physically embedded systems.

It looks like it is better if machines are conscious but, obviously, machines are not
humans and hence machine consciousness need not be the same as humans
consciousness. For example, we must be aware of the apparent differences between
sensing, perceiving and feeling. Perception and feeling seem tinted with the colours of
phenomenology, that seems to be a private, agent specific, issue (at least in biosystems).

We see three major motivations for research on artificial consciousness:

1. Building artefacts like us: consciousness, emotion and affect, experience,
imagination, etc. This may be the main motivation for consciousness in
Robotics.

2. Studying natural systems with computer laboratory models: this is one of the
main strategies of Cognitive Science.

3. Making effective machines: the pursuit of Intelligent Control technologies.

In any case, a deeper, cleaner theory of consciousness is needed to support these
objectives.

The focus of our work on machine consciousness is hence on software intensive
controllers for autonomous robust behaviour based on self-awareness. Qualia and
related issues are left out for future endeavours.

Approaching autonomy

As we said before, the selected approach is to simplify the engineering work of building
robust systems by moving the responsibility for correct operation into the system itself.
This will require complex real-time architectures to support this reflective capability but
hopefully they will improve performance and, more importantly, increase resilience of
large-scale systems.

Sanz, Lopez, Bermejo 6

Moving the adaptation from the implementation phase into the runtime phase will make
necessary for the system to gather self-information to perceive the changes that the
systems is suffering: i.e. during runtime the system perceives changes and adapts to
these changes to keep the mission assigned to it during the design phase.

Several alternatives have been explored in the past, based on the implementation of
architectural mechanisms for self-organisation and/or self-repair. These systems are
built and started in a base state and they follow adaptive life-cycles based on the
circumstances of the environment that surrounds the computing system (e.g. fault-
tolerant systems, automatic learning, genetic programming or autonomic computing)

As an example, let’s quote IBM’s description of their autonomic computing initiative
[IBM 2003]:

”Autonomic computing is the ability of an IT infrastructure to adapt to change in
accordance with business policies and objectives. Quite simply, it is about freeing IT
professionals to focus on higher-value tasks by making technology work smarter, with
business rules guiding systems to be self-configuring, self-healing, self-optimizing, and
self-protecting.”

Figure 2: The IBM’s vision on autonomic computing is based on the implementation of

reflective control loops to increase operational autonomy of managed computing elements.

To achieve all these self-x properties, autonomic computing is based on the
implementation of reflective control loops to increase operational autonomy of managed
computing elements (see Figure 2). The IT elements –computers, printers, switches,
etc.– are augmented with sensors, actuators and knowledge-based controllers termed
autonomic managers. Computing infrastructures are composed by collections of
autonomic elements that are able to respond to change autonomously.

Sanz, Lopez, Bermejo 7

The Modelling Approach to System Development

The approach that we try to follow is to implement our equivalents of the autonomic
managers using system models as the main knowledge representation of the system
itself. Model-driven development (MDD) is a strategy to build systems that is gaining
wide acceptance in the construction of complex embedded systems. And we try to use
the MDD engineering models as runtime models for the autonomous agent.

In the words of Jonathan Sprinkle:

[MDD is] “A design methodology used to create and evolve integrated, multiple-aspect
models of computer- based systems using concepts, relations, and model composition
principles to facilitate systems/software engineering analysis of the models and
automatic synthesis of applications from the models.”

In MDD, deep and multiple system models are built and analysed using tools provided
by the modelling environment. These models are later used to (semi)automatically
generate the final system (see Figure 3). This means that the models must necessarily
capture the semantic aspects of the final system and not just the structural properties.
Functional modelling help capture the intention [Leveson 2000] of the designer and the
finality of the artificial system [Bertalanffy 1969].

Figure 3: In the model-driven approach to system development, multiperspective, semantically-

rich models of the system under construction are specified in advance and used to generate
automatically the running system, typically by a set of transformation-based generators.

Sanz, Lopez, Bermejo 8

If the models capture the semantics of the final system it is possible to use model-based
reasoning techniques to make run-time decisions about the system itself. In a similar
way to fault-detection systems, discrepancies between system behaviour and expected
behaviour may be pointed out identifying differences between reality and model-
predicted outputs.

Model-based self-aware control systems

Analysis of extant control engineering perspectives

Before introducing our approach to this problem let’s consider some basic control
patterns that will help set the ground for our work.

Control systems exploit knowledge about the process under control to provide inputs to
it that can drive the dynamics of the process to reach certain output state of interest (see
Figure 4).

Figure 4: A simple feedback control system provides a small amount of operational

autonomy [Gancett 2004].

In general, in autonomous agents, we can consider the agent body as the process to be
controlled, and the output measurement and control signal generation are mapped into
sensing and action processes (see Figure 5). This must be done carefully because the
division agent-environment may be not very clear depending on the embodiment and
the function of the agent (consider for example the cases of mobile robots or
environment control systems).

Sanz, Lopez, Bermejo 9

Figure 5: The controller vision of the autonomous agent.

In the case of model-based controllers, the control box uses a explicit model of the plant
under control to improve the performance of the controller going beyond the calculation
of the simple control action of a feedback controller. There are many examples of this
type of control, e.g. model-reference adaptive controllers and the RCS control model of
autonomous agents (see Figures 6&7).

Figure 6: A model-reference adaptive controller used to track process changes and

adapt the controller to them using a reference model of the process.

Sanz, Lopez, Bermejo 10

Figure 7: The basic structure of the RCS intelligent controller exploits a model of the

agent and the world in the determination of control actions [Albus 2001].

A truly adaptive system (e.g. a system with the autonomic properties) must necessarily
do a semantic processing of the information it has about itself. This is the type of
reasoning that MDD tools help perform over their models if they are semantically
precise enough.

The ASys vision: Model-based self-aware control systems

The vision of the ASys project of our research group can be summarized as follows:
make artificial controllers operate with the same models that humans use to build them.

In this way, the system would operate with an explicit model of itself and of its
environment: an integrated model of its world. A system working in this way would
exploit the model for its operation not only in the classical sense of control, but even for
interaction with its environment and the other agents of its world.

Figure 8: Model contents and use.

Sanz, Lopez, Bermejo 11

This vision implies that the tools and models that are being developed to be used by
builders at the implementation phase can find their “autonomic” use by the system itself
at the runtime phase. So, the engineering models do constitute the very self-model of
the running system and the value system used to make decisions (both auto and allo)
may be included with the model itself because it contains information not only about the
world but also about the agent itself and other agents that interact with it (and the
system provides value to them).

In this way, the control setpoints of conventional control systems find their place at the
same level of any relation of authority between intelligent agents (human or artificial).
Model exploitation strategies will not only drive the status of the body –the plant– but
also all the interactions with other agents based on semantically sound representation of
their own value systems.

This vision goes a step beyond current technologies: Classic adaptive control or fault-
tolerant control use plant models to adapt the control to new plant conditions. Fault-
tolerant computing uses computation models to keep the computation ongoing.
Reflective, model-based autonomous systems will have deep model-based introspection
capabilities that will let them achieve a high degree of adaptability and resilience.

Models (of the world, of the self, of others) may be executed by the agent over
appropriate virtual machines for different purposes (Self-X operations), for example:

• Decision-making and action calculation
• Diagnosis and reconfiguration
• What-if (imagination) and risk evaluation
• Abduction, retrodiction and causal analysis
• Coordination, negotiation and agreement
• etc.

We call this technology Self-X. Self-X functionality exploits models of the system itself
in the performance of model-based action.

We expect that this vision can break the problematic barrier between the process and the

Sanz, Lopez, Bermejo 12

product and bridge the gap between construction and run-time phases to enable life-
cycle adaptation. In summary, we can say that Self-X makes the system adaptive using
self-models and real-time reflection.

Obviously this vision fall short of explaining the multifarious nature of human
consciousness, but one of the main problems we confront there is the lack of a
systematic characterisation of it with some relevant exceptions [Alexander 2003].

Conclusions

The rise of control system complexity claims for new technologies that provide the
required scalability to address the problems of the technical infrastructure.

We consider that the capability of adaptation is a key issue but without losing the
constraining capability of design-based engineering processed. Bounded, semantically-
rich self-adaptation is needed for many reasons (in particular for increased
dependability). With the required levels of autonomy and complexity, the phases of
systems engineering and construction necessarily run short. Complex systems must be
able to adapt to their real scenarios of activity as part of their operation.

In this light, the ASys Vision considers that model-driven development technology is a
crucial technology for complex controllers. Model-based control is not new at all, but
it can be extended to the control system itself and not be restricted to model the plant.
The way to design and to build systems that can operate efficiently and with high
degrees of dependability is by making systems exploit their knowledge not only for
controlling the plant (as traditionally,) but for controlling themselves. This implies
reflexive capabilities, which still have to be highly developed for the artificial world.

Conscious, self-aware controllers will exploit self models embedded in models of their
world for maximising mission-level effectiveness. A question remains, however: What
is it like to be a model-based reflective predictive controller? There may be something
it is like to be such exploitator of a self-model linked to such a world-model in a
machine with a mission.

References

Albus, James and Alexander Meystel (2001). Engineering of Mind: An Introduction to
the Science of Intelligent Systems. Wiley Series on Intelligent Systems. Wiley. New
York.

Aleksander, Igor and Barry Dunmall (2003). Axioms and tests for the presence of
minimal consciousness in agents. Journal of Consciousness Studies 10(4-5), 7–18.

 Åström, Karl, Isidori, Alberto, Albertos, Pedro, Blanke, Mogens, Schaufelberger,
Walter and Sanz, Ricardo, Eds.) (2000). Control of Complex Systems. Springer. Berlin.

Sanz, Lopez, Bermejo 13

Benveniste, A., L. P. Carloni, P. Caspi and A. L. Sangiovanni-Vincentelli (2003).
Heterogeneous reactive systems modeling and correct-by-construction deployment. In:
Proc. Int. Conf. Embedded Software (EMSOFT) (R. Alur and I. Lee, Eds.).

Bertalanffy, Ludvig von (1969). General System Theory. George Braziller, 1969.

Blum, Alex, Vaclav Cechticky, Alessandro Pasetti and Walter Schaufelberger (2003). A
Java-based framework for real-time control systems. In: Proceedings of 9th IEEE
International Conference on Emerging Technologies and Factory Automation. Lisbon,
Portugal. pp. 447–453.

Douglass, Bruce Powell (1999). Doing Hard Time. Developing Real-Time Systems
with UML, Objects, Frameworks and Patterns. Object Technology Series. Addison-
Wesley. Reading, MA.

EUSAI (2004). European symposium on ambient intelligence. http://www.eusai.net/.

Gancet, Jeremi and Simon Lacroix (2004). Embedding heterogeneous levels of
decisional autonomy in multi-robot systems. 7th International Symposium on
Distributed Autonomous Robotic Systems (DARS'04), Toulouse (France) 23-25 June
2004.

Gilani, Wasif, Nabeel Hasan Naqvi and Olaf Spinczyk (2004). On adaptable
middleware product lines. In: Proceedings of the 3rd ACM Workshop on Adaptive and
Reflective Middleware. Toronto,Canada.

Gunderson, Lance H. and Jr., Lowell Pritchard, Eds.) (2002). Resilience and the
Behavior of Large-Scale Systems. Island Press. Covelo, CA.

Haikonen, Pentti O. (2003). The Cognitive Approach to Conscious Machines. Imprint
Academic. Exeter.

Holland, Owen and Ron Goodman (2003). Robots with internal models - a route to
machine consciousness?. Journal of Consciousness Studies 10(4-5), 77–109.

Holland, Owen, Ed.) (2003). Machine Consciousness. Imprint Academic. Exeter, UK.

Huang, Hui-Min (Ed.) (2004). Autonomy Levels for Unmanned Systems (ALFUS)
Framework. Volume I: Terminology. Version 1.1. National Institute for Standards and
Technology (NIST), 2004.

IBM (2003). An architectural blueprint for autonomic computing. Technical report.
IBM.

Jacob, Bart, Richard Lanyon-Hogg, Devaprasad K. Nadgir and Amr F. Yassin (2004).
A Practical Guide to the IBM Autonomic Computing Toolkit. RedBooks. IBM.

Leveson, Nancy (2000), Intent Specifications: An Approach to Building Human-
Centered Specifications. IEEE Trans. on Software Engineering, January 2000.

Sanz, Lopez, Bermejo 14

Lieberherr, Karl, Doug Orleans and Johan Ovlinger (2001). Aspect-Oriented
Programming with Adaptive Methods. Communications of the ACM 44(10), 39–41.

Meystel, Alexander (2000). Measuring Performance of Systems with Autonomy:
Metrics for Intelligence of Constructed Systems. White Paper for the Workshop on
Performance Metrics for Intelligent Systems. NIST, Gaithesburg, Maryland, August 14-
16, 2000.

Sanz, Ricardo (2004). CO7: Converging trends in complex software-intensive control.
In: Sixth Portuguese Conference on Automatic Control. Faro, Portugal.

Shrivastava, S.K., L. Mancini and B. Randell (1993). The duality of fault-tolerant
system structures. Software: Practice and Experience 23(7), 773–798.

Szypersky, Clemens (1998). Component Software. Beyond Object-Oriented
Programming. ACM Press / Addison-Wesley. Reading, MA.

Taylor, John G. (1999). The Race for Consciousness. MIT Press. Cambridge, MA.

This is a preprint of Chapter 9 of:

Artificial Consciousness
Antonio Chella and Riccardo Manzotti (eds.)
Imprint Academic.
2007 Exeter, UK
2007

