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Resumen 
 

En los tiempos modernos estamos rodeados de una gran diversidad de sistemas 

tecnológicos que paulatinamente se han integrado en nuestra sociedad. Sin embargo, 

muchos de estos sistemas no son capaces aún de hacer frente a entornos complejos, 

dinámicos e inciertos sin la intervención humana ni alcanzar los niveles requeridos de 

fiabilidad y robustez. Un buen ejemplo de estos sistemas son los de la industria de la 

robótica. La mayoría de los robots que realmente hacen un trabajo útil para nosotros 

consiste en robots industriales. Estos robots realizan operaciones en entornos 

rigurosamente controlados y con misiones muy bien definidas. Fuera de los laboratorios 

de investigación resulta prácticamente imposible encontrar otros robots con cierto grado 

de autonomía. Este trabajo de investigación hace frente a este problema, intentando 

aumentar la adaptabilidad de estos sistemas utilizando un enfoque general. 

En este trabajo se describe el sistema de control que ha sido desarrollado para un robot 

móvil autónomo que realiza una misión de vigilancia y donde se considera que pueden 

ocurrir fallos en alguno de sus dispositivos. Se define la misión del robot y  la 

arquitectura de control diseñada que es la contribución principal de este trabajo de 

investigación. La arquitectura propuesta está inspirada en la arquitectura cognitiva The 

Operative Mind e incluye una capa de meta-control cuya función es controlar y 

reconfigurar el sistema caso sea necesario. Este enfoque puede parecer muy similar al 

que se aplica a sistemas de tolerancia a fallos; sin embargo, la capa de meta-control se 

define aquí con generalidad absoluta, y puede ser fácilmente ampliada para mejorar aún 

más la solidez y la autonomía del sistema de control, mediante la detección de eventos 

del sistema que no necesariamente están relacionados con fallos. Este sistema de control 

se implementó y los experimentos se realizaron con el objetivo de verificar que el robot 

es capaz de cumplir su misión gracias a sus capacidades de auto-reconfiguración. Otros 

experimentos revelaron que esta capa de meta-control puede ser fácilmente mejorada, 

aumentando la eficiencia del sistema.   



 

 

 

 

  



 

 

 

 

Abstract 
 

In these modern times, we are surrounded by many technical systems that are 

successfully integrated in our society. However, they are still not able to deal with 

complex, dynamic and uncertain environments without human intervention. Most of 

these control systems have not reached yet the required levels of reliability and 

robustness. A good example is represented by the robotic industry. The majority of 

robots that actually do some useful work for us consist of industrial robots that perform 

operations in strictly controlled environments and very well defined missions. However, 

outside the labs we have not seen many other robots doing anything autonomously but 

wander. This research work concerns with this topic: augmenting systems resilience 

using a general approach.  

 

In this work, a robot control system is developed for an autonomous mobile robot that 

executes a simple but challenging indoor surveillance mission in which device failures 

may occur. After the full definition of the mission, the control architecture is designed, 

which consists in the main contribution of this research work. This architecture was 

inspired by the general cognitive architecture The Operative Mind, and includes a meta-

control layer. The meta-control layer is intended to monitor and reconfigure the system 

if necessary. This approach may appear very similar to the ones applied to fault-tolerant 

systems. However, the meta-control layer is defined here with absolute generality, and 

can be easily augmented to further improve the robustness and the autonomy of the 

control system, by detecting system's events that are not necessarily related with faults. 

The control system was implemented and experiments were done to verify that the robot 

can accomplish its mission completely thanks to the self-reconfiguration capabilities of 

the system brought by the meta-control layer. Other experiments revealed that this 

meta-control layer can be easily upgraded to enhance the efficiency of the system.   
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1 Introduction 
 

1.1 Background and Motivation 
 

In a time when we search for fully autonomous systems and machines, the biologic mind 

– human or animal – is still the only reference of an autonomous control system robust 

to dynamic and uncertain environments.  

The last few decades have witnessed huge developments and integrations of technical 

systems into our society. Most of these systems replaced human labor, while some other 

extended the technological frontiers enabling us to achieve things that were unreachable 

or unimaginable before. In modern societies, we face daily many of these systems, 

despite not being aware of them. Airplanes, cars or chemical plants, along with 

electricity networks, telecommunications and other supporting facilities are some 

examples of these. However, many of the new demands on technical systems are 

extremely difficult to achieve if one wants to maintain or increase other non-functional 

requirements such as reliance, robustness or even autonomy. A good example of this 

fact is the robot industry. Some years ago, many predicted that today we would have 

fully autonomous robots cooperating with us as our artificial intelligent partners.  

Nonetheless, currently most of the robots that are successfully integrated into our 

societies exist as industrial robots, which basically correspond to reprogrammable 

manipulators with specific tasks that work in production plants. Typical applications of 

these robots include welding, painting, assembly, along with pick and place. Despite 

being extremely efficient in their tasks, there are still many responsibilities in industry 

only trusted to humans. Outside factory plants, robots doing anything autonomously 

more complex than wandering –i.e. Roomba
1
 – have still not left lab environments. 

They were foreseen to guide people in museums, patrol security areas, drive us to our 

destinations as autonomous vehicles, or perform exploration in Mars. And to some 

degree they already do. But their dependence upon human supervision makes them less 

efficient. These robots can be seen as examples of demanded technical systems that 

have not yet achieve the desired levels of autonomy, robustness and reliance.  

Fault-tolerant systems have been developed to overcome the failures that may occur in 

technical systems, either because of the interaction with the environment or originating 

from the system itself. They are usually implemented as technical systems whose 

reliability is essential. However, as these types of systems are specified nowadays, one 

has to capture, into a model, an almost full knowledge of the environment and the 

system itself. An example of this can be appreciated in the fault-tolerant architecture 

described in (Blanke, et al. 2006). Therefore, as with other conventional control 

systems, an accurate formal model of the system must be specified in order to 

implement them successfully.  

In the past decades, several Artificial Intelligence and Soft Computing techniques were 

used when a control system‟s model could not be specified and classical techniques 

                                                 

1
 http://store.irobot.com/home/index.jsp 
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(such as PID
2
 or state space control) could not be applied. With some collected data, the 

machine could automatically find an approximate model. However, for a system 

operating in partially (or totally) unknown and/or unpredictable environments that 

handles high levels of uncertainty, it is not enough to individually apply these 

techniques. One must organize them into a previously designed structure, which is 

represented by the system‟s control architecture. This thesis is based on the premise that 

the definition of a proper control architecture is required to successfully implement a 

complex system which interacts with an unknown and uncertain environment. 

Several architectures for control systems have been proposed when high demand on 

technical systems started to appear. In particular, since the 1970‟s, many agent 

architectures were designed and implemented in several control system for autonomous 

agents. These architectures can be mainly divided into three categories: deliberative, 

reactive, and hybrid architectures (Wooldridge and Jennings 1995). However, it is 

important to analyze agent architectures from a cognitive point of view because the 

biological mind is a strong referent for a successful autonomous robust control system. 

Cognitive architectures have emerged as architectures that propose computational 

processes that act like certain cognitive systems (most often, like a person). They bring 

us closer to the general problem of developing a truly intelligent and autonomous agent. 

By being inspired by biological cognitive phenomena, or by trying to address the 

general problem of intelligence, they have been considered a respected approach with 

some real implementations in physical agents: see (Albus, et al. 2002). The presented 

work is highly related to cognitive architectures, with the aim to develop control 

architectures that lead to the implementation of more robust and reliable systems, 

capable to interact with dynamic and unpredictable environments.  

 

1.2 Contributions  
 

This thesis contains a description of the development of a control system, which was 

successfully implemented in an autonomous mobile robot. However, the main 

contribution of this work is the designed architecture, used to implement the control 

system. This architecture is based on the general cognitive architecture The Operative 

Mind (Hernandez, Lopez and Sanz 2009) integrated in the ASys Project
3
 that include a 

meta-control layer whose function is to monitor and reconfigure the system if necessary. 

Unlike fault-tolerant architectures, the meta-control layer is defined here with absolute 

generality, and can be easily augmented to further improve the robustness and the 

autonomy of the control system by detecting system's events that are not necessarily 

related with faults.   

Thus, the general objective of this work is to specify a guideline of how to increase the 

reliability of an autonomous system by inserting self-introspection abilities. This is done 

by designing a complete architecture that defines a control system capable of self-

                                                 

2
 PID is an acronym for “Proportional-Integral-Differential”, and consists in the most used feedback 

control design. For more information, see (Araki 2000). 
3
 The ASys project is long term project of the Autonomous Systems Laboratory (ASLab) research group 

of the Technical University of Madrid. 
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monitoring and self-reconfiguration. The system is implemented in an autonomous 

mobile robot and a mission which requires self-reconfiguration is specified. 

Experiments results show the necessity of self-awareness and self-reconfiguration for 

the complete execution of the mission.   

 To achieve the research objectives, the following tasks have been performed:   

- Study of agent architectures and cognitive architectures, as well as the necessity 

of self-introspection in today‟s control systems; 

 

- Specification of a proper mission for the control system, having in mind the 

hardware platform available and the work requirements. This mission must 

require system‟s self-reconfiguration; 

 

- Design of a full architecture for the control system that is suited for the 

execution of the mission. This architecture must specify components that are 

capable of self-monitoring and self-reconfiguration; 

 

- Implementation of the designed architecture using the available hardware and 

software platform; 

 

- Realization of several experiments and extraction of meaningful results aimed at 

showing that self-introspection abilities are essential for the execution of the 

mission thus allowing to increase the system‟s  efficiency; 

  

1.3 Structure of this document 
 

Chapter 2 presents an overview of the state of the art of the scientific areas related with 

this work, such as Agent Architectures, Cognitive Architectures, Fault Tolerant Systems 

and some of the most popular techniques used in Mobile Robotics. It also describes 

some popular software robotic platforms, which are alternatives to the one used for this 

work. This chapter is important to understand the following chapters, since it captures 

essential knowledge of the context of this work. In Chapter 3, the general architecture 

The Operative Mind is described, as well as its surrounding project – ASys. This 

chapter presents some of the theoretical framework in which the developed architecture 

is based. In Chapter 4, the available hardware platform used to implement the developed 

system is described, as well as an overview of the Robotics Operating System (ROS), 

the robotic software platform used. Chapter 5 presents a detailed description of the 

chosen mission that the robot has to accomplish. In Chapter 6, the developed 

architecture for the control system is presented. This chapter is the core of this thesis, 

since the major contribution of this work relies on the description of the developed 

architecture. Chapter 7 presents a description of the implemented robot control system. 

In the Chapter 8, the description of the experiments made, the measures taken and their 

analysis can be found. Finally, Chapter 9 contains the conclusions of the work, with 

special emphasis in the results obtained in the experiments and a reference to some 

future works.  

  



 

 

4 

 

 

  



 

 

5 

 

2  State of the Art 
 

The following subsections try to capture all the necessary knowledge to contextualize 

this work in its associated domains. An overview of the state of the art of the areas 

related with this work is presented, such as Agent Architectures, Cognitive 

Architectures (as a subset of Agent Architectures) and Fault-Tolerant Systems. The 

subsections 2.4 and 2.5 serve as a presentation and review of the main techniques of 

autonomous mobile robots (some of them used in this work) and some popular robotic 

software platforms that consists of alternatives to the software platform used for this 

work (which will be detailed in 4.2  Software Platform – ROS).  

2.1 Agent Architectures 
 

Agent architectures are studied in several scientific areas, namely in Autonomous 

Robotics. Maes considers an agent architecture to be:  

“[A] particular methodology for building agents. It specifies how the agent can be 

decomposed into the construction of a set of component modules and how these modules 

should be made to interact. The total set of modules and their interactions has to 

provide an answer to the question of how the sensor data and the current internal state 

of the agent determine the actions ... and future internal state of the agent.” (Maes 

1991) 

For autonomous robots, a control architecture is a blueprint for intelligent control 

systems that provide some intelligence, robustness or autonomy to a robot. They can be 

metaphorically compared to the “brain” behind an autonomous robot. In a less abstract 

view, they can be seen as the element that provides to a robot the capability to extract 

information from its environment and use knowledge about its world to move safely in 

a meaningful and purposeful manner. They can also refer to the way in which the 

sensing and the action of a robot are coordinated. 

Nowadays, we can choose our robot control architecture from a wide defined spectrum 

of control. It is important to know that there is no such thing as a perfect architecture for 

all types of robots or for every kind of environment. The control architecture adequacy 

to a robot depends heavily on the mission‟s characteristics, environment and the robot 

software and hardware resources. Control architectures are grouped in three defined 

approaches, each with different characteristics and control trade-offs: 

 Deliberative Architectures – adequate when long-term planning and reasoning 

is essential. 

 

 Reactive Architectures – adequate for agents situated in highly dynamic 

environments where quick answers are essential. 

 

 Hybrid Architectures – adequate for agents situated in unknown and changing 

environments or when a reactive behavior is as needed as long-term planning.  
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In the following section, a description of each of the above architectures is presented, as 

well as some of the most important landmarks and related works.  

 

 

2.1.1 Deliberative Architectures 
 

Deliberative Architectures (also considered as the classical or symbolic approach) 

appeared in the early 1970‟s and consisted in the first approach for the design of agents 

within AI. According to Wooldridge, a deliberative agent is "one that possesses an 

explicitly represented, symbolic model of the world, and in which decisions (for 

example about what actions to perform) are made via symbolic reasoning" (M. 

Wooldridge 1995). Generally, its purest expression proposes that agents use explicit 

logical reasoning in order to decide their actions, while possessing an internal image of 

the external environment. This foundation of the symbolic AI paradigm is supported by 

the physical-symbol system hypothesis (Newell and Simon 1976). The term 

“deliberative agent” derives from Genesereth‟s use of the term “deliberate agent” to 

mean the specific type of this symbolic architecture (Genesereth and Nilsson 1987).  

The main idea of a deliberative agent is to use logic to encode a theory stating the best 

action to perform in any given situation. This idea of an agent capable of logical 

reasoning is “highly seductive”, as stated by (Wooldridge and Jennings 1995), because 

to get an agent to realize some theory one might naively suppose that it is enough to 

have a proper logical representation of this theory with a further theorem proving. 

However, the following problems arise when building such agents: 

 The transduction problem – how to translate a real world into a proper 

logical symbolic description. 

 

 The representation/reasoning problem – how to symbolically represent 

information about the real world entities and processes in a description 

language. 

 

 The reasoning problem – how to get agents to reason with this information 

or symbolic descriptions in time for the results to be useful. 

 

The former problem has led to work in areas such as vision, speech understanding, 

learning, while the latter led to works in knowledge representation, automated reasoning 

and automatic planning. Despite the huge number of developments and research, these 

problems are still quite far from being solved, which questions the efficiency of 

deliberative architectures compared to other approaches (such as the reactive 

architectures). The difficulties associated with the mentioned problems seem to be 

related with the complexity of commonsense reasoning, theorem proving and the 

symbol manipulation algorithms (Wooldridge and Jennings 1995).  

Since the 1970s, the AI planning community has been involved in the design and 

development of artificial planning agents (predecessors of deliberative agents). This 

concern has remained for the next two decades. Wooldridge and Jennings claim that 
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“most innovations in agent design have come from this community” (Wooldridge and 

Jennings 1995). As a result, in 1971 STRIPS was created (Fikes and Nilsson 1971). 

STRIPS consisted in a simple planning system which tries to find a sequence of desired 

actions having in mind the symbolic descriptions of the world, the desired goal state and 

a set of actions. The STRIPS algorithm was very simple but needed further 

improvement, for it was unable to solve problems of even modern complexity. A lot of 

effort was made to surpass artificial planning limitations in time-constrained systems 

which resulted in the implementation of hierarchical (Sacerdoti 1974) and non-linear 

planning (Sacerdoti 1975). Despite this effort, the system proved to remain somewhat 

weak. 

Only in late 1980s more successful attempts have been made in the design of planning 

agents. For instance, the IPEM (Integrated Planning, Execution and Monitoring system) 

presented an embedded sophisticated non-linear planner (Ambros-Ingerson and Steel 

1988). Further, Wood‟s AUTODRIVE system simulated deliberative agents in a highly 

dynamic environment (a traffic simulation) (Wood 1993), Etzioni built „softbots‟ that 

can plan and act in a UNIX environment (Etzioni, Lesh and Segal 1994) and Cohen‟s 

PHOENIX system was construed to simulate fire management (Cohen, et al. 1989).  

Meanwhile, in 1976, Simon and Newel formulated the Physical Symbol Systems 

hypothesis (Newell and Simon 1976), stating that both human and artificial intelligence 

have the same principle – symbol representation and manipulation. Additionally, they 

claimed that there is only a quantitative and structural difference between the human‟s 

intelligence and the machine‟s intelligence, being the latter mush less complex.  

In late 1980s and early 1990s some researches started to develop agent architectures 

based in the BDI (Belief-Desire-Intention) software model, which draws its inspiration 

from the philosophical theories of Bratman (Bratman 1988). He defended that intentions 

play a significant and distinct role in practical reasoning and cannot be reduced to 

beliefs and desires. In the BDI model, agent's beliefs about the world (its image of a 

world), desires (goals) and intentions are internally represented and practical reasoning 

is applied to decide which action to select. The first BDI-architecture was conceived in 

1988, named IRMA (Intelligent Resource-bounded Machine Architecture) (Bratman, 

Israel and Pollack 1988). This architecture exemplifies that standard idea of a 

deliberative agent, as it is known today. It consists of four symbolic data structures: a 

plan library and representations of beliefs, desires and intentions. It also contains a 

mean-end reasoner to decide how to achieve an end using the available means; 

an opportunity analyser which generate further options for the agent; a filtering process 

to select the course of action compatible with the agent‟s intentions and commitments; a 

deliberation process to decide between competing options. Thus, it represents an agent 

embedding the symbolic representation and implementing the BDI. In 1990 this 

architecture has been evaluated in an experimental scenario denominated as the 

Tileworld (Pollack and Ringuette 1990). In 1995, Rao and Georgeff implemented a 

BDI-agent-oriented air-traffic management system, called OASIS (Rao and Georgeff 

1995), integrating various aspects of BDI agent research. Other more modern BDI 

Agent Implementations: dMARS (Georgeff, Kinny and Wooldridge 2004), JADEX 

(Pokahr, Braubach and Lamersdor 2005), Agent Real-Time System (Vikhorev, 

Alechina and Logan 2009). 
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2.1.2 Reactive Architectures 
 

The mentioned problems in 2.1.1 associated with symbolic AI and deliberative 

architectures led some researches to question the viability of the whole paradigm. 

Deliberative agents seem to be very ineffective in dynamic environment due to their 

inability to re-plan actions quickly enough and the high complexity of agents in even 

simple environments. In mid 1980s some researchers started to look to alternative 

techniques for building agents. As a result, the first reactive architectures started to 

appear. Stone and Veloso made a very clear comparative between reactive and 

deliberative agents (Stone and Veloso 2000): 

 “Reactive agents simply retrieve pre-set behaviors similar to reflexes without 

maintaining any internal state. On the other hand, deliberative agents behave 

more like they are thinking, by searching through a space of behaviors, 

maintaining internal state, and predicting the effects of actions.” 

 

Thus, by the above statement we can retrieve two main features of the reactive 

architectures: they do not use complex symbolic reasoning; they do not include any kind 

of central symbolic world model (internal state). Other characteristics of the reactive 

control architectures: they make short-term predictions; tight sensor to actuator 

coupling; they divide the world in different „situations‟ and each of them triggers one or 

more actions; they can be seen as the analogous of the reflexes in the human nervous 

system. 

The first well-known reactive architecture was introduced in 1986 by Rodney Brooks 

and was called the Subsumption Architecture (R. Brooks 1986). He had become 

frustrated by the approaches made in control mechanism for autonomous robots so far 

and decided to create a new alternative for building agents, extending the view of AI. 

The subsumption architecture is a hierarchy of task-accomplishing behaviors, organized 

in layers (see Figure 2.1). Each layer has a control program capable of working at the 

speed of environmental change. Lower layers behaviors inhibit higher levels ones. 

Thus, the higher layers correspond to a more deliberative behavior, while the lower 

layers correspond to a more reactive and intuitive behavior. This way, the lowest layers 

can work like fast-adapting mechanisms, while the higher layers work to achieve the 

overall goal.  
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Figure 2.1: Subsumption Architecture (R. Brooks 1986) 

 

The systems that are product of the subsumption architecture proved to be extremely 

simple. However, Brooks implemented this architecture in robots and verified that they 

are capable of doing tasks that would be impressive if they were accomplished by 

symbolic AI systems. A few years later, Steels described a simulation of subsumption-

architecture agents in a “Mars explorer” system and reported that they could achieve 

near-optimal performance in certain tasks (Steels 1990). 

In the following years, in more recent papers, (R. A. Brooks 1990), (R. A. Brooks 

1991a) and (R. A. Brooks 1991b), Brooks put forward three main theses as a result of 

his work in the review of alternatives for the development of autonomous robots: 

 Intelligent behavior can be generated without explicit representations of the kind 

that symbolic AI proposes. 

 

 Intelligent behavior can be generated without explicit abstract reasoning of the 

kind that symbolic AI proposes. 

 

 Intelligence is an emergent property of certain complex systems. 

 

Brooks has also identified two key ideas in his research: 

 Situatedness and embodiment: “Real” intelligence is situated in the world, not 

in disembodied systems such as theorem provers or expert systems. 

 

 Intelligence and emergence: “Intelligent” behavior arises as a result of an 

agent's interaction with its environment. Also, intelligence is “in the eye of the 

beholder”; it is not an innate, isolated property. 

There were other early researchers that studied alternatives to the symbolic AI model in 

late 1980s. In 1986, Chapman and his co-worker Agre also reported the theoretical 

difficulties with the symbolic planning in (Chapman and Agre 1986) and developed the 

PENGI system in 1987 (Agre and Chapman 1987). PENGI is a simulated computer 

game in which the characters are controlled by a new architecture based in “routines” 
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tasks with periodic updating to handle new kinds of problems. This main idea was 

observed by Agre who claimed that most everyday activity is “routine” and that it 

requires little – if any – new abstract reasoning. 

Nowadays, we can find several models of behavior for reactive control architectures. 

The more intuitive are the productions control architectures. Productions consist of 

condition-action rules in the form: if condition then action. Normally, the conditions are 

Boolean and are triggered by external events percepted by the agent. Actions can be 

either external (e.g., pick an object from the ground) or internal (e.g., write something 

into the internal memory) and they can be either performed or not. Productions rules 

can be organized in flat structures or other more complex structures such as trees or 

hierarchy. The referred subsumption architecture is an example of a production control 

architecture with layers of interconnected behaviors organized into a simple stack. 

Another example is the PENGI system described above. 

Another approach for modeling reactive architectures is the finite state machine. They 

specify the behavior of an agent trough a model consisted of states and transitions 

between these states (see Figure 2.2). The transitions are productions rules in the form 

of if condition then activate-new-state.  In every instant, only one state can be active 

and each state can be associated with an act or a script. An act is an atomic action that 

should be performed by the agent while a script describes a sequence of actions. A 

script can be broke down to several scripts and in this way we can exploit the 

hierarchical finite state machine in which every state can contain substates. Despite the 

fact that the first theoretical studies in finite state machines and automata theory date 

back to the 1960s (Booth 1967), they were only first applied to reactive intelligent 

agents in late 1980s. One of the earlier works belongs to Rosenschein and Kaelbling 

that specified the situated automata paradigm with their works between the years 1985 

and 1991. In this paradigm, an agent is specified in declarative terms and then compiled 

to a digital machine (Kaelbling and Rosenschein 1990). This approach has attracted 

much interest, as it appears to combine the best elements of reactive and symbolic 

systems. These days, the finite state machines are applied to physical autonomous 

robots and to softbots. In the paper of Damian Isla, (Isla 2005) we can find a description 

of computer game bots, implemented in the video game Halo 2, which use hierarchical 

finite state machines. 

 

Figure 2.2: A Finite State Machine used in softbots in Halo 2 (Isla 2005) 
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The referred approaches for reactive architectures can be combined with fuzzy logic. In 

these cases, conditions, states and actions are no more Boolean but are approximate and 

smooth. Thus, the resulted behavior will reflect smoother transitions, especially in the 

case of transitions between two tasks. Fuzzy logic techniques have been used for the 

implementation of several intelligent controllers and for navigation in autonomous 

vehicles - see (Driankov and Saffiotti 2001).  

We can also find reactive architectures based in connectionist networks. Connectionist 

networks are composed of unit with inputs links (that feed the unit with “an abstract 

activity”) and outputs links that propagate the activity for the subsequent units. The 

associated architectures have several advantages over the other referred reactive 

architectures, since they proved to provide an even smoother behavior of an agent and 

they are often adaptive. They also have some flaws:  it is more complicated to extract 

knowledge regarding the behavior of an agent using connectionist networks that using 

production rules; if we want to exploit the adaptive feature, only relative simple 

behavior is proved to be effective. The most famous connectionist networks are the 

artificial neural networks whose studies started to appear in mid 1950s (see Figure 2.3). 

Currently, they are very used in Machine Learning and Data Mining to build classifiers 

or for pattern recognition. Their appliances have also extended to Computer Vision, as 

described in (Egmont-Petersen, Ridder and D. 2002), and in the field of robotics to 

design direct manipulators of industrial robots or to design controllers for steering and 

path-planning of autonomous robot vehicles - see (Markoski, et al. 2009). 

 

 

Figure 2.3: An Artificial Neural Network (ANN)  

 

Other important reactive control architectures are the ones based in pure classic control 

theory. They specify controllers that manipulate the inputs of a system to obtain the 

desired effect on the output of the system. This is accomplished using a feedback 

control loop, in which a controller periodically percepts the outputs of a system, 

measures the error to the reference and responds to the system in order to compensate 

and/or minimize the error (see Figure 2.4). 
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Figure 2.4: Feedback control loop 

 

This type of control is very used in industrial processes. The most-used feedback 

control design is the PID controller. PID is an acronym for “Proportional-Integral-

Differential”. The PID controller includes elements with those three functions to 

minimize its error. Akira referred that “a study made in 1989 in Japan indicated that 

more than 90% of the controllers used in process industries are PID controllers and 

advanced versions of the PID controller.” (Araki 2000). Nowadays, PID controllers are 

still used in several industrial processes and in the robotic field, such as in the design of 

steering control for autonomous mobile robots. 

Despite the several approaches made for the reactive architectures and their application 

in the design of effective intelligent agents, they still present some limitations. Reactive 

agents without environment models must have sufficient information of the local 

environment. Having this in mind, it is clear that they have a short-term view of the 

goal. Previously, it was referred that some reactive agents can have adaptive capabilities 

(e.g. if we use an artificial neural network). However, it is difficult to make reactive 

agents that learn, since they have no internal memory that could be exploited by the 

controller. The building of these agents is mainly based on test-fault approach which 

implies a long and laborious process. Another general problem regarding reactive agents 

is that it is hard to engineer agents capable of a large number of behaviors since the 

dynamics of the interactions become too complex to understand. 

 

 

 

2.1.3 Hybrid Architectures 
 

Having in mind the problems already mentioned, associated with both deliberative and 

reactive architectures, it is with no surprise that many researchers suggested that neither 

a completely deliberative nor completely reactive approach is suitable for building 

agents. They argued the case of hybrid architectures, which attempt to marry classical 

and alternative approaches with the hopes of enjoying with the “best of two worlds”. 

Most of the hybrid approaches specify an agent built out of two (or more) subsystems: 

 A deliberative subsystem, which contains a symbolic world model and is 

capable of elaborating plans and making decisions; 
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 A reactive subsystems, which is capable of reacting rapidly to events without 

complex reasoning; 

These subsystems are often organized in layers, in which the bottom layer has no 

symbolic representation, while the upper layers do employ such representation. An 

important aspect of these architectures is the control framework which manages the 

interactions between the various layers. In these architectures, we can have different 

types of layering (see Figure 2.5). 

 Horizontal Layering – all layers are connected to the inputs and the outputs. 

The mediator (overall control function) is needed to determine which action to 

take 

 Vertical Layering – the input are connected sequentially i.e., the input is 

connected to one layer, which is connected to the next, and so on. The last layer 

is connected to the outputs. This layering can be divided in two subtypes: one 

pass and two pass. In one pass, the perceptions and actions are passed up, while 

in the two pass they also bounce down. 

 

 

Figure 2.5: Different types of layering in Hybrid Systems (Munneke, 

Wahlstrom and Zaccara 1998) 

 

The Procedural Reasoning System (PRS), developed by Georgeff and Lansky in 1987 

(Georgeff and Lansky 1987), is one of best-known hybrid architectures for agents. It 

uses BDI model (see Deliberative Architectures) and is constituted by a set of 

knowledge areas (KA), each of which is associated with an invocation condition that 

can activate it. KAs can be activated in a goal-driven or data-driven fashion, but they 

also can be reactive. This allows the PRS to respond rapidly to sudden change in the 

environment. PRS was applied as a fault detector system on the NASA space shuttle 

(Georgeff and Ingrand 1990).  

Another well-known hybrid agent architecture is the TouringMachines developed by 

Fergunson for his 1992 PhD thesis (Ferguson 1992). This architecture is a clear 

example of horizontal layering (see Figure 2.6). This architecture consists of two 

subsystems (perception and action), which interact directly with the agent‟s 

environment, and three control layers, embedded in a control framework, which 

mediates between the layers. The reactive layer is implemented as a set of production 
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(situation-action) rules, like in the subsumption architecture. The planning layer build 

plans and selects actions to execute in order to achieve the agent‟s goals. The modeling 

layer contains symbolic representations of the “cognitive state” of other entities in the 

agent‟s environment. It also selects new goals for the planning layer. These three layers 

are capable of intercommunication (via message passing) and are embedded in a control 

framework that deals with conflicting action proposals from the different layers. The 

control framework achieves this using control rules. 

 

 

Figure 2.6: The TouringMachines architecture (Ferguson 1992) 

 

An example of vertical layering is the architecture INTERRAP, designed by Müller in 

1994 (Müller 1994). In this hybrid architecture, each successive layer represents a 

higher level of abstraction than the one below it (see Figure 2.7). These layers are then 

subdivided in two vertical layers: one containing control components and the other 

knowledge bases. The reactive capability of this architecture is made possible by the 

Behavior-Based Layer which manipulates a set of patterns of behavior. At higher 

layers, we can find components responsible for the planning and the deliberative 

behavior, using a planning library and a social knowledge data base. Thus, INTERRAP 

is both data and goal driven and, as result of changes to the world model, various 

patterns of behavior may be activated, dropped and executed. 
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Figure 2.7: INTERRAP Hybrid Architecture (Müller 1994) 

 

In 2001, Nilsson described an hybrid architecture for linking perception and action in a 

robot, which consisted of three hierarchical towers - perception, action and model (see 

Figure 2.8). As a result, he specified the Triple Tower Architecture (Nilsson 2001). This 

architecture contains the following towers: 

 Perception Tower – “consists of rules that increasingly abstract descriptions of 

the situation starting with the primitive predicates produced by the robot’s 

sensory apparatus.” (Nilsson 2001) 

 

 Model Tower – “continuously keeps the descriptions faithful to the current 

environmental situation by a „truth-maintenance‟ system.” (Nilsson 2001). 

 

 Action Tower – “consists of a loose hierarchy of action routines that are 

triggered by the contents of the model tower. The lowest level action routines 

are simple reflexes---evoked by predicates corresponding to primitive percepts. 

More complex actions are evoked by more abstract predicates appropriate for 

those actions. High-level actions “call” other actions until the process bottoms 

out at the primitive actions that actually affect the environment.” (Nilsson 

2001). 

 

Nilsson illustrated the operations of this architecture describing a triple-tower system 

for building tower of blocks on a table. 
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Figure 2.8: Triple-Tower Architecture (Nilsson 2001) 

 

 

Other well-known hybrid architectures applied to robotic control are: the DAMN 

(Rosenblatt 1997) and the DD&P (Hertzberg and Schönherr 2001). The DAMN consist 

of a Distributed Architecture for Mobile Navigation that contains a set of weighted 

modules that run concurrently and send votes to be combined. These modules represent 

various behaviors (such as obstacle avoidance and path planning) and have various 

working speed. Despite being an architecture capable of both deliberative and reactive 

behavior, it suffers from being very specialized to navigation. For more information, see 

(Rosenblatt 1997). The DD&P architecture is also constituted by modules, in which 

behaviors are leveled and interact through shared variables. However, its planning 

components can affect any behavior in any level. It also has components that 

permanently update the propositional world including the goal and monitors the state of 

the current plan. For more information regarding the DD&P, see (Hertzberg and 

Schönherr 2001). Another interesting hybrid architecture is the one described in 

(Secchi, et al. 1999). The proposed architecture is behavior-based but combines aspects 

of classic control. It was implemented in a mobile robot which travelled in semi-

structured environments. It also contained a priority scheme based in Petri nets to 

activate the different possible behaviors in the robot. 

Currently, hybrid architectures are a very active area of work, with proven advantages 

over both purely deliberative and purely reactive architectures. However, one potential 

difficulty of these architectures is that they lack of deep theory formalization. 

Wooldridge and Jennings stated that “It is a matter of debate whether this need be 

considered a serious disadvantage, but one argument is that unless we have a good 

theoretical model of a particular agent or agent architecture, then we shall never really 
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understand why it works. This is likely to make it difficult to generalize and reproduce 

results in varying domains.” (Wooldridge and Jennings 1995) 

 

 

2.2 Cognitive Architectures 
 

All agent architectures can be considered cognitive architectures if we interpret that 

agent architectures intend to implement cognitive processes to intelligent agents, such 

as reasoning, reflexes (rapid response to an environmental change) or internal 

representation of the world knowledge. However, we are going to refer to cognitive 

architectures accounting for a different perspective. Therefore, throughout this 

document, cognitive architectures are going to be referred to architectures that propose 

computational processes that act like certain cognitive systems (most often, like a 

person). This way, cognitive architectures form a subset of agent architectures and 

consist in an interdisciplinary research area in which converge the fields of artificial 

intelligence, cognitive psychology/cognitive science, neuroscience and philosophy of 

mind. Researchers of cognitive architectures believe that the understanding of (human, 

animal or machine) cognitive processes means being able to implement them in a 

working system. 

In the next sections we are going to present different types of classifications of 

cognitive architectures and analyze three of the historically most representative 

cognitive architectures: RCS, Soar and ACT-R. These architectures are still active lines 

of research. 

 

2.2.1 Classification of Cognitive Architectures 
 

We can analyze cognitive architectures in two dimensions: according to their main 

purpose (or stream) or according to their general structural paradigm. This leads to 

different types of classifications. 

If we classify cognitive architectures according to their purpose, we can distinguish 

three main categories: 

 Architectures that model human cognition. One of the main interests of 

cognitive science is to produce a complete theory of human mind integrating all 

the partial models, such as models of memory, vision or learning. These 

architectures are based upon data and experiments from psychology or 

neurophysiology, and tested upon new breakthroughs. However, these 

architectures do not limit themselves to be theoretical models, and have also 

practical applications. An example of this is the cognitive architecture ACT-R 

which is applied in software based learning systems: the Cognitive Tutors for 

Mathematics that is used in thousands of schools across the United States - for 

more information, see (Anderson e Gluck 2001). Examples of these 

architectures: ACT-R and Atlantis. 
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 Architectures that model general intelligence. These architectures are closely 

related to the first ones but, despite of also being based upon the human mind 

(as the only agreed intelligent system up to date), they do not constraint to 

explain the human mind in its actual physiological implementation. They 

address the subject of general intelligent agents, mainly from a problem-solving 

based perspective. Examples of these architectures: Soar and BB1.  

 

 Architectures to develop intelligent control systems. These architectures have a 

more engineering perspective and relate to those addressing the general 

intelligence problem, but with the main goal of applying it to real technical 

systems. They are intended as more powerful controllers for systems in real 

environments, and are mainly applied in robotics, namely in UGV (Unmanned 

Ground Vehicle). An example of these architectures: RCS and ICARUS. 

 

In this work, we are especially interested in the last type, since the long-term aim is to 

apply cognitive architectures to enhance the autonomy and robustness of intelligent 

agents and due to the context of the work of this document: autonomous navigation. 

Cognitive architectures can also be divided in the following main paradigm approaches 

which reflect in the structure of the subsequent intelligent systems: 

 Symbolic or the computational approach – this approach is based on the 

mind-is-like-a-computer analogy. Thus, in this approach, the human mind is best 

conceived as an information processing system very similar to a digital 

computer. The resultant architectures are based on a set of generic rules and are 

very similar to deliberative architectures (see 2.1.1 - Deliberative Architectures). 

An example of this approach is the Soar architecture. 

 

 Connectionist approach – this approach is based on the principle that the 

mental phenomena can be explained by the emergent properties of processing 

units. Thus, this approach relies on the belief that intelligent behavior can 

emerge from the specification of a set of simple units and their interaction. The 

form of the connections and the types of units can vary from model to model. 

The most well-known type of representation of this approach is as Artificial 

Neural Networks (already mentioned in 2.1.2 - Reactive Architectures). 

 

 Hybrid approach – this is an explicit approach which defines architectures with 

a combination of the above mentioned paradigms and respective types of 

processing. An example of this approach is the ACT-R architecture, with its 

symbolic and subsymbolic (connectionist) levels.   

It is remarkable that the symbolic paradigm is strongly related to deliberative 

architectures, while the connectionist is related to the reactive approach. Another ways 

of distinction of the cognitive architecture is whether they are centralized or distributive 

or if their systems should be design in a top-down or bottom-up perspective. 
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2.2.2 RCS 
 

RCS (Albus and Barbera 2004) stands for Real-time Control System being a Reference 

Model Architecture for building intelligent control systems and developed by the NIST 

(National Institute of Standards and Technology). RCS have been applied in several 

domains, such as in UGV (Unmanned Ground Vehicles) (Albus, et al. 2002), space 

robotics (NASREM) or manufacturing (ISAM). 

This architecture is based in the functional decomposition of the system in nodes, as 

fundamental units of control, which are organized in different hierarchy-levels. The 

different levels of the hierarchy represent different levels of resolution, i.e., different 

abstraction levels. The lower level in the RCS hierarchy is connected to sensors and 

actuators of the system. The nodes are interconnected both vertically through the levels 

and horizontally within the same level via a communication system. The hierarchy 

levels and the nodes are immutable, but their connection can change according to the 

mission, forming a “command tree”. Each node possesses four modules that correspond 

to different cognitive processes: 

 Sensory Processing module (SP): performs several perception functions that 

enables the node to update the world model and processes the sensory input 

stream to be sent to the upper nodes. 

 

 World Modeling module (WM) and Knowledge Database (KD): this is 

where the node stores its knowledge of the world in models composed by 

objects and events. The WM runs the models so as to make predictions and 

simulations that operate the perceptual processes and enable planning in the 

behavior generation node. 

 

 Behavior Generation module (BG): receives instructions from the upper nodes 

and is responsible of the planning and action tasks, which may include sending 

the instructions to lower nodes.  

 

 Value Judgment module (VJ): computes value, determines importance, 

assesses reliability and generates reward and punishment. 

 



 

 

20 

 

 

Figure 2.9: Example of a RCS hierarchy (Albus, et al. 2002) 

 

RCS adequately encapsulates the cognitive processes through the nodes and presents 

certain adaptability, since it enables to change the connections of the nodes for each 

different mission. Nevertheless, the fact that the nodes and the hierarchical level 

organization are static brings some constraint to the architecture. It also lacks of models 

of the internal architectures, meaning that the nodes do not have models of themselves 

or of the neighboring nodes in the same way that they have models of the environment 

and of the physical system that controls the architecture. Therefore, it lacks of self-

awareness mechanism.  

 

2.2.3 Soar 
 

Soar (State, Operator And Result) was based in the Newell‟s idea for the development 

of intelligent agents and theories of cognition (Laird, Newell and Rosenbloom 1987). 

Soar is a symbolic general cognitive architecture and it is designed based on the 

hypothesis that all deliberative goal-oriented behavior can be cast as the selection and 

application of operators to a state. A state is a representation of the current problem-

solving situation; an operator transforms a state (makes changes to the representation); 

and a goal is a desired outcome of the problem-solving activity.  

Soar is constituted of three memories and I/O interfaces which interact in every 

execution cycle: 

 Input/output functions: at the beginning of each cycle, they update the objects 

that are in the Soar‟s working memory. At the end of each cycle, they embody 

the required actions for to the operations stored in the working memory. 

 

 Working memory: it stores the system‟s knowledge of the current situation as a 

set of working memory elements (WME) which consist of an identifier-

attribute-value. All WME‟s sharing its identifier are an object, which can stand 
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for data from sensors, results of intermediate inference, active goals, operator or 

any other entity of the problem. The operators are labeled with preferences and 

in each cycle, only one operator can be applied. 

 

 Production memory: contains the productions, which consist of a set of 

conditions and a set of actions. In each cycle, the production fires the actions of 

which conditions are in agree with the working memory‟s state. The conditions 

of a production typically refer to presence or absence of objects in working 

memory. Production actions can be one of the following: object proposal, 

operator comparison, operator application or state elaboration. 

 

 Preference memory: stores preferences which determine the selection of the 

current operator. Preferences are suggestions or imperatives about the current 

operator, or information about how suggested operators compare to the others.  

 

If an execution cycle cannot solve the operator selection, an impasse happens and Soar 

automatically generates a new substate which consists in the solving of the impasse. In 

this way, a decomposition of substates is made. While the successive substates are 

solved, Soar stores the process as new productions. This is the main learning 

mechanism in Soar, called chunking. 

Soar architecture addresses mainly the deliberative part of a cognitive system, not 

providing fine grained design patterns for perception and grounding. Besides, there is 

no modeling of the functioning of Soar‟s cognitive operation, so the architecture is 

lacking of self-awareness or consciousness. Nevertheless, it presents several solutions 

of potential interest: a homogeneous knowledge management in the productions and in 

the objects in the memory, which enables meta-knowledge and a learning mechanism to 

enhance the procedural knowledge. The chunking mechanism provides a great benefit to 

the architecture in autonomy and adaptability. 

2.2.4 ACT-R 
 

ACT-R (Adaptive Control of Thought - Rational) is a cognitive architecture mainly 

developed by J. Anderson in Carnegie Mellon that is also a theory about how human 

cognition works. Most of the ACT-R basic assumptions are inspired by the progresses 

of cognitive neuroscience and, in fact, ACT-R can be seen and described as a 

specification of how the brain itself is organized in a way that enables individual 

processing modules to produce cognition (Lebiere e Anderson 1993). It can also be seen 

as a programming language to build models of cognitive processes or to elaborate 

different tasks, such as puzzle solving or aircraft piloting.   

Like other influential cognitive architectures, the ACT-R is based in expert system‟s 

mechanisms. It is structured in opaque modules that interact trough buffers. The buffers 

work as interfaces and only store one element in memory at a time. The contents of the 

buffers at a given moment in time represent the state of ACT-R at that moment. 

 

There are four types of modules in ACT-R: 
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 Perceptual-motor modules: which take care of the interface with the real world 

(i.e., with a simulation of the real world). The most well-developed perceptual-

motor modules in ACT-R are the visual and the motor modules. 

 

 Memory modules: there is a declarative memory, consisting of facts and 

homogeneous knowledge, encoded in units called chunks. There is also a 

procedural memory for making productions. Productions represent knowledge 

about how we do things: for instance, knowledge about how to write the letter 

‟a‟, about how to drive a car, or about how to perform addition. 

 

 Intentional modules: defines the system‟s main goals. 

 

 Pattern Matcher: searches for a production that matches the current state of the 

buffers. Only one production can be executed at a given moment. That 

production, when executed, can modify the buffers and thus change the state of 

the system. Thus, in ACT-R cognition unfolds as a succession of production 

firings. 

 

Besides having a periodical symbolical operation, ACT-R also presents subsymbolic 

mechanisms, consisting of equations that control the activation of production and 

equations that can retrieve chunks from the declarative memory. Besides, the 

mechanism in the perceptual-motor modules can also be subsymbolic, which makes 

ACT-R an hybrid architecture.  

ACT-R is, as Soar, an architecture centered in the conceptual operations. Despite having 

perceptual modules and grounding, it has been developed as a model of the human mind 

mechanism, which makes it hard to apply to technical systems. Compared to Soar, it has 

the advantage of being hybrid, which can be reflected in the concurrency of the 

module‟s processes. Nevertheless, it has the disadvantage of dealing with implicit 

knowledge. ACT-R presents learning mechanism in the symbolic level (with the 

creation of productions) and in the subsymbolic level (with the adjustment of 

activations).  However, its learning mechanism revealed to be less powerful than the 

chunking in Soar. 
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2.3 Fault-tolerance in Autonomous Systems 
 

 “The more the number of components, the more things there are that could be 

faulty. (…) Similarly, the more complex a component, the more chance there are 

of it being faulty.” (Jalote 1994) 

 

Many complex systems, such as the robotic control systems, have to be able to achieve 

its objectives under data noise and uncertainty. Eventually, part of the system may be 

damaged or malfunction during operation, compromising system cohesion and therefore 

its capacity to achieve objectives. Fault-tolerance techniques have been developed to 

provide the system with mechanisms to react to these circumstances by adapting itself. 

According to (Jalote 1994) , fault tolerant systems evaluate self-performance in terms of 

dependability, which is defined as the trustworthiness of a system such that reliance can 

justifiably be placed on the service it delivers. The most significant attributes of 

dependability are reliability, availability, safety and security.  

Jalote distinguished three concepts in relation with reliability: a failure is a deviation of 

the system behavior from the specification. An error is the part of the system which 

leads to that failure. Finally, a fault is the cause of an error. A fault can be an internal 

event in the system, a change in the environmental conditions or it can even be a wrong 

control action given by a human operator or an error in the design of the system. 

There are two main general approaches to improve the reliability of a system: fault 

prevention and fault tolerance. However, it is assumed that fault prevention techniques 

will never be able to eliminate all possible faults, as any real-time system is likely to 

have or develop fault in it. Therefore, in order to increase the reliability of a system, 

fault tolerance techniques were proven to be more effective, in which systems can 

provide the service in spite of the existence of faults.  

In artificial systems, fault-tolerance is usually implemented in four phases (Jalote 1994): 

 Error detection: The presence of a fault is deduced by detecting an error in the 

state of the subsystem.  

 

 Damage confinement and assessment: the damage caused by a fault is 

evaluated and delimited (affected parts are identified and effect on objectives 

estimated). 

 

 Error recovery: correction of the error to avoid its propagation. 

 

 Fault treatment and continued service: faulty parts of the system are 

deactivated or reconfigured and the system continues operation 
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Fault tolerance can be, and is applied at various levels in a computer system. Therefore, 

it distinguishes between hardware and software. Hardware fault tolerance is based on 

fault and error models, which permit identifying faults by the appearance of their effects 

at higher layers in the system (software layers). Hardware fault tolerance can be 

implemented by several techniques, being the most known: 

 TMR (Triple Modular Redundancy): three hardware clones operate in parallel 

and vote for a solution. 

 

 Dynamic redundancy: spare, redundant components to be used if the normal 

one fails. 

 

 Coding: addition of check bits to the information bits such that errors in some 

bits can be detected and, if possible, corrected. 

Software fault tolerance can be based on a physical model of the system, which 

describes the actual subsystems and their connections, or on a logical model, which 

describes the system from the point of view of processing. In general, software fault 

tolerance is based on the following fault classification: 

 Crash fault: fault cause component to halt or to lose its internal state. 

 

 Omission fault: caused the component to no respond to certain inputs. 

 

 Timing/Performance fault: the response of the component is too early or too 

late. 

 

 Byzantine fault: arbitrary fault causing arbitrary behavior of the component. 

 

A model for fault-tolerant systems that influenced the work associated with this 

document is the one described in (Blanke, et al. 2006). This model is based on 

analytical redundancy, opposing to physical redundancy (a dynamic redundancy of 

physical components). The authors defend that the industry cannot afford to use 

physical redundancy in large scale, since the duplication of each physical component is 

non-viable in most cases. Therefore, in the proposed model, an explicit mathematical 

model is used to perform the two steps of fault-tolerant control. The fault is diagnosed 

by using information included in the model and in the on-line measurement signal. Then 

the model is adapted to the faulty situation and the controller is re-designed so that the 

closed-loop system including the faulty plant satisfies the given specification.  

The architecture of fault tolerant control according to (Blanke, et al. 2006) can be seen 

in Figure 2.10. The diagnosis block uses the measured input and output and tests their 

consistency with the plant model. Its result is a characterization of the fault with 

sufficient accuracy for the controller re-design. The diagnostic result f is assumed to be 

identical to the fault f occurring in the system. The re-design block uses the fault 

information and adjusts the controller to the faulty situation.  
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Figure 2.10: Architecture of fault-tolerant control as described in (Blanke, et 

al. 2006) 

 

The two principal ways of controller re-design are: 

 Fault accommodation: when a fail occurs, the controller re-designer adapts the 

controller parameters to the dynamical properties of the faulty plat. 

 

 Control reconfiguration: if fault accommodation is impossible, the complete 

control loop has to be reconfigured. Reconfiguration includes the selection of a 

new control configuration where alternative input and output signals are used.  

 

The most relevant definition in (Blanke, et al. 2006) is the Generic component model, in 

which each component of the fault tolerant architecture is composed, among other 

things, by its state transition graph, by the services it provides and the version of the 

respective services. According to this model, a component is more associated with a 

specific service of the system than with the physical/logical component that provides 

that service. For example, in a system for an autonomous mobile robot, there can be can 

be a localization component that provides the service of localization. This service can 

exist under different versions, each of which can use different physical components, 

such as a laser, cameras, GPS, etc. Thus, in case of physical failures, the fault tolerant 

control must maintain the component and the service but it can switch the version of the 

service.  

 

2.3.1 Fault-tolerance in Robotics 
 

In robotic programming, the interaction with the world and its unpredictability make the 

problem of error tolerance/recovery especially important. It becomes crucial in 

situations where humans operators cannot manually repair or provide compensation for 

damage or failure. Thus, some research work in fault tolerance in robotics has been 

done in the past years, being currently a very active field of study.  

In 1978, Srinivas attacked the problem of fault recovery, with the intention of designing 

a robot that could recover intelligently form failures that occur during the execution of 

tasks in a static world with no other agents of change (Srinivas 1978). As a result, he 
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implemented a computer program called MEND, which automated recovery from 

failure in simple manipulation tasks in an autonomous mobile robot. Compared to other 

related approaches from that time, MEND had the special characteristic of trying to find 

the explanation of the failure through logical reasoning, in order to determine where the 

problem lies and to execute a proper recovery plan. However, this system presented 

several limitations, which derived from the extensive use of plan formation as the basis 

for constructing robot programs and on the choice of checking only the preconditions of 

the actions. In this way, an error may be discovered later than when it appeared.  

In 1983, M. Gini and G. Gini, proposed a framework for error recovery in robots 

programs, which included a monitor program that identified the appearance of any error 

and attempt to correct that error (Gini and Giuseppina 1983). The recovery procedure 

was activated by the identification of the error, and the proper recovery procedure is 

detected using information extracted from a knowledge base. The knowledge base 

contained rules about correction activities and about interpretation of the sensor data. 

The dynamic model of the program included the Initial Model, the Expected Model and 

the Current Model. Error identification is possible comparing the Current Model with 

the Expected Model. The monitor controlled both the preconditions before executing 

any instruction and the postconditions at the end, using the first check as protective 

measure, since it should not be needed if the program does not have logical errors. 

Though the examples presented in the work are simple and limited, they authors 

defended that they defined a general framework for error recovery in robots programs, 

which could be extended and applied in several domains. 

In 2010, Bongard and Lipson stated that the Srinivas approach on error diagnosis and 

recovery, as well as many subsequent approaches (such as the refereed above) were 

somehow ineffective, since they required exclusively online operation (repeating testing 

on the physical robot) and could not handle unanticipated errors. By the time, there were 

already some developments of offline error diagnostic and recovery systems, such as the 

one described in (Baydar and Saitou. 2001) which relies on Bayesian inference for error 

diagnosis. Nevertheless, Bongard and Lipson pointed out their limitations because of 

the large number of hardware trials needed to recover from an error (as many as 400 in 

many cases). Therefore, in the paper (Bongard and Lipson 2004) they introduced a two-

stage evolutionary algorithm which can automatically diagnosis and recover from a 

wide range of unanticipated internal damage or external environmental change using 

only four hardware trials.  

In 2010, the first fault-tolerant multi-robot control architecture for sensory-based 

coverage is proposed (Ozkan, et al. 2010). According to the authors, many works have 

been made to increase the efficiency of multi-robot coverage problem, but none have 

considered robot failures. They proposed a fault-control control architecture that they 

implemented in P3-DX robots in laboratory and in MobileSim simulation environments. 

Robot failures are detected using the heartbeat strategy that does not require time 

synchronization between robots. The proposed architecture is distributed in terms of 

fault detection, having a modular structure. 
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2.4 Autonomous Mobile Robotics Techniques 
 

Since all the implementations associated with the work of this document are going to be 

made on a mobile robot, it is important to refer some background and state of the art of 

the techniques used for navigation in autonomous mobile robots. This sub-chapter is 

crucial for a better understanding of the underlying methods used beneath the core 

system.  

 

2.4.1 SLAM 
 

SLAM (Simultaneous Localization and Mapping) is a technique used in mobile robotics 

in which a robot builds a map of an unknown environment, keeping at the same time 

track of its localization in this environment. It was original developed in (Leonard e 

Durrant-Whyte 1991).  

 

 

Figure 2.11: Map generated by SLAM (Grisetti, Stachniss e Burgard 2006) 

 

One of the main problems for autonomous mobile robots is keeping track of their 

localization accurately. It is said that the SLAM consists in making the robot to answer 

two questions: 

 Where am I?: an accurate localization is not possible without having references 

of the environment, a map that holds all the obstacles representations that the 

robot could find along the way and the landmarks that the robot will use to 

locate itself accurately. 
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 What does the world look like?: Mapping is the problem of integrating the 

information gathered by a set of sensors into a consistent model and depicting 

that information as a given representation. Central aspects in mapping are the 

representation of the environment and the interpretation of sensor data. 

 

The need to use landmarks for location estimation derives from the fact that the robot‟s 

odometry, primary source for self-localization, is often erroneous (see Figure 2.12). 

Thus the robot needs to use more data, such as the scans obtained by a laser, to estimate 

its position in the world.  

 
Figure 2.12: Trajectories estimated by a robot. In red we can see the trajectory 

estimated by the odometry (Sánchez 2009) 

 

The solution to the SLAM problem is considered the main key to the autonomy of 

mobile robots and there are many efforts made by many researchers to push forward the 

developments of this technique. 

The main difficulties associated with SLAM are the following: 

 The observations made by the robot are referred to its own reference system that 

is affected by errors in the odometry. Thus, we add observation‟s imprecision to 

inaccuracy in the location.  

 

 For bigger maps, the odometry errors are bigger, as well as the computational 

cost. 

 

 The environments are usually dynamic, especially for domestic or guide robots. 

Thus, in many cases, the assumed fixed references can be “hidden” by some new 

elements in the environment, making the task of localization even more difficult. 
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 In some environments, there may be very similar landmarks, which can 

“confuse” the SLAM to make wrong associations.  

 

 Most of the today‟s SLAM implementations do not use 3-D information. The 

sensing is usually made in a horizontal plane.  

 

There are three base SLAM algorithms from which, currently, almost all SLAM 

implementations derive from: 

 EKF-SLAM: historically, was the first implementation. In this method there is a 

state vector used to estimate robot‟s location and a set of point (that represents 

world‟s landmarks) with an error covariance matrix associated with the 

uncertainty of the predictions of those points. As the robot keeps moving, the 

state vector and the covariance matrix is updated using an EKF (Extended 

Kalman Filter). This is a widely popular method but suffer from computational 

costs.  

 

 Non-linear Sparse Optimization: based in a graphical representation of the 

SLAM problem. In this method, the landmarks and the locations of the robot are 

seen as nodes in a graph, in which consecutive position nodes are connected, as 

well as the locations and associated landmarks. These connections represent soft 

constraints. Relaxing these constraints, we obtain the best estimation of the map 

and the best estimated motion path of the robot. This method is mostly used in 

offline SLAMs. 

 

 Particle Filter: the estimated state is represented as a set of particles. One 

particle represents a single estimate of the real state. Thus, joining these 

estimations as a set of particles, the filters can estimate the posteriori-state 

distribution. It was proven that the particle filters make perfect estimation when 

the number of particle is close to infinite. One of the most popular particle-filter 

algorithm is the FastSLAM (Montemerlo, et al. 2002).  

 

 

2.4.2 Robot’s Motion Planning and Navigation 
 

Motion planning is used in robotic as the process of detailing a task into discrete 

motions. The research in robot motion planning can be traced back to the late 60‟s, 

during the early stages of the development of computer controlled robots. However, 

most of the effort is more recent and has been conducted since the 80‟s.  

Motion Planning tries to address the Piano Mover’s Problem, in which given a set of 

obstacles, the initial position and the final position, the motion planner has to find a path 

that moves the robot from the initial to the final position, avoiding the obstacles at all 
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times (see Figure 2.13). However, there are challenges in the real world that the moving 

robot has to address, such as physical laws (e.g., inertia, acceleration), uncertainty (e.g., 

location map, observation), geometric constraints (e.g., shape of a robot) or dynamic 

environment (e.g., a moving crowd).  

 

Figure 2.13: A motion path generated for a mobile robot. The goal position and 

orientation is represented by the red arrow 

 

 

Some properties of planning algorithms are: 

 Completeness: determines if the algorithm finds a solution in finite time or is 

resolution/probabilistic complete. 

 Optimality: determines if the algorithm finds the optimal solution(s) 

 Complexity: determines what are the computational and memory demands 

 Off-Line vs. On-Line: determines whether the algorithm need off-line pre-

computing. 

 Sensor-based: determines if the algorithm integrates a sensing step. 

 

The earliest and most simple planning/navigation algorithm is the Bug Algorithm, which 

consists of purely sensor-based navigation biologically inspired. It assumes that the 

robot is able to detect obstacles and the direction to the goal. Its basic idea consists: 

following a straight line to the goal; if hitting an obstacle circle the obstacle clockwise; 

continue from the closest free point. Despite being quite simple, it proved to be non-

viable for many cases, since it uses exhaustive search, it doesn‟t compute the optimal 

when obstacles are in between the robot and the goal, and it can be stuck in local 

minimum.  
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In Figure 2.14, we can observe the basic building blocks associated with navigation and 

motion planning in ground robots.  

The global planner consists of a functional component in which, given a representation 

of the environment including known obstacles (e.g., a map), a current position and a 

goal position, it finds a free path from the current position to the goal position, i.e., a 

global plan. Nevertheless, it has to make some assumptions, such as a holonomic 

motion
4

, a point representing the robot‟s position, a static and non-dynamic 

environment.  

The local planner is generally in charge of obstacle avoidance and driving the robot to a 

local goal position. Thus, for the local planner the environment can change dynamically 

and not be entirely modeled. The local planner may modify or replan a globally 

generated plan and move the robot towards a goal without a global plan. It relies on 

information about the goal or sub-goal on the global path, local context information 

(localization) and recent sensor information (local map).  

 

 

Figure 2.14: Building blocks for ground robot‟s Navigation and Motion 

Planning 

 

There are many ways of representing the world in which a robot navigates. Below you 

are some of the most used types of representation: 

 Grid-based Representations: represent the environment as a grid map. Grid 

cells are either free or occupied, though it may represent some uncertainty. 

These representations are very easy to use and easy to update, modify and 

combine. However, memory demand depends on the resolution and it proved not 

to be very efficient for sparse environments.  

 

 Topological Representations: represent the environment as graphs or roadmaps. 

In the graph, the nodes represent specific configuration or spaces in the world, 

                                                 

4
 An holonomic motion allows a mobile vehicle/robot to immediately move in any direction without 

needing to turn first 
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while the edges represent the free connection between those configurations or 

spaces. The planning process consists in finding the shortest path in graph. 

However, it is overhead of creating the representation. 

 

 Geometric Representations: represent the environment by its geometry, using 

geometric primitives like lines, splines, squares, polygons. It is a very compact 

and precise representation but it is difficult to construct using sensor data and 

large changes in the representation may occur due to small changes in the 

environment. 

 

When using topological representations, the most popular algorithm to find paths in 

graphs is the A* Search (Hart, Nilsson and Raphael 1968).  The A* Search is an 

extension of the Djikstra Algorithm, in which the estimated cost function for a node n 

consists on the sum of the cost from start so far with the estimated costs to goal from n. 

By using heuristics, it achieves better performance, with respect to time.  

The LNP algorithm is used in local planning and consists in a method to find the 

minimum cost path based on linear programming which works well on grid maps. 

Summarily, given a path as points in a sample space, costs for traversing this space and 

a navigation function which represents the steepest gradient for any path starting in 

every given path‟s points, the algorithm returns a path with minimum costs.  

Another algorithm used in local planning is the Potential Field which models the robot 

as charged particle in a potential field. Then goal has an attractive force while the 

obstacles have a repulse fore. The gradient of the potential field provides a force and the 

robot rolls down a surface towards the goal. It is an algorithm easy to implement but it 

is hard to find proper parameters and can make the robot trapped in a local minima. 

In 1997, Dieter Fox, Wolfram Burgard, and Sebastian Thrun developed The Dynamic 

Window Approach (Fox, Burgard and Thrun 1997). Unlike other avoidance methods for 

local planning, the dynamic window approach is derived directly from the dynamics of 

the robot, and is especially designed to deal with the constraints imposed by limited 

velocities and accelerations of the robot. This approach assumes a differential drive 

robot that moves along arcs. It uses a dynamic window of reachable velocities in the 

next cycle, given by the dynamic of the robot, considering only admissible velocities 

yielding a trajectory on which the robot is able to stop safely. The objective function 

includes a measure of progress towards a goal location, the forward velocity of the robot 

and the distance to the next obstacle according to the trajectory.  

To conclude this sub-chapter, it is important to mention that neither global nor local 

methods are enough while building an efficient navigation system for a mobile robot. 

Global methods fail to address local variations, uncertainty and environment‟s 

dynamics, while local methods get trapped in local minima. Therefore, the best solution 

consists in combine these both methods. While building a robot control architecture 

with a navigation system, it is important to discriminate the different navigation 

building blocks according to their working frequency. Generally, good approaches 

prioritize actuator control and obstacle avoidance (local planners) enhancing their 

control loop frequencies, while path planning and global planning‟s control loop has 

lower frequencies.  
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2.5 Software Platforms for Robotic Controllers 
 

In order to make a robot to successfully execute tasks, proper robot software has to be 

implemented. This software usually consists of instructions that control robot‟s actions 

and provide information regarding required tasks. Nevertheless, programming robots 

can be a complex and challenging process, especially if the robot is composed of several 

hardware units which required specialized processes and synchronous inter 

communication. When developing robot software, many researches are more interested 

in higher levels of abstraction, i.e., the implementation of the robot control architecture 

that manages the robot‟s mission. However, in order to implement a full robot 

application, one must deal with several levels of abstraction, i.e., must handle with 

different programming languages and computer architecture levels and must take into 

account the low-level controllers for the robot‟s hardware units. For this reason, 

Software Platforms for Robotic Controllers have been developed in order to facilitate 

the software integration in a robot, to deal more easily with the complexity of the robot 

software and to define common use software (standard API) that control several robot‟s 

units. A software platform can be seen as a middleware between our application and the 

robot‟s operating system of drivers that control robot‟s hardware (see Figure 2.15).  

 

Figure 2.15: Generic Software Platform for Robot Controllers   

 

Nowadays, we can find many software platforms, frameworks libraries and operating 

systems for many kinds of robots and robot‟s missions that can support several 

programming languages (see Figure 2.16). In the following sections, we are going to 

describe three well-known robot‟s software platforms and frameworks which are 

currently very used in robotic research: Urbi, OpenRDK and Orca. Another very 

popular robotic framework is ROS (Robot Operating System), which was used for the 

work described in this document. This framework is going to be detailed in the section 

4.2 Software Platform – ROS. 



 

 

34 

 

 

Figure 2.16: Some of existing software robotic framework. Retrieved from 

(Calisi, et al. 2008) 

 

2.5.1 Urbi 
 

Urbi is an open source software platform to control robots or other complex systems. Its 

main goal is to help making robots compatible and simplify the process of writing 

programs and behaviors for these robots. Thus, it provides all the needed features to 

control the execution of various components such as actuators, sensors and software 

devices that provide features like face recognition.  

Urbi relies on a middleware architecture that coordinates components named UObjects. 

UObjects are written in C++, with a provided library that can describe robot‟s motors, 

sensors and algorithms. They can run on top of Gostai Runtime. Components with the 

UObjects are supported by the urbiscript programming language, which is a dynamic, 

prototype-based, object-oriented scripting language. Urbiscript glues the components 

together to describe high level behaviors with embedded parallel and event-driven 

semantic. The Urbi middleware architecture makes possible to use remote components 

as if they were local, to allow concurrent execution and to make synchronous or 

asynchronous requests. For the general Urbi architecture, see Figure 2.17. 
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Figure 2.17: Urbi‟s Integration into a project  

 

Urbi is compatible with famous robots such as the Sony‟s Aibo, the humanoid Nao, 

from Aldebaran Robotics and Pioneers. It is also compatible with a few robotic 

simulators, such as Cyberbotics’s Webots. For more information regarding the Urbi 

software platform, see (GOSTAI 2010).  

 

 

2.5.2 OpenRDK 
 

OpenRDK is modular framework for robotic software, designed and implemented by D. 

Calisi and A. Censi, from the SIED Laboratory and RoCoCo Laboratory of the 

University of Rome, Italy (Calisi, et al. 2008). OpenRDK is written in C++ and runs on 

Unix-like operating systems (such as Linux, OS X). It is focused on rapid development 

of distributed robotic systems, and has been designed following users‟ advice. By now, 

OpenRDK has been successfully applied in diverse applications with heterogeneous, 

being very accessible for the use and improvement by many research groups, since it is 

released as open source. It is currently being used in the RoCoCo Laboratory (referred 
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above) and in the Intelligent Control Group of the Technical University of Madrid, 

Spain. 

In OpenRDK, the main software process is called agent, which can contain several 

modules (see Figure 2.18). A module is a single thread inside the agent‟s process and 

can be loaded and started automatically one the agent process is running. Modules 

communicate using blackboard-type object called repository in which they publish 

some of their internal variables called properties. A module can access its own 

properties and other module‟s properties, within the same agent or remotely, through a 

global URL-like addressing scheme. OpenRDK provides built-ins for concurrency 

management need to control the access of the shared memory. All these entities are 

implemented in the OpenRDK core, thus all a developer is requested to do is to create a 

new module which is a relative “easy” task. This way, the developer can concentrate on 

the real problem, without having to care much about the framework. 

 

Figure 2.18: Agents and module interconnection in OpenRDK (Calisi, et al. 

2008) 

 

 

2.5.3 Orca 
 

Orca is an open-source framework for developing component-based robotic systems 

(Makarenko, Brooks and Kaupp 2006). It began as a part of the EU-funded OROCOS 

Project that aimed to develop an Open-Source Robotic Control System, with the 

collaboration of universities of Sweden, Belgium, France and Germany. This 

framework provides means for defining and developing building-blocks (components) 

which can be pieced together to form arbitrarily complex robotic systems, from single 

vehicles to distributed sensor networks. For the developers, the project‟s main goal is to 

promote software reuse in robotics. Currently, Orca is used in several projects and 

robotics research centers, such as the Center for Collaborative Control of Unmanned 

Vehicles of the University of California, and Cornell University Autonomous Systems 

Lab. 

Orca adopts a Component-Based Software Engineering (CBSE) approach without 

applying any additional constraints. This offers developers the opportunity to source 

existing plug-in software components, rather than building everything from scratch. It 

also uses a commercial open-source library for communication and interface definition 
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and provides tools to simplify component development, making them strictly optional to 

maintain full access to the underlying communication engine and services. Additionally, 

Orca uses a cross-platform development tools. This makes Orca a general, flexible and 

extensible framework. 

Orca enables inter-component communication using the Ice middleware, which enables 

the Orca components to be implemented in different programming languages running 

on different operating systems (see Figure 2.19). The Ice core library manages all the 

communication tasks using a protocol which includes optional compression and support 

for both TCP and UDP.  

 

 

Figure 2.19: Orca components and the Ice Middleware (Makarenko, Brooks 

and Kaupp 2006) 
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3  ASys and The Operative Mind 
 

In this section, you can find a summary description of the research project associated 

with this master project: the ASys project, as well as the architectural framework in 

which the control architecture described in this work is based: The Operative Mind. 

3.1 ASys Project 
 

The ASys Project is a long term project of the Autonomous Systems Laboratory 

research group of the Technical University of Madrid
5

. Its main focus is the 

development of technology for the construction of autonomous systems. ASys tries to 

fill the current necessities of building complex (many times distributed) control systems 

that deal with higher degrees of uncertainty, providing robust autonomy at the required 

level. What makes ASys different from other projects in this field is the extremely 

ambitious objective of addressing all the domain of autonomy. This is captured by its 

motto: engineering any-x autonomous systems.  

 

Figure 3.1: Elements of the ASys Research Program   

                                                 

5
 http://www.aslab.org/public/ 

http://www.aslab.org/public/


 

 

40 

 

ASys project considers different elements to materialize its objectives: an architecture-

centric design approach, a methodology to engineer autonomous systems based on 

models, and an asset base of modular elements to fill in the roles specified in the 

architectural patterns. Some elements of the ASys project can be seen in Figure 3.1. 

ASys specifies an engineering process that covers from the initial specification and 

knowledge, to the final product, i.e., the autonomous system. The first stage of the 

research program focuses on ontologies, as a common conceptualization to describe 

domain knowledge. Both a survey of existing domain ontologies and the development 

of an ontology for the domain of autonomous systems are addressed. As a result, the 

OASys ontology was specified (Bermejo-Alonso 2010).  

A cornerstone of the ASys program is the use of design patterns, as the core vehicle for 

reusable architecture exploitation (see 3.3 - ASys Cognitive Patterns). Generally, design 

patters present solutions to recurring design problems in a certain context. 

One of the main pillars in ASys is the model-based approach: a truly autonomous 

system will be continuously using models to perform its activity. Additionally, ASys 

can exploit models of itself to drive its operation or behavior. In this way, model based 

engineering and model-based behavior merges into a single phenomenon: model-based 

autonomy. The type of models and use of models to be specifically developed for the 

autonomous system are initially considered. User and designer requirements, and 

constraints imposed by the system itself will guide the development of the models. The 

ASys Model Development Methodologies will address this model characterization and 

development. The next stage is to extract from the built models a particular view of 

interest for autonomous system. Unified functional and structural views are considered 

critical, as they provide knowledge about the intentions and the behaviors of the 

autonomous system. 

3.2 ASys Cognitive Principles 
 

As previously commented, one of the ASys main pillars is the model based approach to 

cognition. From a control engineering perspective, ASys research program considers 

cognition as the exploitation of knowledge –i.e. models- to realize control. Models are 

understood as the part responsible for maintaining behavior directed towards systems 

objectives while satisfying certain conditions. In biological systems we have minds 

embodied in brains whereas in artificial systems we have control laws and control 

architectures nowadays mainly embodied in computers. Departing from the basic 

principle: a system is said to be cognitive if it exploits models of other systems in their 

interaction with them, ASys research works have started building up the ASys principle 

approach to cognition and consciousness (Sanz, Lopez, et al. 2007). As a result, eight 

principles of the model-based approach of cognition in ASys were formulated: 

1. Model-based cognition: a cognitive system exploits models of other systems in 

their interaction with them. 

 

2. Model isomorphism: an embodied, situated, cognitive system is as good as its 

internalized models are. 
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3. Anticipatory behavior: except in degenerate cases, maximal timely 

performance is achieved using predictive models. 

 

4. Unified cognitive action generation: generating action based on an unified 

models of task, environment and self is the way for performance maximization. 

 

5. Model-driven perception: perception is the continuous update of the integrated 

models used by the agent in a model-based cognitive control architecture by 

means of real-time sensory information. 

 

6. System awareness: a system is aware if it is continuously perceiving and 

generating meaning from the continuously updated models. 

 

7. System Self-awareness/consciousness: a system is conscious if it is 

continuously generating meaning from continuously updated self-models.  

 

8. System attention: attention mechanisms allocate both physical and cognitive 

resources for system perceptive and modeling processes so as to maximize 

performance. 

 

 

Figure 3.2: Models as cognitive relations of a system with an object (Sanz, 

Lopez, et al. 2007) 

 

 

One of the most relevant key aspects is the integration of the model and the metamodel 

(related with Principle 7, see above). One big difference between being aware and being 

conscious comes from the capability of action attribution to the system itself thanks to 

the capability of making a distinction between self and the rest of the world. This 

implies that conscious agents can effectively understand – determine the meaning- the 

effect of its own actions (computing the differential value derived from self-generated 

actions, i.e., how its own actions change the future).  
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3.3 ASys Cognitive Patterns 
 

A cornerstone of the ASys program is the use of design patterns as the core vehicle for 

reusable architecture exploitation (Sanz and Zalewski 2003). Design patterns present 

solutions to recurring design problems in a certain context. ASys patterns could be 

classified in two categories:  

 Architectural patterns: express the structural organization of an autonomous 

system, i.e., they realize the architecture. 

 

 Domain patterns: describe a mechanism to solve a concrete but recurring 

problem in a particular context.  

 

Patterns are used in ASys independently from the OASys ontology. Domain patterns 

describe interactions of the system‟s components and with the environment, by using 

the conceptualization of the ontology, that represent design solutions so that the 

behavior of the system fulfills the engineering requirements. They model the intended – 

designed – system‟s dynamics with its environment. On the other hand, architectural 

patterns do the same for the internal system‟s organization in between the ontological 

elements that conceptualize the system itself. Thus, all system patterns will not only be 

specified departing from the OASys concepts, but eventually will become part of the 

ontology itself, modeling the relations and interactions between them as designed by 

engineers. 

One of the accomplished works within the ASys Research Program is that described in 

(Lopez 2007), which defined a general framework for autonomous systems. This work 

proposed an unified theory of perception, which can be also considered as a Cognitive 

Pattern, in which the specified entity “Perceptor” corresponds to a global entity which 

tries to generalize the processes of perception that are present in any cognitive 

architectures. 

The cognitive pattern more relevant for this work is the one reported in (Hernandez, 

Lopez and Sanz 2009) as the epistemic control loop (see Figure 3.3). This article 

defines a cognitive control architecture, named Operative Mind (OM) and inspired, 

among others, by Albus‟s RCS. This control architecture consists of a network of 

“cognitive nodes”, in which each of them is realizing a control loop following the 

pattern of the epistemic control loop and not necessarily organized into a hierarchy, but 

connected as required by the current task and global state, i.e., system state and 

environment state as perceived by the system. These nodes can have different 

spatiotemporal resolutions and span several levels of abstraction. According to the ASys 

cognitive approach, each node in the architecture maintains and exploits models of the 

world and the system physicality, to the extent relevant for its operation.  
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Figure 3.3: The core epistemic control loop in The Operative Mind 

(Hernandez, Lopez and Sanz 2009) 

 

In the OM architecture, there are also meta-nodes that monitor and control the operation 

of nodes, and are also patterned after the epistemic control loop 2 (see Figure 3.4). More 

interestingly, meta-nodes are also explicitly modeled, so they can operate upon 

themselves, closing the controlling-the-controller regression loop. 

 

 

Figure 3.4: The epistemic control loop applied in meta-nodes that monitor and 

control other nodes (Hernandez, Lopez and Sanz 2009)  

 

3.4 Beyond Current State of the Art 
 

As mentioned in 2.1 - Agent Architectures, there are several agent architecture 

approaches, each with different characteristics and trade-offs. In most cases, these 

architectures tend to be poorly flexible, difficult to expand or designed to solve a close 

set of problems. With reactive architectures, the agent‟s behaviors tend to be 

predictable, homogeneous and non-viable for complex problems or dynamic 

environments. Conventional deliberative or hybrid architectures deal with the problem 

of complexity generally by adding components in charge of reasoning, decision making 

over a built a world model or merging it with reactive processes. Nevertheless, these 
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architectures proved to be rigid as well as very difficult to implement in practical 

problems and have only been successfully implemented in very closed-domains and 

under controlled environments.  

For higher levels of intelligence, autonomy and robustness one has to attend for less 

conventional architectures, such as the cognitive architectures (see 2.2 - Cognitive 

Architectures). The researchers that work with these architectures believe that we can 

improve the overall intelligence (adaptability, autonomy, robustness, etc.) of artificial 

systems by understanding and replicating the intelligence found in biological entities or 

processes, such as the human mind. In a way, this approach seems to be highly 

appealing because many of the problems that machines are not capable of solving can 

be easily done by humans (such as autonomous driving). However, cognitive 

architectures tend to be extremely complex, and most of them are still in developments. 

The main problem in developing these architectures is the lack of a formal definition of 

the theory of the human mind, which explains the cognitive processes that occur in the 

human brain that are able to make us intelligent. 

The cognitive control architecture Operative Mind described in (Hernandez, Lopez and 

Sanz 2009) is a cognitive architecture in the way that it tries to replicate some of the 

cognitive phenomena that occurs in the human mind, such as introspection, self-

awareness and even consciousness. This is possible thanks to the existence of meta-

nodes that monitor and control the operation of the architecture‟s functional nodes. This 

meta-control layer adds the flexibility and the reconfiguration capabilities that lacks in 

conventional architectures. Compared to other cognitive architecture, the Operative 

Mind is proved to be less restrictive and more adaptable, since it can be built on top of 

the majority of control architecture, while they are organized in functional nodes that 

follow the core epistemic loop (see Figure 3.3). Thus, unlike RCS in which the control 

architecture have to be organized into a hierarchy, the Operative Mind can be adapted 

from a conventional agent architecture, in which a meta-control layer is added to 

enhance its adaptability and robustness by means of self-introspection and self-

reconfiguration.  

The Operative Mind can also be adapted to a fault-tolerant system in which the meta-

control layer detects a fault and properly reconfigures the control architecture for the 

fault accommodation. The advantage of the Operative Mind over systems described in 

(2.3 Fault-tolerance in Autonomous Systems) is that the manipulation of the control 

system by the meta-controller can be made, not only in cases of fault, but in other 

special occasions in which a reconfiguration of the system enhances the efficiency of a 

mission. Thus, unlike other conventional fault-tolerant systems, reconfiguration of the 

system is not exclusively fault-reactive, but can be triggered by autonomous model‟s 

introspection.  
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4  Hardware and Software 

Platform 
 

This chapter presents the hardware and software available to implement the developed 

control system, that would be used in the surveillance navigation mission, described in 

the next chapter.  

4.1 Hardware Platform - Higgs  
 

Higgs robot is part of the ASys Robot Control Testbed (RCT) and has been selected as 

the target demonstration of the cognitive robotic control architectures fruit from the 

ASys and ASLab research work.  

 

Figure 4.1: RCT Robotic Platform - Higgs 

 

Higgs is a mobile robotic system that consists of a base platform and different 

interconnected subsystems to cover a wide range of capabilities. The research aim is to 

provide the mobile robot with the necessary cognitive capabilities and an intelligent 

control system, as to perform complex tasks. In the following sections, we are going to 

describe the hardware components of the robot (some of which can be appreciated in 

Figure 4.1), and the software platform (or middleware) that is used to control the 

hardware systems of the robot. 
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4.1.1 Base Platform (Pioneer 2-AT8) 
 

The base platform of Higgs is a mobile robot Pioneer 2-AT8, which has been designed 

by ActivMedia Robotics (see Figure 4.2). It is a robust platform that includes all the 

necessary elements to implement a control and navigating system, specially designed 

for outdoor applications. Additional systems and elements can be attached to this 

platform. The base platform is given the ASLab name Higgs, as a reference to the 

Higgs‟s boson. 

 

Figure 4.2: The Pioneer 2-AT8 platform used to implement the RCT Higgs 

Robot 

 

This base platform is a small size mobile robot, with a support structure made of 

aluminum. Its total weight is of 15 kg, being capable of carrying up to 40 kg. From a 

hardware viewpoint, the mobile robot consists of different elements: 

 Robot Panel: it is the superior platform of the robot, designed for a later 

assembly of new elements such as cameras or laser systems. 

 

 Robot Body: it is a box-shaped element made of aluminum. It contains the 

batteries, the actuators, the electronic circuits and the rest of elements. It also 

allows attaching additional elements such as an onboard PC, more modern or 

additional sensors. 

 

 Control Panel: it is the access panel to the robot‟s microcontroller, planed in 

the robot panel. It consists of several control buttons, robot status leds (robot 

switch on, microcontroller status, battery charge) and a serial port RS-232 to be 

used as an input and output communication link with an external PC.  

 

 Sensors: the mobile robot is provided with two arrays of eight sensors each, 

which allows the detection and location of objects in the mobile robot 

environment. The arrays are placed at the front and at the rear part of the robot. 
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 Actuators: the robot contains 4 Pittman motors GM9236E204. Each one 

includes an optical encoder to determine the robot‟s speed and position. 

 

 Microcontroller: it is a Hitachi H85 microcontroller consisting of different 

elements (memories, serial ports, inputs, outputs, 8 bit bus) which carries out 

different operations such as trigger and registers the sensors‟ signal, controls the 

actuators, and some other low-level operations. 

 

 Bumpers: they are additional elements attached to the platform, 5 at the front 

and 5 at the rear. 

 

 Power: there are three batteries 12 VDC 7 Ah-h, located at the rear part of the 

robot. They provide 252 W-h, which assure several hours of autonomy 

movement to the robot. Their status can be checked in the corresponding led of 

the control panel. 

 

In addition to the hardware, the mobile robot has different software elements provided 

by the manufacture: 

 AROS (ActiMedia Robotics Operating System): it is the operating system, 

consisting in server processes running on the Hitachi microcontroller in Higgs. It 

is a low–level software in charge of regulating the motors‟ speed, sonars‟ signal, 

encoders‟ signal and other low-level tasks. This software will also communicate 

the obtained information to other client software applications through the RS-

232 serial interface. 

 

 ARIA: it is an applications-programming interface (API) based on C++ to 

control the robot. It acts as the client in the client–server topology. It allows to 

program high–level software applications, such as intelligent behavior (obstacle 

avoidance, object recognition, wandering, exploration, etc). The robot control is 

based on direct commands, movement commands or abstract–level actions. 

 

4.1.2 Onboard Systems 
 

On the base platform, different devices have been attached to expand the original range 

of functionalities of the mobile robot (see Figure 4.1): 

 Laptop: it is a lightweight high functional laptop, located in the back part of 

Higgs‟s top. Its model is Sony Vaio TX2HP. As information links, it has two 

USB 2.0, WIFI IEEE 802.11b/g, one Ethernet and a Bluetooth 2.0. Its autonomy 

is of approximately 2 hours. It also has a Intel Pentium M 1.1 GHz as a 

processor and a memory of 512 MB DDR2. The operating system running on it 

is the Ubuntu 10.04.3 LTS (Lucid Lynx). 

 

 Laser: it is a laser scanner for mobile robotics applications, placed at the front 

part of the robot panel. It is screwed to the front part of Higgs‟s top and includes 

a mechanism for tilting by means of a servo. The model of the laser is Sick 
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LMS-200. All of the sensors operate by shining a laser off of a rotating mirror. 

As the mirror spins, the laser scans 180°, effectively creating a fan of laser 

light.  In ideal conditions, the LMS-200 is capable of measuring out to 80m over 

its 180° arc. For an object with only 10% reflectivity (such as matt black 

cardboard), the LMS 200 can measure out to 10m. The sensor is best for indoor 

use as it can be dazzled by sunlight (causing it to give erroneous readings). 

 

 

 Kinect: it is a motion sensing input device owned by Microsoft designed for the 

Xbox 360 video game console. The Kinect work as a 3D scanner, using a 

technology from PrimeSense which interprets 3D scene information from 

continuously-projected infrared structured light. Thus, it is able to capture video 

data in 3D under any ambient light conditions. The sensor has an angular field of 

view of 57º horizontally and 43º vertically. It also has a motorized pivot that is 

capable of tilting the sensor up to 27º either up or down, and a four microphone 

array which enables the sensor to conduct acoustic source localization and 

ambient noise suppression. 

 

 Arduino board: Arduino consists of an open-source hardware platform based in 

a board with a microcontroller, designed to make the process of using 

electronics in multidisciplinary projects more accessible. The Higgs‟s onboard 

Arduino is used to control de following devices: 

 

o Compass 

o Accelerometers 

o Battery sensors 

o Laser heading 

o Power board 

These devices are connected to the Arduino Mega commercial board through a 

custom made extension board. We interact with the Arduino using a CORBA 

module that has been written in the JAVA language whilst the test client in C++. 

The embedded program inside the Arduino has been developed using the official 

IDE based on the processing IDE and the libraries associated to it. Both the 

embedded program inside the Arduino and the Java servant communicate 

through a USB connection with the serial profile. The Arduino starts the 

communication protocol by sending all the parameters and sensor readings to the 

servant, and then the servant optionally answers with the order. 

 

 Power board: consists simple power board for controlling power to other 

devices. It is a attached to the front of the laptop support. It was specifically 

designed for the need of the investigator at ASLab to rest algorithms with partial 

malfunction of a robot. The power board is in control of the power of up to 9 

devices in the robot (such as the Kinect and the laser device), through channels, 

that can be manually shot down by means of a physical switch.  
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4.1.3 Supporting Systems 
 

Along with the base platform and the onboard systems, Higgs includes some additional 

supporting systems to complete its functioning: 

 Wireless Network: it is an additional subsystem included in the testbed to allow 

the communication with the wireless local network in the ASLab laboratory. It 

consists of a wireless card (locates inside the onboard laptop) and an access 

point (connected to the laboratory LAN). 

 

 Wii Control: It is the primary controller for Nintendo's Wii console. In the 

context of ASLab, it is used as a portable device to remote control the robot. A 

main feature of the Wii Remote is its motion sensing capability that is enabled 

due to the use of an accelerometer and optical sensor technology.  

 

 

 

4.2 Software Platform – ROS 
 

In this section, the ROS middleware robotic platform is going to be partially explained. 

As all software implementations related to this work were made over ROS, it is 

important catch the main aspects of this platform for a better understanding of the next 

chapters. 

4.2.1 Introduction 
 

ROS stands for Robot Operating System, and it consists of an open-source, meta-

operating system for robots. It is similar in some aspects to other robot frameworks, 

such as Orca, Urbi and OpenRDK (see 2.5 - Software Platforms for Robotic 

Controllers). ROS provides the services you would expect from an operating system, 

including hardware abstraction, low-level device control, implementation of commonly-

used functionality, message-passing between processes, and package management. It 

also provides tools and libraries for obtaining, building, writing, and running code 

across multiple computers (Conley 2011).  

ROS is specially designed for complex mobile manipulation platforms with actuated 

sensing, and compared to other robot software platforms it makes it easier to take 

advantage of a distributing computing environment.  

Some of its main characteristics, that can partially justify our selection of ROS as our 

main robot platform, are: 

 Based on a graph architecture:  processing takes place in nodes that may receive, 

post and multiplex sensor, control, state, planning, actuator and other messages. 

 

http://en.wikipedia.org/wiki/Game_controller
http://en.wikipedia.org/wiki/Nintendo
http://en.wikipedia.org/wiki/Wii
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 It doesn‟t wrap the main(), thus it can be written for be used with other robot 

software frameworks. 

 

 Language independence: it can be easily implemented in any modern 

programming language, such as Python, C++ and Lisp. 

 

 Easy testing: ROS provides built in integration for testing and monitoring that 

make it easier to handle complex systems. 

 

 Scaling: ROS is appropriate for large runtime systems and for large development 

processes. 

 

Currently, ROS runs on Unix-based platforms, being primarily tested on Ubuntu and 

Mac systems, though having support for more distribution. While a port to Microsoft 

Windows for ROS is possible, it has not yet been fully explored. 

 

4.2.2 ROS Concepts 
 

At the filesystem level, ROS is organized in packages, which are the main unit of 

organizing software. A package may contain ROS Nodes (runtime processes), a ROS-

dependent library, datasets, configuration files, or anything else that is usefully 

organized together. Inside a package we can find a Manifest (which provides metadata 

about a package, such as dependencies), messages and service types. These latter 

consist of message and service descriptions which define the data structures for 

messages and services exchanged in ROS, respectively. In ROS, stacks refer to a 

collection of packages that provide aggregate functionality. 

At the ROS computation graph level, we have Nodes which are the processes that 

perform computation. ROS Nodes can interact trough other nodes in two ways: 

 Through ROS topics: Messages are routed via a transport system with 

publish/subscribe semantics. A node sends out a message by publishing it to a 

given topic. A node that is interested in a certain kind of data will subscribe to 

the appropriate topic 

 

 Through ROS services:  The publish/subscribe model is a very flexible 

communication paradigm, but its many-to-many, one-way transport is not 

appropriate for request/reply interactions, which are often required in a 

distributed system. Request/reply is done via services, which are defined by a 

pair of message structures: one for the request and one for the reply. A providing 

node offers a service under a name and a client uses the service by sending the 

request message and awaiting the reply. 

 

http://www.ros.org/wiki/Topics
http://www.ros.org/wiki/Services
http://www.ros.org/wiki/Names
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Figure 4.3: ROS nodes and topics (Wise 2011)  

 

The ROS Master provides name registration and lookup to the rest of the Computation 

Graph. Without the Master, nodes would not be able to find each other, exchange 

messages, or invoke services.  Nodes communicate with the Master to report their 

registration information. As these nodes communicate with the Master, they can receive 

information about other registered nodes and make connections as appropriate. The 

Master will also make callbacks to these nodes when the registration information is 

changed, which allows nodes to dynamically create connections as new nodes are run. 

There is also a Parameter Server that allows data to be stored by key in a central 

location, being currently part of the Master. These parameters managed by the 

Parameter Server are often associated with some nodes. Thus, one can access and 

change nodes‟ parameters transparently and dynamically through this server.  

4.2.3 ROS Client libraries and Nodelets 
 

ROS client libraries are a collection of code that facilitates the task of programming in 

ROS. This is made through the accessibility via code of some of the main ROS 

concepts. In general, these libraries enables you write ROS nodes, publish, subscribe to 

topics, write and call services and use the Parameter Server (see  4.2.2 - ROS Concepts).  

The main client libraries, as stated by (Conley 2011), are: 

 roscpp: roscpp is a C++ client library for ROS. It is the most widely used ROS 

client library and is designed to be the high performance library for ROS. 

 rospy: rospy is the pure Python client library for ROS and is designed to provide 

the advantages of an object-oriented scripting language to ROS. The design of 

rospy favors implementation speed (i.e. developer time) over runtime 

performance so that algorithms can be quickly prototyped and tested within 

ROS. It is also ideal for non-critical-path code, such as configuration and 

initialization code. Many of the ROS tools are written in rospy to take advantage 

of the type introspection capabilities. The ROS Master, roslaunch, and other ros 

tools are developed in rospy, so Python is a core dependency of ROS. 

 roslisp: roslisp is a client library for LISP and is currently being used for the 

development of planning libraries. It supports both standalone node creation 

and interactive use in a running ROS system. 

 

There are also some experimental client libraries, such as rosjava and roslua, which 

will be available soon. 

http://www.ros.org/wiki/roscpp
http://www.ros.org/wiki/rospy
http://www.ros.org/wiki/roslisp


 

 

52 

 

As for the ROS nodelet, they are designed to provide a way to run multiple algorithms 

on a single machine, in a single process, without incurring copy costs when passing 

messages between processes. roscpp has optimizations to do zero copy pointer passing 

between publish and subscribe calls within the same ROS node. To do this, nodelets 

allow dynamic loading of classes into the same node, however they provide simple 

separate namespaces such that the nodelet acts like a separate node, despite being in the 

same process. There is a ROS package available in the ROS repositories, which 

provides both the nodelet base class needed for implementing a nodelet, as well as the 

nodeletLoader class used for instantiating nodelets. They authors of this package are 

Tully Foote and Radu Bogdan Rusu. 

 

4.2.4 ROS Repositories 
 

One of the main features and advantages of ROS is the large set of repositories available 

for any open-source robot programmer. ROS has created a community of robot software 

developers, making available a large set of packages and stacks, distributed in several 

repositories. Some stacks available are specially designed for some specific robots, but 

through some analysis one can fit them into another robot, if hardware integration is 

proved possible. The access to ROS‟s packages, stacks and repositories can be made 

through this link: http://www.ros.org/browse/list.php. Some stacks provide a complete 

documentation, describing the contents and the proceedings for integrations as well as 

some tutorials. One of the main ROS goals is push forward the robotic developments 

through software reuse, thus, the importance of these repositories is significant.   

  Some of the main stacks include utilities the following: 

 Hardware integration of several robotic sensors, actuators, Arduino boards and 

several robot hardware platforms; 

 

 2D Navigation, Autonomous Localization, 2D Path Planning System and SLAM 

implementations; 

 

 Computer Vision techniques for several appliances: Visual SLAM, Face 

Tracking, Object Recognition; 

 

 

  

http://www.ros.org/browse/list.php
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5  Higgs‟s Mission 
 

Higgs
6
‟s mission, described in this chapter, has been selected according to the available 

hardware and software platform, already mentioned in the previous section 5. It was 

defined with the intention to build a reconfigurable control system, by capturing the 

functional requirements of the control architecture and the control system to be 

implemented in Higgs. This mission consists in a fully autonomous surveillance of the 

laboratory room Sala de Calculo located in the DISAM (Department of 

Automation, Electronic and Computer Engineering) of the Technical University of 

Madrid (UPM). 

The Sala de Calculo consists of a small laboratory room, with tables at the center and at 

the sides of the room, which form a rectangular corridor (see Figure 5.1). 

 

 

Figure 5.1: Sala de Calculo, DISAM, Technical University of Madrid, Spain 

 

Higgs surveillance mission involves navigating autonomously through the main 

rectangular corridor of the Sala de Calculo, in a continuous path, making a complete(s) 

lap(s), either in clockwise or counter clockwise direction. In Figure 5.2 you can see a 

valid surveillance path (blue dotted line), Higgs‟s initial position (green circle) and 

some of the path‟s waypoints (red circles).  

                                                 

6
 Higgs as the Higgs robot, part of the ASys Robot Control Testbed of the ASLAB (see 4.1- Hardware 

Platform - Higgs) 



 

 

54 

 

 

 

Figure 5.2: Higgs surveillance path in Sala de Calculo. The green circle 

represents Higgs‟s initial position.  

 

Higgs may use the following hardware systems (mentioned in 4.1 Hardware Platform - 

Higgs) as sensors, to localize itself and to detect obstacles:  

 Laser (primary sensor for point scan) 

 Kinect (secondary sensor for point scan) 

 Arduino (Compass, accelerometers, battery sensors) 

 Odometry (provided by the base platform Pioneer 2-AT8) 

 

Higgs will also use the base platform Pioneer 2-AT8 to move and to supply power 

(through the batteries) to all the onboard systems, except the laptop which use its own 

battery.  

At some point during the mission, there will be a simulated failure of the laser which 

would make this sensor unavailable. Higgs must be able to recover from this failure, 

reacting autonomously to it by reconfiguring its control architecture to use the 

remaining sensors so as to continue with the mission. 

Therefore, Higgs‟s main goals for the mission are: 

 Higgs must navigate through the rectangular corridor of Sala de Calculo while 

avoiding obstacles. 

 

 Higgs must localize itself accurately; 

 

 Higgs must recover from a laser failure (that could happen at any time during 

the mission) with a proper reconfiguration that enables the continuity of the 

mission. 
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Some other requirements for the mission: 

 Higgs must have some world model elements such as a map of Sala de Calculo 

and the basic waypoints which define the surveillance path (green circles and red 

circles in Figure 5.2). Higgs must also know its dimension and its initial position 

in the map must be specified at the start of the mission. 

 

 Higgs must be able to handle some degree of uncertainty in the environment, 

such as unknown obstacles, sporadic people passing by, etc. 
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6  Higgs‟s Control Architecture 
 

In this chapter, the designed Higgs‟s control architecture for the mission is going to be 

described. The control architecture is essential for the execution of the mission since it 

integrates all Higgs‟s sensor and actuator in an organized schema which enables Higgs 

to use them adequately. The developed meta-control layer (also part of Higgs‟s control 

architecture) is also going to be detailed in this chapter, as for its integration in the 

architecture. This latter is essential for the fault recovery that must occur when Higgs‟s 

laser fails. Without the meta-control layer, when this fails occurs the control system will 

crash and Higgs will be unable to continue its mission. However, firstly, the 

requirements for the architecture are going to be mentioned, which served as guidelines 

for the design of the architecture.  

6.1 Requirements for the Architecture 
 

The main requirement for the architecture is that it must cover Higgs‟s mission 

described in the previous chapter 5. That said, the system associated with this 

architecture must be able to control the behavior of Higgs properly in order to make him 

execute successfully the mission.  

It must be structured in modular components, each of which with different 

responsibilities. This way, the inclusion or substitution of components is made more 

easily. The meta-control components, part of the meta-control layer, have to be 

separated from the other base components. This makes it easier to change the meta-

control layer of the architecture. This requirement is essential if we wish to implement 

meta-control into another system, applying the same methodology and using the same 

meta-control architecture. 

Regarding the base control architecture, it is important that it respects the available 

hardware systems to avoid the presence of components in the architecture which cannot 

be implemented in the system afterwards. Despite this, the architecture must be 

sufficiently generic so as to be easily reused in other mobile robots, with a slight 

adaptation of the new available hardware components.   

The architecture must specify a system with self-awareness and self-reconfigurable 

capabilities, which can monitor and manage itself. It must be easily extendable to 

handle other failures or events, and must be made compatible with other systems.  

 

6.2 Overview of the Developed Architecture 
 

Having in mind the requirements mentioned in the previous section, a control 

architecture for Higgs has been designed. It is composed by functional components 

which have specific tasks and that communicate with each other. Their functions, 

interactions and organization enables Higgs to perform its surveillance mission. This 
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control architecture integrates Higgs‟s sensor and actuators. It also contains 

representations of the world model and Higgs‟s model. Generally, Higgs‟s full control 

architecture developed for this work can be decomposed in two parts (or layers): 

 The base control architecture (also referred as: control architecture): this 

constitutes the control architecture of Higgs responsible for the surveillance 

mission without the necessity of handling any fails or reconfigurations. It is 

somehow rigid, in the sense that it is not able to reconfigure itself, nor change its 

internal parameters. The overview of this architecture is going to be described in 

the section 6.3.  Its functional components will also be detailed in that section.  

 

 The meta-control architecture: this specifies an additional meta-control layer 

that is responsible for managing the base control system. It can reconfigure the 

base control system (specified by the base control architecture) and change its 

parameters when special events happen, such as hardware/software failures. 

Without this layer, Higgs would be unable to recover from the failure that will 

occur during the mission. This meta-control will be detailed in 6.4. 

 

Higgs‟s control architecture can be categorized as a hybrid architecture, since it has 

reactive functional components (such as the navigator which has to avoid some dynamic 

obstacles that may appear), as well as deliberative elements (such as the long-term 

planning of the surveillance path that has to be executed). However, with the meta-

control layer, this control architecture can also be considered as cognitive, since some 

aspects of introspection and self-awareness appear to exist when the architecture 

specifies components that can analyze and reconfigure the system itself. It is also 

important to mention that the meta-control layer adds some fault-tolerance capabilities 

to the system, since it will be especially useful (in the specific context of the 

implementation of this work) for a laser error recovery. 

6.3 Higgs‟s Base Control Architecture 
 

The diagram for the designed Higgs‟s control architecture can be observed in Figure 

6.1. The blue components represent functional components. The red components 

represent hardware systems (already mentioned in 4.1 Hardware Platform - Higgs). 

Finally, the green modules represent data that store information necessary by the 

functional components. 
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Figure 6.1: Diagram of Higgs‟s base control architecture  

 

Higgs’s Model contains all the relevant information (regarding the robot) needed by the 

functional components to execute the mission. For the particular mission of Higgs, 

some of this important information can be Higgs‟s dimensions, the position of the 

sensor with respect to the mass center of Higgs, and some aspects of Higgs‟s cinematic 

model. The data type Map can also be interpreted as the World Model, in the way that it 

constitutes the knowledge of the robot‟s environment as perceived by the robot. For this 

particular mission, this World Model includes only the map of the environment (Sala de 

Calculo), which must be previously obtained offline.   

As for functional components: 

 Mission Manager: this component is responsible for giving the waypoints to 

the Navigator module so as to make the robot move in the desired way, i.e., 

making laps through the rectangular corridor of Sala de Calculo. This 

component must know the location of the robot (given by the Localization 

Module), the map in which the robot navigates and the basic waypoints which 

define the desired motion path. When it sends a goal position to the Navigator 

component, it monitors the location of the robot waiting for the arrival to the 

goal position. When the robot arrives, the Mission Manager sends the next 

waypoint to the Navigator as a new goal position. Making this continuously and 

iteratively makes the robot move in a closed loop through the corridor of Sala de 

Calculo. 

 

 Navigator: this component is responsible for generating proper navigation 

instructions that will be sent to Higgs‟s base platform (Pioneer 2-AT8). It needs 

the location of the robot (given by the Location Module) and the map to 

generate the needed instructions of a proper navigation to the goal position 

previously set by the Mission Manager. The Navigator component is also 

responsible for obstacle avoidance, thus it needs the point scan (that can be 

provided by the Laser or by the Kinect) for obstacle detection and Higgs‟s 
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dimensions and kinematic model (part of Higgs‟s model) for a proper obstacle 

avoidance and navigation. The Navigator is composed of a global (high level 

planning) and a local planner (low-level navigation and obstacle avoidance), as 

referred in section 2.4.2 - Robot‟s Motion Planning and Navigation. 

 

 Localization Module: this component is responsible for computing Higgs‟s 

position in the map. It is an essential component in Higgs‟s control architecture 

because without knowing its location, Higgs is unable to navigate. As primary 

sensor data it uses a point scan (that can be provided by the Laser or by the 

Kinect) which it maps with the landmarks in the map in which the robot 

navigates. It also uses the odometry (provided by Higgs‟s base platform) to 

estimate the robot‟s pose, which can be improved by integrating it with the 

compass data (provided by the Arduino board) with an EKF filer. This module 

also needs some information regarding the location of the Laser and the Kinect 

device with respect to the mass center of the robot, in order to reference the 

point scan to the robot‟s coordinate frame. This latter information is retrieved by 

the Localization Model from the Higgs’s Model. 

 

It is important to mention that the hardware systems (represented by the red modules in 

Figure 6.1) not only correspond to the respective hardware devices but also include their 

driver components, which enable the access to these hardware devices by the other 

software components.  

This control architecture shows itself as relatively simple and apparently standard. 

However, it respects all the requirements mentioned in the section 6.1 regarding the 

base control architecture. It is modular - constituted by several components, each with 

different responsibilities and tasks exchanging data/message with each other through 

interfaces. It respects all the available hardware systems because each of the red 

components (Pioneer 2-AT8, Laser, Kinect and Arduino) are associated to an available 

hardware device (see 4.1 Hardware Platform - Higgs). It is also sufficiently generic to 

be applicable to another mobile robot, if this robot has the essential hardware devices 

needed for autonomous localization and navigation. In that case, to adapt the 

architecture, it is only needed to insert the proper hardware components.  However, this 

architecture is not sufficient to specify a control system that enables Higgs fulfill its 

surveillance mission. This is due to the fact that it is not capable of recovering from the 

laser error, which constitutes one of the most crucial aspects of Higgs‟s full mission. 

6.4 Meta-control Architecture  
 

As you can observe, in the developed base control architecture, described in the 

previous section, the hardware system Kinect is not used by any functional component 

(see Figure 6.1). This is due to the fact that the Kinect hardware system outputs the 

same data type of the Laser: a point scan
7
. Therefore, this makes Kinect an apparently 

redundant hardware system, since it does not add useful information to the robot‟s 

                                                 

7
 A point scan consists in a n radial readings that represent points in the world with their correspondent 

distances to the robot 
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control system because it can be used transparently as a laser. However, having in mind 

that, during the mission, a laser error will occur, making this device unavailable (as 

described in chapter in 5 – Higgs‟s Mission), the Kinect may be more useful than it may 

appear. In fact, after the laser fail, it will become the solely responsible of providing 

point scans to the system. However, the base control architecture‟s components are not 

able to reconfigure the whole system to use the Kinect sensor when the laser fails. 

Therefore, a meta-control layer is crucial for the error recovery and necessary for the 

Higgs‟s Mission. This layer will manage the base control system, monitoring it and 

actuating over it whenever necessary. In this section, the developed meta-control 

architecture is going to be described and the full architecture is going to be compared 

with some of the other architectures already mentioned in this document. 

The meta-control architecture, developed for this work, is constituted by three main 

elements, which can be observed in Figure 6.2: 

 A meta-monitor: this element monitors the control system in search of possible 

messages, errors or other events that can represent special events for the meta-

controller to handle. When detected any of this events, it will alert the meta-

actuator (described below), which handles this event, reconfiguring or 

readjusting the control system if necessary.  

 

 A meta-actuator: this element actuates over the control system when a special 

event is detected by the meta-monitor. It has total authority to manage the 

control system as it wishes, in the sense that meta-actuator can send/receive 

messages to/from any component and hardware system, it can start/stop the 

execution of functional components and can even interrupt or shut down the 

entire system. 

 

 Meta-model, which encompasses: 

o System’s configuration: this stores all the information relevant for the 

meta-controller. It is updated by the meta-monitor and used by the meta-

actuator. It stores the control system‟s state –current goal– which is used 

by the meta-actuator when, after handling a critical reconfiguration, it 

loads the previous system‟s configuration. 

o Events: These consist of meta-events that are associated with system‟s 

specific situations in which the meta-control layer has to reconfigure it. 

They are detected by the meta-monitor (which will trigger them) and by 

the meta-actuator (which will handle them). 
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Figure 6.2: Meta-control architecture 

 

The designed meta-control architecture is similar to fault-tolerant control architecture 

reported in (Blanke, et al. 2006), already summarized in 2.3 - Fault-tolerance in 

Autonomous Systems and presented in Figure 2.10. The meta-monitor corresponds to 

the diagnosis block in the architecture presented in (Blanke, et al. 2006), while the 

meta-actuator corresponds the the re-design block which uses the fault information and 

adjusts the controller to the faulty situation.  

As you can observe in Figure 6.3, the meta-control architecture, along with the base 

control architecture, follows closely the general architecture The Operative Mind, 

defined in (Hernandez, Lopez and Sanz 2009) which was already described in section 

3.3 - ASys Cognitive Patterns. In the The Operative Mind there are also meta-nodes that 

monitor and control the operation of nodes. They are patterned after the epistemic 

control loop 2 (see Figure 3.4), which has many resemblances with our meta-controller 

architecture. Figure 6.3 shows the mapping of this epistemic control loop with the 

architecture of the meta-control layer used for this work. It shows that the meta-monitor 

is associated with the functional tasks of Observe and Perceive, while the meta-actuator 

attends the Redesign and Reconfigure tasks. Finally, there is an element in the epistemic 

control loop 2 that can be mapped to the Meta-Model, which is represented as the 

Fuctional Model. This element also stores all models‟ relevant information necessary 

for the meta-action layer. It can be said that the developed architecture corresponds to 

an instance of the Operative Mind architecture described in (Hernandez, Lopez and 

Sanz 2009), in which the meta-action component (meta-actuator)  receives directly 

messages by the meta-perception component (meta-monitor), and so the Functional 

Model is implicit. 
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Figure 6.3: Mapping of the epistemic control loop 2 of The Operative Mind 

with the developed meta-control‟s architecture   

 

In Figure 6.4, the activity diagram of the meta-actuator is presented, which shows an 

overview of the execution stages of the meta-actuator when an event is signaled by the 

meta-monitor. As you can see, after noticing an event, the meta-actuator immediately 

interrupts the system. This is important to control error propagation through the system 

because. If this is not made, when handling an event that implies a system‟s 

reconfiguration, the system‟s instability may affect negatively the execution of the 

mission or even the system itself. Therefore, one must avoid keeping the control system 

active while the meta-control is managing the system. In the particular case of Higgs‟s 

mission, interrupting the system means halting Higgs‟s movement right when the laser 

error is detected. This is important because the time interval between the laser error and 

the full integration of Kinect in the system may be sufficient for the Localization 

Module to fail so that no position estimation will be available in the system anymore. 

After finishing the handle of the event, the meta-actuator may re-activate the system, 

now that it assumes that the system is stable. The execution stages of this meta-actuator 

resemble the four-phases of fault-tolerant artificial system as defined by (Jalote 1994), 

which were mentioned in 2.3 - Fault-tolerance in Autonomous Systems. The Error 

Detection phase corresponds to the event detection; the Damage confinement and 

assessment phase corresponds to the System Interruption stage; the Error Recovery 

phase corresponds to the meta-actuator‟s Handle Event stage; finally, the Fault 

Treatment and continued service phase corresponds to the System Reactivation stage. In 

Meta-monitor Meta-actuator Meta-model 

Robot’s Control System 
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fact, the meta-actuator execution stages were inspired by this Jalote‟s phases for fault-

tolerant artificial system, which gave an important emphasis on the error propagation 

avoidance (that in our whole system is handled by a system temporary halt). 

Nevertheless, as already mentioned in 3.4 - Beyond Current State of the Art, adding the 

meta-control layer does not makes the system exclusively fault-tolerant because it is not 

only fault-reactive. The events can correspond to special non-faulty occasions in which 

modification in the control system can upgrade the efficiency of its mission/task 

execution. Hence, the specified control architecture (with its meta-control layers) can be 

considered more as a cognitive architecture, because it presents (though primitive) self-

awareness capabilities. 

 

Figure 6.4: Activity diagram of the Meta-actuator  

 

6.5 Meta-control Architecture Integration in the 

Base Control  Architecture 
 

In Figure 6.5, a diagram of Higgs‟s full architecture for the mission is presented. As you 

can see, and compared to the base architecture presented in Figure 6.1, the meta-control 

layer is added, with its respective components (Meta-monitor, Meta-model and Meta-

actuator).  

As said before, the meta-control layer‟s components can monitor and manage the 

control system, which adds introspection and self-reconfiguration capabilities to the 

overall system. These capabilities are crucial for the success of Higgs‟s mission because 

the system will need to be reconfigured automatically when the laser fails, engaging the 

Kinect hardware system to be used by the system‟s components. 
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One key aspect of the meta-control layer is that it is attached to the base architecture 

without the necessity of a redesign of the latter. Thus, the base architecture defines a 

system that is operational most of the time except when the events that are associated 

with the meta-control are triggered (that is, the laser error in Higgs‟s mission). In this 

way, the general methodology used for this specific architecture could be reused for an 

integration of a meta-control layer to a working and fully developed control system in 

which we intend to add introspection and self-reconfiguration capabilities or even make 

the system fault-tolerant, as long as the system is designed in modules that provide 

information on their state and an interface for their managing. Summarily, the meta-

control layer could be added to “upgrade” the system‟s robustness without the necessity 

of a system‟s redesign. This establishes one of the main advantages of the approach for 

meta-control integration that was used for this work. 

 

 

 

 

Figure 6.5: Diagram of Higgs‟s full architecture control system, with the meta -

control layer 
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7  Implementation 
 

In this chapter, software implementation of the Higgs‟s control system is going to be 

described, which follows the designed architecture presented in the previous chapter 6. 

The implementation of Higgs‟s control system was made over the robotic middleware 

ROS (described in the section 4.2). ROS was chosen over other robotic software 

platforms because it brings many advantages that are suitable for the intended control 

system: 

- It presents a modular structure with executable nodes, which can be mapped 

with the modular components defined in our developed architecture. 

 

- Each node provides several interfaces (topics, services, parameters), that can 

accessed remotely. 

 

- It provides many algorithms and drivers for autonomous mobile robots that can 

be reused. 

 

- It provides many useful utilities to monitor the nodes and the control system. 

In the first section, the ROS nodes associated with the base control system are going to 

be described, with a global overview of their functionality and integration. In the second 

section, the meta-control layer‟s ROS nodes are going to be explained and their 

integration in the base control system is described in the third section. 

7.1 Base Control System  
 

In this section, the implementation associated with the developed Base Control System 

for Higgs‟s is going to be described, as for the ROS nodes used and reused. 

7.1.1 Drivers and Low-Level Nodes  
 

In this section, the implementation details of the nodes that were used as drivers for 

robot‟s devices are going to be described, as well as low-level nodes which integrate 

sensor‟s data.   

 

7.1.1.1 Base Platform - Pioneer 
 

As a driver for the Base Platform (Pioneer 2-AT8), the ROS package pioneer_aria was 

implemented, based on the ROSARIA package developed by Srećko Jurić-Kavelj that is 

available in the ROS repositories. This package contains the implementation of a ROS 

node (called pioneer) that consists in a ROS wrapper for the MobileRobot‟s ARIA C++ 
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library.  It enables to set velocities and read odometry data from the Pioneer base 

platform (see Figure 7.1).  

 

Figure 7.1: The ROS node of the pioneer_aria package 

 

The ROS Node pioneer was implemented in C++. It publishes to ROS topics the 

odometry read from the robot platform (ROS topic /odom) and the sonar data (ROS 

topic /sonar). It is also subscribed to the ROS topic /cmd_vel from which it listens to 

linear and angular velocity commands.  

7.1.1.2 Laser 
 

For the laser driver, the ROS package sicktoolbox_wrapper was used. It is available in 

the ROS repositories and maintained by Jason Derenick of the GRASP Laboratory at 

the University of Pennsylvania. It consists of a wrapper for the SICK LIDAR 

Matlab/C++ toolbox library
8
.  This latter offers stable and easy-to-use C++ driver for 

the laser Sick LMS-200, which is the one that Higgs uses as a laser device. The ROS 

node implemented in this package publishes, to the ROS topic /scan, the laser point 

scan as a LaserScan message type. This message type is defined in the common 

package sensor_msgs. Therefore, any other ROS node interested in getting the laser 

scan, only have to subscribe to the mentioned ROS topic. 

7.1.1.3 Kinect 
 

As a driver for the Microsoft‟s Kinect sensor, the ROS package openni_camera was 

used. This package is available in the ROS repositories and was made by Suat Gedikli, 

Patrick Mihelich and Radu Bogdan Rusu. This driver consists of a ROS node that 

publishes raw depth, RGB and IR image streams.  

To use the Kinect as a simulated laser, we must only consider the depth streams as 

relevant data. This corresponds to a 3D Point Cloud that is of ROS message type 

PointCloud2, defined in the common package sensor_msgs. However, for a client node 

to use transparently and equally data from the laser and from the Kinect, the point scan 

must have the same message type. Therefore, a few ROS nodelets were added to the 

system as wrappers to convert the PointCloud2, generated by the Kinect, to a 

                                                 

8
 Available in http://sicktoolbox.sourceforge.net/ 
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LaserScan. This way, both devices‟ drivers (of Kinect and Laser) outputs the same data 

type to the system and the replacement of one by the other is made more easily.  

To convert a 3D Point Cloud of message type PointCloud2 (generated by the Kinect‟s 

driver) to a laser scan of message type LaserScan, we used the ROS package 

pointcloud_to_laserscan of the turtlebot stack, available in the ROS repositories and 

developed by Tully Foote. This package was specially developed for making devices 

like the Kinect appear like a laser scanner for 2D-based algorithms (e.g. laser-based 

SLAM). This package contains the implementation of two ROS nodelet
9
 (CloudThrottle 

and CloudToScan). These nodelets are linked to the data published by the 

openni_camera node via the nodelet openni_manager, implemented in the 

openni_kinect ROS stack.   

The conversion from a PointCloud2 to a LaserScan is made in two steps, each of which 

is associated with the two Nodelets implemented in the pointcloud_to_laserscan 

package: 

 Transformation of the 3D  point cloud to a throttled point cloud: this is done by 

the ROS nodelet CloudThrottle of the pointcloud_to_laserscan package, which 

compresses the PointCloud2 into a smaller structure, without any data loss. This 

ROS nodelet receives PointCloud2 data via the openni_manager nodelet, and 

then returns the throttled cloud to the openni_manager which publishes the 

throttled point cloud to the topic /cloud_throttled. 

 Transformation of the throttled cloud to a laser scan: this is done by the ROS 

nodelet CloudToScan of the pointcloud_to_laserscan package. This nodelet 

basically receives a throttled cloud from the openni_manager, transforms it to 

LaserScan message data, and returns it to the openni_manager, which publishes 

it to a topic. We can set the maximum and minimum height of the points it the 

throttled point cloud to be considered for the laser scan. This way, we can 

manage the vertical angular range of the Kinect as we wish. The computational 

cost of this nodelet is far inferior to the one of CloudThrottle nodelet. 

 

The advantage of separating these processes into a “PointCloud2  throttled cloud” 

and “throttled cloud  LaserScan” is that we can have in our system a single 

CloudThrottle nodelet that is used by two or more CloudToScan nodelets. This is useful 

when we want to publish two or more laser scan derived from a single point cloud 

published by the Kinect, each with different angular ranges, without adding a 

considerable computational cost to the system. In our system, we use two CloudToScan 

nodelet: one that provides a wider scan used for obstacle avoidance, received by the 

navigation node, to detect tall and short obstacles; the other that provides a narrower 

scan, received by the localization node, which is better to simulate the laser scan which 

is made in a single horizontal plane. These both CloudToScan nodelet use the same 

CloudThrottle nodelet.  

An overview of the Kinect driver can be seen in Figure 7.2. The red component 

represents the Kinect device. Blue processes are ROS nodes and the green processes are 

ROS nodelets. 

                                                 

9
 For in information on ROS nodelet, see section 4.2.3 - ROS Client libraries and Nodelets 
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Figure 7.2: Elements of the Kinect driver in the system.  

 

 

7.1.1.4 Arduino 
 

For the Higgs‟s Arduino board, we reused the driver implemented by Marcos Garcia (a 

former member of the ASLab group), which is described in his report (Garcia 2009). 

This driver was implemented as a CORBA
10

 servant, using the CORBA implementation 

TAO
11

.  

Due to the stability of this driver, instead of implementing an Arduino driver from 

scratch, we implemented a “CORBA to ROS” wrapper that reuses the mentioned 

CORBA driver. As a result, the ROS package higgs_arduino_corba_ros was developed. 

This package contains a C++ implementation of a ROS node with the same name, that 

is also a CORBA client. It communicates with the CORBA servant using the CORBA 

communication protocol and retrieves data obtained by the Arduino board‟s sensor. For 

the implemented control system, the only Arduino‟s meaningful data is the compass 

readings. This compass reading is obtained by the ROS node and is published as an 

IMU (Inertial Measurement Unit) message type to the ROS topic  /output_Imu. The 

IMU message type is defined in the ROS package sensor_msgs and holds data regarding 

the orientation of an object, as well as its angular and linear velocity, with the respective 

covariance matrices. This message type is used in ROS to encapsulate data read from 

digital compasses, accelerometers and gyroscopes.  

An overview of the Arduino‟s driver elements can be appreciated in Figure 7.3. 

                                                 

10
 CORBA (Common Object Request Broker Architecture) is a standard, which specifies a system that 

enables transparent interoperability between systems that run on heterogeneous and distributed 

environments. Its design is based in the object model of OMG (Object Management Group), which 

defines the external characteristics of objects that can operate on different implementation forms. For 

more information on CORBA 

 
11

 For more information on TAO, see http://www.cs.wustl.edu/~schmidt/TAO.html 

Kinect  

Driver 

http://www.cs.wustl.edu/~schmidt/TAO.html
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Figure 7.3: Arduino‟s full driver elements 

 

7.1.1.5 EKF for Pose Estimation 
 

An EKF (Extended Kalman Filter) was used to integrate the compass reading (retrieved 

by the Arduino board) and the odometry (retrieved by the base platform Pioneer 2-AT8) 

into a combined odometry. The integration of the compass reading with the odometry 

using an EKF improves considerably the accuracy of the predication of the robot pose. 

This is because the odometry error rises significantly as the robot‟s angular speed 

increases. Using the compass reading can lower or even nullify the robot‟s orientation 

error and helps the localization node to make better predictions of the robot pose. 

 

 

Figure 7.4: Integration of odometry and compass reading through an EKF 

 

For the EKF, we used the ROS package robot_pose_ekf, of the navigation stack, 

available in the ROS repositories. It was developed by Wim Meeussen and it is 
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generally used to estimate the 3D pose of a robot, based on (partial) pose measurements 

coming from different sources. It uses an extended Kalman filter with a 6D model (3D 

position and 3D orientation) to combine measurements from wheel odometry, IMU 

sensor and visual odometry. In our system, the robot_pose_ekf node will subscribe to 

topics where the odometry and the IMU are published (see Figure 7.4). It then 

publishes, to a ROS topic, the combined odometry (after passing through the EKF filter) 

that can be used by the navigation and the localization node as a better estimation of the 

robot‟s pose than simply using the odometry data. 

 

7.1.2 World and Robot Model  
 

In this section, the implementation details of the nodes that represent the world and the 

robot‟s model are going to be presented.  

 

7.1.2.1 Transformation Broadcaster 
 

A transformation broadcaster is used to broadcast transforms that indicate the 

geometrical relationship of relevant 3D coordinate frames in our system. The transforms 

are organized in a tree structure (see Figure 7.5) that is buffered in time, and lets other 

ROS nodes translate points, vectors, etc. between any two coordinate frames at any 

desired point in time. They are composed by a 3D translation vector and a rotation 

quaternion. Transforms are extremely useful in ROS because a robot usually has many 

3D coordinate frames that change over time, such as a world frame, base frame, gripper 

frame, head frame, etc. The transformation broadcaster keeps track of all these frames 

over time and enables other nodes to get the coordinates of points, vectors and other 

geometric entities with respect to a specific coordinate frame (e.g., the current pose of 

the base frame in the map frame).  

In our system we implemented a transformation broadcaster that broadcasts static 

transforms that represent the robot‟s model, in the sense that they relate the point 

representation of the robot (that we named base_link) with the 3D position and rotation 

of the available sensor devices. This way, we can reference the sensed data (that usually 

is natively referenced to the sensor‟s frame) to the base_link frame of the robot. This is 

needed in our system, for example, to avoid obstacles or for localization, since we must 

reference the point scan gotten from the laser or the Kinect to the robot‟s coordinate 

frame. These transforms (that relate the robot‟s frame to the device‟s frame) are usually 

static, i.e. they never change over time, unless the devices move with respect to the 

robot‟s base, which is not Higgs‟s case. These static transforms represent Higgs‟s 

(static) model in our system. 

A ROS package named higgs_setup_tf was implemented. This package contains the 

implementation of a ROS node that broadcasts the transforms of base_link (the robot‟s 

reference frame) to the laser and Kinect‟s frames. To calculate these static transforms, 

we previously measured the position and orientation of the laser and the Kinect with 

respect to the considered robot‟s frame. 
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There are other ROS nodes that publish dynamic transformation to the system, such as 

the transforms that represents the combined odometry (broadcasted by the already 

mentioned robot_pose_ekf node) and the location of the robot (broadcasted by the 

localization node that will be detailed in section 7.1.3). Thus, in ROS, the robot‟s 

location at a given point in time can be specified by the transforms from the map‟s 

frame to the robot‟s frame.  

In Figure 7.5, you can observe the transformation tree of our system, which shows the 

references frames (the nodes in the figure) and the transforms published in our system 

(the edges in the figure). 

 

Figure 7.5: Transformation tree of the developed system 
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7.1.2.2 Map Server 
 

For the implemented system and for Higgs‟s mission, the World Model corresponds to a 

2D map of the environment in which Higgs will navigate, that is, the map of the Sala de 

Calculo of the DISAM (already mentioned in 5 - Higgs‟s Mission). That said, the map 

will be available by including a ROS node into the system – map_server. This node‟s 

implementation is located in the ROS package of the same name – map_server – 

developed by Brian Gerkey and Tony Pratkanis, available in the ROS repositories. The 

map_server loads the map data from pair of files located in the filesystem and 

publishes, into a pre-determined topic, the occupancy grid that corresponds to the map. 

The files, that define a map and that are loaded by the map_server, are: 

 An YAML file that describes the map‟s meta-data (such as the resolution, 2D 

origin of the map), and names the image file. 

 

 An image file that describes the occupancy state of each cell of the world in the 

color of the corresponding pixel. Whiter pixels are free, blacker pixels are 

occupied, and pixels in between are unknown. In Figure 7.6 you can see an 

example of an image file that represents an occupancy-grid map. 

 

 

Figure 7.6: An occupancy-grid-based map published by the map_server 

 

This package also provides a command-line utility (map_saver) that allows dynamically 

generated maps to be saved to the respective files. This utility was used for the system‟s 

setup, as will be explained later in this document. The package was chosen, mainly, 

because it is compatible with the localization and the navigation nodes that will be 

described in subsections 7.1.3 and 7.1.4, respectively. The map is essential for the 
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operation of the localization and the navigation, as already shown by the system‟s 

architecture (see Figure 6.5).  

 

 

7.1.3 Localization Node 
 

For the system‟s localization component we reused an available ROS package, named 

amcl, located in the navigation stack in ROS repositories. This package implements the 

adaptive Monte Carlo localization approach (or KLD-sampling) as described by Dieter 

Fox in (D. Fox 2003). This approach uses a particle filter (already mentioned in the 

section 2.4.1 - SLAM) and introduces a statistical method that increases the efficiency 

of the algorithm. This method, named KLD-sampling, consists in adapting the size of 

sample sets during the estimation process which bound the approximation error 

introduced by the sample-based representation of the particle filter. For more 

information on the algorithm, consult the paper (D. Fox 2003) or the book (Thrun, 

Burgard and Fox 2005).  

The package amcl was developed by Brian P. Gerkey and was derived from Andrew 

Howard‟s Player
12

 driver. The amcl node is subscribed to a laser scan, to some 

transforms messages (that relate the laser frame with the robot and the odometry frame) 

and a laser-based map, and publishes a pose estimation of the robot (see Figure 7.7) 

with its respective covariance.  

 

amcl node

laser scan

map

odometry

pose estimation

 

Figure 7.7: AMCL node‟s general inputs and outputs 

 

The amcl node is also subscribed to an additional topic used to initialize the position of 

the robot, i.e., the position of the set of particles. In this topic, the initial pose of the 

robot in the map is going to be indicated to the system using a graphical interface. This 

                                                 

12
 Player provides free software tools for robotics and sensors. For more information, see: 

http://playerstage.sourceforge.net/ 
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procedure is going to be explained later in chapter 8 - Experiments and Analysis of the 

Results. 

This amcl node has many parameters that need to be adjusted for each robot, 

environment and sensors. They can be divided in three categories: 

 Overall filter parameters: These parameters specify the particle filter 

characteristics (min/max number of particles), maximum error of the 

distributions, update frequencies, the initial pose and covariance of the particle 

filter, among others. 

 

 Laser model parameters: These parameters define the description of the laser‟s 

model, as perceived by the amcl node. These include the laser maximum and 

minimum range, number of beams and measure‟s covariance.  

 

 Odometry model parameters: These parameters are set accordingly to the 

robot‟s odometry characteristics. These include the odometry expected noise in 

the rotation and translation, as well as the frame‟s names of the odometry, 

base_link and the coordinate frames published by the localization system.  

 

The amcl node not only publishes the robot‟s pose estimation as a position referenced to 

the global frame (i.e. in the map‟s coordinate frame), but also as a transformation 

between the global frame and the odometry frame (see transform from /map to 

/odom_combinder in Figure 7.5). Essentially, this transform corresponds to the drift that 

occurs using Dead Reckoning.  If we add this transform to the one from the odometry 

frame and the robot‟s frame (already published by our system‟s node robot_pose_ekf, 

described in section 7.1.1.5), we have a transform that corresponds to the robot‟s pose 

estimation (see Figure 7.8).   

 

Figure 7.8: Transform for robot‟s pose estimation, when using the amcl node 

(Osentoski 2011) 

 

 

In our system, the values of amcl node‟s parameters were set based on the values used 

by the Willow Garage‟s robot Turtlebot, which one can find in the turtlebot ROS stack 

available in the ROS repositories. This robot also used the amcl node for localization. 

However, some parameter‟s values were changed to improve Higgs‟s pose estimation 

accuracy. These values were set according to some experiments‟ results in simple 
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navigation tasks with Higgs, through a try-and-error method. Some of the parameter‟s 

values adjusted were the odometry expected error and the maximum number of 

particles. These slight value adaptations seemed to improve significantly the 

localization‟s accuracy of Higgs using the amcl node. Some of the results can be seen in 

chapter 8 - Experiments and Analysis of the Results. 

 

7.1.4 Navigation Node 
 

In our system, we chose to reuse the move_base ROS package, of the navigation ROS 

stack, available in the ROS repositories and developed by Eitan Marder-Eppstein. We 

found this package suitable for the navigator component of our system because it 

consists of a well-structured, well-documented and sufficiently generic implementation 

of a navigation agent in ROS. Furthermore, it is compatible with our localization node – 

amcl - and was already implemented and tested in other systems with successful results. 

It uses the actionlib, a standardized interface that deals with pre-emptible tasks, 

provided by the actionlib ROS package. Therefore, the move_base node can be seen as 

a actionlib server, in which, given the goal in the world, its task is to attempt to reach it 

with a mobile base.  

The move_base node is constituted by several internal components, such as global and a 

local planner, and global and local costmap, which will be explained below in this 

section. As inputs, it needs the map in which the robot is navigating, sensor‟s point scan 

(such a laser or a point cloud scan), the odometry information, and transforms that relate 

sensors‟ and robot‟s frames. As outputs, it publishes the robot‟s movement instructions 

(linear and angular velocity). The move_base‟s interface and internal components can 

be appreciated in Figure 7.9.  

 

 

Figure 7.9: The move_base node‟s interface and internal components.
13

 

 

                                                 

13
 Retrieved from http://www.ros.org/wiki/move_base. 
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The move_base node may perform recovery behaviors, when the robot perceives itself 

as stuck or lost. 

As mentioned above, the move_base node is constituted by a global planner and a local 

planner
14

.  These planners can be configured by adjusting their parameters‟, provided by 

the move_base node. For the local planner, we chose to use a Dynamic Window 

approach, which is implemented in the move_base node together with some other base 

local approaches. Experimental results showed that this approach provide better results 

in Higgs‟s navigation. The Dynamic Window approach was originally specified in (Fox, 

Burgard and Thrun 1997) and was already mentioned in the section 2.4.2 - Robot‟s 

Motion Planning and Navigation. Other parameters of the global and local planner 

include the max/min accelerations and velocities of the robot, and the goal tolerance.  

In the move_base node, the global and local costmap are used by the global and local 

planner, respectively. The costmap implementation is located in the costmap_2d ROS 

package of the navigation ROS stack, also developed by Eitan Marder-Eppstein. The 

costmap takes in sensor data from the world, builds a 2D occupancy grid of the data and 

inflates costs in a 2D costmap based in on the occupancy grid and a user specified 

inflation radius (see Figure 7.10). It generally consists in a configurable structure that 

uses sensor data to store and update information about obstacles and which is the area 

that the robot must navigate in order to avoid obstacle collisions.  In Figure 7.10 we can 

see the purple cells that represent obstacles, the blue cells that represent obstacles 

inflated by the inscribed radius of the robot, and the blue polygon that represents the 

footprint of the robot. To avoid collisions, the footprint of the robot must never intersect 

the purple cells, and the center point of the robot must never cross the blue cells. The 

global and local costmaps can be properly configured by setting its parameters‟ values. 

Some of these parameters define the robot‟s footprint, the robot‟s radius and 

characteristics of the observation sources (point cloud vs. laser scan, obstacle range, 

min/max obstacles height, etc.). 

 

                                                 

14
 Consult the section 2.4.2 - Robot‟s Motion Planning and Navigation, for more information regarding 

local and global planner 
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Figure 7.10: The occupancy grid map with superimposed obstacles in purple 

and inflated obstacles in blue from the costmap.   

 

 

In our system, some values of move_base’s parameters were set accordingly to Higgs‟s 

base platform and devices characteristics. Other were manually set by executing several 

tests in which we tried to maximize the efficiency of the navigation, analyzing Higgs‟s 

performance.   

7.1.5 Mission Manager Node 
 

As already mentioned in section 6.3 - Higgs‟s Base Control Architecture, the mission 

manager component has the task to set goal positions for the navigator component, in 

order to make Higgs move through the rectangular corridor of Sala de Calculo, in a 

close loop way. Without this component, the system is not be able to take initiative, and 

it will wait for external instructions command the movement of the robot.  

The mission manager component was implemented as a ROS node. For that, we 

developed a ROS package – Mission Manager – that contained the implementation of 

the ROS node mission_manager. This node was implemented using rospy (python 

client libraries for ROS), which was already mentioned in section 4.2.3 - ROS Client 

libraries and Nodelets. Its execution steps can be appreciated in the activity diagram in 

Figure 7.11. As it can be observed, it first loads the waypoints from a file. This file must 

be located in the mission manager‟s package, and must contain a list of waypoints 

representing the desired route for the robot. Each waypoint represents a position and an 

orientation in the map‟s coordinate frame. Therefore, the mission_manager node, as we 



 

 

80 

 

implemented it, can be reused for other surveillance mission in other environments, as 

long as we provide the proper waypoints.  

The mission_manager node, like the move_base node
15

, uses the actionlib standardized 

ROS interface. However, the mission_manager identifies itself as an action simple 

client that interacts and set tasks to the move_base node, which is an action server. 

Therefore, after loading the waypoints, the mission_manager must wait for the 

move_base action server to come up. The mission_manager must also wait for the 

initial localization estimation, set manually in our system through a graphical interface, 

before starting to set navigation tasks. This is because the localization node is only fully 

operational after an initial manually set pose estimation. After this, the 

mission_manager, sends goal positions to the move_base node (using the actionlib 

interface), starting from the initial waypoint in the list. It waits for the move_base to 

complete its navigation tasks before sending the next waypoint. When the move_base 

informs to the mission_manager that the robot has arrived to the last waypoint in the list 

(completing a full lap), the mission_manager repeats the procedure, starting from the 

initial waypoint in the list. This way, the robot moves in a closed loop way through the 

route specified by the list of waypoints.  

For Higgs‟s particular mission, since we know our environment before starting the 

mission (i.e., we have a previously build/obtained map of Sala de Calculo), we can also 

get a set of waypoints that define the route through the rectangular corridor of Sala de 

Calculo. The selected waypoints for the surveillance mission in our system can be seen 

in Figure 7.12. As it can be seen, they define the route (in red) through the rectangular 

corridor in Sala de Calculo. Before the execution of the mission, the waypoints‟ 

coordinates and orientation (in reference to the map‟s coordinate frame) were calculated 

and stored the file that the mission_manager node loads. It is important to mention that 

the initial robot‟s pose, manually set, corresponds to the waypoint 4 in Figure 7.12. 

Thus, the first navigation task imposed to the move_base is to move Higgs‟s from the 

waypoint 4 to the waypoint 1. 

 

                                                 

15
 The move_base node corresponds to our navigation component in the implemented system. It was 

described in section 7.1.4 - Navigation Node.  
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Load Waypoints from file

[No more Waypoints] 

Wait for the move_base action server

Initialize Waypoint index

[Waypoint Index = 0] 

[There is a Waypoint] 

Set waypoint as goal position

Wait for move_base to succeed

Select next waypoint in list

Wait for initial localization estimation

 

Figure 7.11: Activity diagram of the Mission Manager implemented ROS node 
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Figure 7.12: Waypoints for Higgs‟s surveillance mission in Sala de Calculo 

 

7.1.6 Base Control System Overview 
 

In Figure 7.13, you can observe the implemented base control system for Higgs‟s 

surveillance mission. This graph was obtained using the ROS‟s rxgraph command-line 

utility, which is used for visualizing the ROS computation graph. The graph 

corresponds to the implemented base control system in Higgs which is capable of 

autonomously navigating Higgs‟s through the rectangular corridor of the Sala de 

Calculo, but it is unable to handle any fail that can occur throughout the execution of 

the mission (such as a laser fail). For that, and for the self-reconfiguration capabilities, 

we need to add to the system the meta-control layer, whose implementation will be 

described in the section 7.2 - Meta-control Layer Implementation 

In the graph in the Figure 7.13, the nodes correspond to ROS nodes and nodelets, while 

the edges correspond the topics used for inter-communication among the nodes. The 

nodes were colored for a better visual categorization. The red nodes correspond to 

drivers and low-level nodes (described in section 7.1.1). The base platform node 

(pioneer), the laser node (sicklms), Kinect‟s nodes and nodelets (openni_node, 

openni_manager, kinect_wide_scan and pointcloud_throttle), the Arduino node 

(higgs_arduino) and finally the EKF node (pose_ekf) are shown. The green nodes 

correspond to World and Robot Model nodes. As it can be observed, they all publish 

relevant transforms to the system, except the map_server which publishes the map. We 

also can observe the navigation component of our system (move_base_node) as the blue 

node, the localization component (amcl) as the yellow node, and the mission manager as 

the purple node. 
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Figure 7.13: The implemented Higgs‟s base control system, without the meta -

control layer 
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The Table 1 contains a list of all the ROS nodes in the base control system, identified by 

name, the architecture component they realize and whether they have been reused and 

properly configured or fully developed for this work. 

 

 

Name of the ROS node Functional Use Reused/Implemented 

pioneer Driver for the base platform Implemented 

sicklms Driver for the laser device Reused 

openni_node Driver for the Kinect sensor Reused 

Nodelets: 

openni_manager, 

pointcloud_throttle 

 kinect_narrow_scan, 

kinect_wide_scan  

 

Driver for the Kinect, to 

provide LaserScan 

 

 

Reused 

 

 

 

higgs_arduino 

ROS wrapper for CORBA 

driver of Higgs‟s Arduino 

board 

Implemented 

 

pose_ekf 

EKF for pose estimation, 

through integration of 

odometry and compass 

readings 

 

Reused 

 

kinect_base_link, 

tf_robot_geometry, 

kinect_base_link1, 

kinect_base_link2, 

kinect_base_link3 

 

 

Corresponds to the robot‟s 

model – relevant transforms 

and robot‟s coordinate 

frames. They are published 

by the transform broadcaster 

 

 

 

Implemented 

 

map_server 

Corresponds to the World 

Model. Publishes the map to 

the system 

 

Reused 

amcl Localization Node Reused 

move_base_node Navigation Node Reused 

mission_manager Mission Manager node Implemented 

 

Table 1: Summary of the reused and implemented nodes for the base control 

system 
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7.2 Meta-control Layer Implementation 
 

As with the base control system, the meta-control implementation for Higgs‟s control 

system follows its respective architecture described in the chapter 6 - Higgs‟s Control 

Architecture. Therefore, a ROS package was developed, named meta_controller, which 

contains an implementation of the three elements of the meta-control layer – the meta-

monitor, the meta-model and the meta-actuator. The meta-monitor and the meta-

actuator are implemented as two ROS nodes, while the meta-model is defined by a ROS 

message type, which we called meta-message. The meta-message is published by the 

meta-monitor node to a ROS topic called /meta_events, which is received by the meta-

actuator (see Figure 7.14). The meta-message contains the name of the event that was 

detected by the meta-monitor, and information regarding the configuration of the 

system that needs to be restored by the meta-actuator after the event handling. In our 

system, this information correspond the current goal position that the move_base node is 

currently trying to achieve.  

     

meta-monitor meta-actuator

meta-message

 

Figure 7.14: Elements of the implemented meta-control layer 

 

In Higgs‟s particular mission, specified in chapter 5 -  Higgs‟s Mission, a system‟s 

reconfiguration is only needed as a reaction to the laser fail event. Therefore, for the 

implemented system, the meta-model will only include the meta-event “laser fail” that 

must be detected by the meta-monitor and be handled by the meta-actuator, which needs 

to reconfigure the system to continue with Higgs‟s surveillance mission through the 

Sala de Calculo.  

Both the meta-monitor and the meta-actuator were implemented using rospy (python 

client libraries for ROS), which was already mentioned in section 4.2.3 - ROS Client 

libraries and Nodelets. They will be described in the next subsections. 

7.2.1 Meta-monitor Node 
 

As already mentioned in the section 6.4 - Meta-control Architecture, the meta-monitor‟s 

task is to monitor the system to detect pre-determined events that need to be handled by 

the meta-actuator. The implemented meta-monitor node monitors the other ROS nodes 

in the control system by subscribing to the topic /rosout. The /rosout topic consists in 

the standard ROS topic for publishing logging  messages. Since most of the ROS nodes 

in the control system reports error and warnings using the ROS system-wide logging 

mechanism, the meta-monitor can easily perceive other node‟s errors by subscribing to 

the /rosout topic. This corresponds to the runtime information about components‟ state 

that is needed by the designed meta-control. The meta-monitor also uses the ROS 

command-utility “rosnode list” to know which are the active nodes in the system, with a 
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pre-set frequency. In our system, this frequency set to 5 fps. Therefore, the meta-

monitor can take as long as 0.2 seconds to perceive that a specific node is not active. In 

our implemented system, the meta-monitor is also subscribed to the topic where the 

current goal position is published. This way, it can save internally this data, which is 

later needed for the system re-activation executed by the meta-actuator. 

By analyzing the incoming messages from the /rosout topic and the output of the 

command-line utility “rosnode list”, meta-events can be detected. When this happens, 

the meta-monitor publishes a meta message to the /meta_events topic. In our system, 

this meta-message contains the name of the event (for example, laser fail) and the goal 

position which Higgs was currently trying to achieve. This latter corresponds to the 

system configuration needed to be restored when the system is re-activated by the meta-

actuator. 

7.2.2 Meta-actuator Node 
 

The meta-actuator‟s main responsibility is to handle the meta-events that are detected by 

the meta-monitor. In the implemented system, the meta-actuator node is informed of the 

meta-events by subscribing to the /meta_events topics, in which it receives meta-

messages. When a meta-message is received, its execution steps follow the ones 

specified in the activity diagram of Figure 6.4: 

 Interruption of the system: the meta-actuator node halts the system. In our 

implemented system, this is done by canceling the current goal to the move_base 

node, using the actionlib standardized ROS interface. This stops Higgs‟s 

movement and must be done to prevent error propagation, especially in the 

localization.  

 

 Handling of the event: the meta-actuator node reconfigures the system 

accordingly to the name of the event received in the meta message. This can be 

done by removing or inserting ROS nodes into the system, as well as changing 

the parameter‟s values of the system‟s nodes. To insert ROS nodes into the 

system, the meta-actuator uses the ROS command-line utility “rosrun” to run 

executables in an arbitrary ROS package, or “roslaunch” that launches multiple 

ROS nodes locally or remotely via SSH. To remove ROS nodes from the 

system, the meta-actuator uses the ROS command-line utility “rosnode kill” that 

kills a running system‟s node, which name is passed as an argument of the 

command. To set other nodes‟ parameters‟ values, the meta-actuator interacts 

with the ROS‟s Parameter Server (already mentioned in section 4.2.2 - ROS 

Concepts). In our system, the meta-actuator handles events using if-else rules. 

Since the only meta-event corresponds to a laser fail, the implemented meta-

actuator analyses the name of the meta-event, and if it corresponds to the “laser 

fail” event, it will execute the laser fail event handling. The handling of the laser 

fail event reconfigures the system by removing the laser ROS node (sicklms) 

from the system and inserting the Kinect nodelet (kinect_narrow_scan) that will 

now provide the LaserScan needed by the navigation (move_base) and the 

localization (amcl) nodes.  
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 Re-activation of the system: after the handling of the event, the meta-actuator 

reactivates the systems, by loading the previously saved system‟s configuration. 

In our system, this is done by re-setting the current goal (which was received in 

the meta-message) to the move_base node, using the actionlib standardized ROS 

interface. This resumes Higgs‟s navigation mission.  

 

7.3 Integration of the Meta-control Layer in the 

System 
 

The insertion of the meta-control layer in our system is done by simply launching the 

ROS nodes meta-actuator and meta-monitor, whose implementation was described in 

the previous section 7.2 - Meta-control Layer Implementation. The meta-monitor node 

will automatically start to check for error logs, by subscribing to the /rosout topic and 

checking for the active nodes in the system, using the command-line utility “rosnode 

list”. Meanwhile, the meta-actuator node subscribes to the /meta_events topic waiting 

for meta-messages to be advertised by the meta-monitor..  

Once fully implemented the meta-control layer‟s nodes, the process of their integration 

into the base system is very simple and transparent due to the modular architecture of 

ROS, which divides the system in modular executables (ROS nodes). Figure 7.15 shows 

a cropped part of Higgs‟s system, obtained by the ROS command-line utility rxgraph, 

where it shows the meta-actuator and the meta-monitor nodes inserted in the system.  

 

Figure 7.15: Meta-monitor and meta-actuator nodes‟ insertion in Higgs‟s 

control system 

However, before inserting these two nodes into Higgs‟s system, the meta-monitor must 

know the error/warning that are logged and sent to the /rosout topic when the laser fails, 
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in order to properly detect this meta-event. It must also check if any of the active nodes 

suddenly stops its execution. This information was easily obtained by simulating a laser 

fail while the control system was running, and checking which errors/warns were sent to 

the /rosout topic and which ROS nodes were killed.  
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8   Experiments and Analysis of 

the Results 
 

In this chapter, the experiments carried out to validate this work are described and the 

relevant results are presented and analyzed.  

Firstly, the experiments associated with map building are described and some of their 

results are presented. These experiments were necessary to obtain the map that would be 

used in Higgs‟s mission. They were also useful to configure and prepare some of the 

system‟s nodes that would later be used for Higgs‟s mission. 

In the second section 8.2, the experiments results associated with Higgs‟s mission are 

presented. The efficiency of the base control system is analyzed, as well as the full 

control system with the meta-control layer.  

The third section 8.3 describes some other experiments made with Higgs and its control 

system, in which the meta-control layer was upgraded to intelligently integrate the 

Kinect and the laser sensor, while Higgs executes its surveillance mission through the 

rectangular corridor of Sala de Calculo. 

 

8.1 Map Building (Higgs‟s SLAM system) 
 

To obtain the map of the Sala de Calculo, i.e. the map‟s files needed by the map_server 

node to publish the map to the system, we used the SLAM technique using the laser 

scan while teleoperating Higgs. The SLAM technique was already mentioned and 

described in the section 2.4.1 - SLAM. 

The SLAM system was implemented in ROS, in which we reused many of the driver 

and low level nodes implemented for Higgs‟s control system for its mission. In addition, 

we added the following ROS nodes: 

 slam_mapping node – this node‟s implementation can be found in the gmapping 

package of the ROS repositories.  It is a ROS wrapper of the GMapping 

algorithm developed by Giorgio Grisetti, Cyrill Stachniss and Wolfram Burgard, 

and described in (Grisetti, Stachniss and Burgard 2006).  

 

 teleop_base node – this node‟s implementation can be found in the teleop_base 

package, available in the ROS repositories. It was implemented by Morgan 

Quigley and Brian Gerkey, and it is used to teleoperate a robot from a keyboard 

or a joystick. 

 

For monitoring the map that was being generated and the overall performance of Higgs, 

we used the ROS tool rviz. It was developed by Josh Faust and Dave Hershberger, and 
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consists in a 3d visualization environment for robot‟s data using ROS. It enables the 

visualization of coordinate frames in the system, robot‟s footprint, the map that is 

published by the map_server node, the laser scan and point scan, and even the particle 

filter, by subscribing to the proper topics in which these data are published. This tool 

was also used in the latter described experiments to monitor the control system while 

Higgs was executing its mission.  

 

Figure 8.1: ROS node system used for Higgs‟s SLAM  

 

Figure 8.1 presents the implemented SLAM system used for building the map. This 

graph was generated using the ROS command-line utility, rxgraph, that visualizes the 

ROS computation graph. The red colored nodes correspond to low-level nodes that are 

also used in Higgs‟s control system for the main mission (see chapter 7 -  

Implementation). These nodes were launched in Higgs‟s onboard laptop, which was 

directly connected with the hardware devices used for this control system. The other 

ROS nodes, colored in blue, were launched in a desktop that was connected to the 

onboard laptop, through the ASLab‟s wireless network. This was essential to reduce the 

computational cost in the onboard laptop, whose computational capabilities were 

insufficient to hold the entire SLAM system. Since ROS enables the nodes to have a 

transparent communication among terminals, as long as they are connected to the same 

network and use the same ROS core, there were no difficulties to launch the nodes of 

the control system in different terminals. 

For the construction of the map, we teleoperated Higgs through the Sala de Calculo, 

while running the SLAM system and monitoring the whole system‟s performance on 

rviz. After the full construction of the map, we used the command-line utility of 

map_server package - map_saver – to save the generated map to the respective files that 

will be loaded by the map_server node in Higgs‟s mission.  

The process of the map generation and SLAM can be seen in Figure 8.2, from the step 

(1) through the step (8). As you can see, the developed SLAM system successfully built 

a suitable occupancy grid map of the Sala de Calculo, maintaining most of its geometric 

properties, such as the main rectangular corridor in which Higgs will navigate in its 

mission. The GMapping SLAM algorithm, used by this system, seemed the overcome 

the loop closing problem
16

. This can be verified by analyzing the execution steps (7) 

                                                 

16
 Loop closing problem exists when a robot, while mapping an environment, must determine whether or 

not it is the first time it visits a certain location.  
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and (8) in Figure 8.2, in which the robot correctly indentifies the spot where it initiated 

its trajectory. The final map, which was used in Higgs‟s mission, is shown in Figure 8.3.  

 

 

Figure 8.2: Map generation process in Higgs‟s SLAM system, using the 

GMapping algorithm 

 

 

Figure 8.3: Map of Sala de Calculo generated by the Higgs‟s SLAM system  
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8.2 Higgs‟s Control System and Higgs‟s 

Mission 
 

In this section, the experiments associated with the implemented Higgs‟s control system 

for its mission are going to be described, and the results are going to be presented and 

analyzed. As with the SLAM control system experiments, all drivers and low-level 

nodes were launched in the onboard laptop, while the remaining nodes were launched in 

a desktop connected to the laptop through the ASLab wireless network. This was 

essential to reduce the computational cost in the onboard laptop, whose computational 

capabilities were insufficient to hold the entire Higgs‟s control system.  

The first section, 8.2.1, refers to the experiments associated with the base control 

system. These experiments were essential, because it is important to assure that Higgs‟s 

base control system is able of autonomously navigating Higgs through the rectangular 

corridor of Sala de Calculo when there are no failures in the system during the 

execution of the mission. The meta-control layer is used, in Higgs‟s mission, to replace 

the sensor used in the system to get the point scan. Therefore, before starting the 

mission, the base control system must be properly prepared to navigate through the Sala 

de Calculo using both point scan sensor devices – the Kinect and the laser. These 

experiments will also provide us results to compare the efficiency of the system when 

using one of these sensor devices.  

Experimental results obtained using Higgs‟s full control system, with the meta-control 

layer, are going to be presented in the section 8.2.2. These experiments also correspond 

to Higgs‟s mission, as it is defined in chapter 5, in which Higgs navigates through the 

rectangular corridor of Sala de Calculo, and recovers from a laser fail if necessary. The 

results obtained in this section are compared to the ones obtained in the section 8.2.1, to 

analyze the efficiency of the meta-control layer, and to conclude on its importance to 

the system when it is vulnerable to a the laser fail.  

 

8.2.1 Higgs’s Base Control System 
 

Once having the map of Sala de Calculo, the first experiments using Higgs‟s base 

control system were made to analyze the efficiency of the localization and the 

navigation in Higgs. The implemented ROS nodes responsible for these two tasks are 

the amcl node and move_base node respectively, although they depend on the other 

implemented ROS nodes (such as the drivers and the low-level nodes). Therefore, to 

make these experiments, all ROS nodes in the control system, except the Mission 

Manager, were launched. We manually set some goal positions, using the rviz tool
17

, 

and analyzed the performance of the Higgs‟s autonomous localization and navigation, 

while it tried to arrive at the designated goal positions. Some of these results can be 

                                                 

17
 rviz consists in the 3d visualization environment for robots using ROS. It enables the visualization of 

coordinate frames in the system, robot‟s footprint, the map that is published by the map_server node, the 

laser scan and point scan, and even the particle filter, by subscribing to the proper topics in which these 

data are published. This tool was also used in Higgs‟s SLAM system described in the section 8.1. 
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appreciated in Figure 8.4, in which the laser was used as the point scan sensor. The 

small red arrows represents the set of particles that amcl uses to compute the location of 

the robot. The manually set goal position is represented by the big red arrow, and the 

motion path generated by the move_base global planner can be seen in green. As you 

can, see, the robot (represented by its blue footprint) successfully generated a plan, 

avoided the obstacles and navigated to the designated goal position, achieving it in 24.3 

seconds. At the same time, the set of particles converged, as the robot moved, which 

means that the pose estimation‟s certainty, computed by the amcl node, increased 

significantly all through the robot‟s navigation. These results show that the Higgs is 

capable of autonomous navigation through the Sala de Calculo, and that the amcl node, 

the move_base node and all the remaining nodes in base control system were properly 

configured according to Higgs‟s characteristics.  

 

 

Figure 8.4: The performance of the amcl node and the move_base node in 

simple navigation tasks 

 

The next experiments involved the whole base control system, in which the 

mission_manager node was inserted. Experimental observation indicated that Higgs 

could successfully and autonomously navigate through the rectangular corridor of Sala 

de Calculo, while avoiding obstacles and localizing itself. Some of the navigation 

results can be seen in Figure 8.5, which shows the motion paths (in green) to the four 

waypoints that define the close-loop route through the rectangular corridor.  
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Figure 8.5: Navigation to the four waypoints specified by the Mission 

Manager.  

 

Measures were taken as for the time it took for Higgs to make a complete lap through 

the rectangular corridor of Sala de Calculo. We first measured the amount of time that 

Higgs took to make a full lap through the rectangular corridor, in which the base control 

system used the laser as the point scan sensor. We then measured the time using the 

base control system configured to use the Kinect as the point scan sensor. For each of 

these two devices, seven trials were made and seven time measures were obtained. The 

results can be seen below, in Table 2, which presents the time measures in seconds.  

 

 Lap  1 Lap 2 Lap 3 Lap 4 Lap 5 Lap 6 Lap 7 Mean ± St Dev 

Laser  180.5 198.5 158.9 202.0 153.0 211.6 135.9 177.2 ±   26.4 

Kinect 224.9 302.0 346.2 536.4 489.5 331.7 422.2 379.0 ± 101.3 

 

Table 2: Time measures, in seconds, of Higgs‟s navigation through the 

rectangular corridors using the laser and the Kinect exclusively 

 

As you can observe in Table 2, using the laser as the main point scan sensor in our 

system provides better results. This is reflected by the mean time of each lap using the 

laser – 177.2 seconds – against the mean time of each lap using the Kinect – 379.0 

seconds. This means that Higgs navigation is approximately twice as fast when it uses 

the laser instead of the Kinect as the point scan sensor. Another aspect to notice in the 

Table 2 is the standard deviation associated with each sensor. The laser‟s time measures 

present a relatively low standard deviation, meaning that the results of the time 

measures are not very different from each other, and the time Higgs takes to make a lap 

is somewhat predictable. However, the standard deviation associated with the Kinect‟s 

time measures is very high (more than 101 seconds), which indicates that the Higgs‟s 

control system is more unpredictable as for the time Higgs takes to complete a lap 

through the rectangular corridor. This latter fact reinforces the idea that using the laser 

as the point scan sensor, improves the efficiency and the reliability of the control system 

in Higgs. This discrepancy in the efficiency can be explained by the difference in the 

horizontal sensing angular ranges of the laser (180º) and Kinect (57º) . The fact that the 

laser has a wider sensing ranges implies that the amcl node can compute a better pose 
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estimation because it can match more point scans with the map‟s landmarks. It also 

helps the move_base to detect more obstacles and reduces Higgs‟s movements to 

discover lateral obstacles. Therefore, by using the Kinect sensor instead of the laser, 

Higgs have to drive more carefully because it is less aware of its surrounding, and this 

reflects on the time it takes to make a full lap of the rectangular corridor of  Sala de 

Calculo. In addition, it was observed that, while using the Kinect as the point scan 

sensor, the recovery behaviors (in place rotation) occurred more often. These can be 

triggered by the move_base node when the amcl node does not provide a sufficiently 

precise pose estimation.    

 

8.2.2 Higgs’s Full Control System and Higgs’s 

Mission 
 

Before launching the meta-control nodes into the system, we analyzed which errors 

were logged by the system‟s nodes when a laser fail occurs. These errors must be 

detected by the meta-monitor node, and are needed to trigger the reconfiguration in 

Higgs. Experimental trials indicated that the errors which are published to the /rosout 

topic, when we shutdown the laser, are:  

 “Connectivity Error: Could not find a common time /base_link and /map”: these 

error is sent by the move_base node when the amcl node stops publishing the 

transformation which indicates the robot‟s pose estimation. The amcl cannot 

publish this transformation because it lacks of laser scan data. 

 

 "woah! error!": this error is sent by the sicklms node (which consists of the node 

driver of the laser) just before it stops its execution due to the laser device 

shutdown.  

 

Therefore, the meta-monitor node was programmed to detect the “laser fail” event when 

one of these errors is logged and published to the /rosout topic, to which the meta-

monitor is subscribed. After this, the implemented Higgs‟s full control system was 

ready to be launched, and observations could be made on the execution of Higgs‟s 

mission when a laser fail is simulated during the mission‟s execution. To launch 

Higgs‟s full control system, it is only needed to launch the base control system as well 

as the meta-monitor and the meta-actuator node.  

The laser fail was simulated by remotely killing the sicklms node in some trials, and in 

others by shutting down Higgs‟s laser device using the respective power switch of 

Higgs‟s power board.  

The experimental trials that were made indicated that Higgs was able to recover from 

the laser fail (which was simulated at different points in Higgs‟s trajectory) and 

continue with the execution of its surveillance mission. The laser fail was properly 

detected by the meta-monitor node, which immediately alerted the meta-actuator. The 

meta-actuator successfully reconfigured the control system, by removing the non-

operational laser ROS node (sicklms) from the system and inserting the Kinect nodelet 



 

 

96 

 

(kinect_narrow_scan) that now provides the LaserScan for the navigation (move_base) 

and the localization (amcl) nodes. These latter nodes accepted the new LaserScan data 

provided by the Kinect, and continue with their respective operations. It was also 

observed that immediately after the laser fail was simulated, Higgs‟s halted its 

movement (due to the system‟s interruption by the meta-actuator by cancelling the 

current goal), and, after a few seconds, it resumed its navigation to the same goal 

position it had previously (due to the system‟s re-activation made by the meta-actuator, 

in which it re-sets the goal position provided by the meta-monitor).  

 

Figure 8.6 shows two Higgs‟s system state at two different moments in time of the same 

trial
18

. In Figure 8.6 (a), it can be observed that Higgs is using the laser as the point 

scanner device, since the scanned points (in red) cover a horizontal range of 

approximately 180 degrees. The visualization represented by Figure 8.6 (b) was 

obtained after a laser fail, which occurred at the point of trajectory indicated by the 

yellow cross in Figure 8.6 (a). As it can be seen, the Higgs‟s system reconfigured itself 

to use the Kinect as the point scanner device, since the scanned point cover a much 

smaller angular range (of approximately 60 degrees), and Higgs continued its trajectory 

towards the same goal position, while localizing itself.    

 

 

Figure 8.6: Higgs navigation before (a) and after (b) the laser fail.  

 

 

 

                                                 

18
 This images were obtained using the ROS visualization tool - rviz. 
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 Lap  1 Lap 2 Lap 3 Lap 4 Lap 5 Lap 6 Lap 7 Mean ± 
St Dev 

Lap Time 208.8 242.9 238.3 214.5 276.7 367.0 245.0 256.2 ± 
49.7 

Reconfiguration 
Time 

12.2 11.1 12.4 11.7 11.0 10.7 10.6 11.4 ± 
0.7 

 

Table 3: Time measures, in seconds, of Higgs‟s navigation through the 

rectangular corridors with a simulated laser fail  

 

Table 3 shows the amount of time, in seconds, it takes Higgs to make a full lap through 

the rectangular corridor of Sala de Calculo, when a laser fail occurs. As with the base 

control system, we made seven trials and calculated the mean and the standard 

deviation. The system‟s reconfiguration time was also measured. The laser fail was 

simulated always at the same point in the trajectory, which corresponds to the one 

indicated by the yellow cross in Figure 8.6 (a). Comparing this results with the Table 2, 

you can conclude that the mean value is slightly higher to the one measured for a 

navigation with the laser (256.2 seconds vs. 177.2 seconds, respectively). This means 

that the laser fail event only increased 79 seconds to the amount of time it takes Higgs 

to make a full lap through the rectangular corridor, compared to a situation in which the 

laser wouldn‟t have fail. This can be considered a good result, since the efficiency of the 

mission have not decreased significantly and Higgs was able to continue its navigation 

mission, despite navigating a little slower. The decrease in the navigation speed can be 

explained by the fact that, after the reconfiguration, Higgs uses the Kinect sensor, 

which, as already mentioned in the previous section, proved to make the control system 

less efficient due to its reduced angular field of view (57 degrees) compared to the 

laser‟s field of view (180 degrees).  

Another measure to take into account, presented in the Table 3, is the Reconfiguration 

time, whose mean value is approximately 11 seconds. Therefore, after a failure, Higgs 

takes only 11 seconds to reconfigure itself, and to re-activate the system.  This means 

that, if we had in our system an equally efficient alternative to the laser device that 

would be used to provide point scans after the reconfiguration, the increment in the 

amount time to complete a lap will only be of approximately 11 seconds. The standard 

deviation of measured values of reconfiguration times, which is very low, indicates that 

this time is very constant and predictable.  

To conclude, analyzing the experimental results, we can affirm that Higgs, along with 

the implemented control system, is capable of achieving all goals for its surveillance 

mission, which were specified in chapter 5 -  Higgs‟s Mission. 
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8.3 Other Experiments 
 

In this section some further experiments are going to be described, in which the meta-

control layer was upgraded to intelligently integrate both point scan sensors – the Kinect 

and the laser, constituting a hybrid system.  

Since the Kinect power consumption (12W) is far inferior to the laser‟s device power 

consumption (40W), it is suitable to use the Kinect whenever it does not affects 

significantly the efficiency of the mission. Therefore, for these experiments, we set the 

Kinect as the default point scan sensor of our system, and re-programmed the meta-

control layer to reconfigure the system to use the laser when Higgs encounters 

difficulties in computing the pose estimation. The laser would be used until the current 

goal position is reached. After that, the meta-control layer reconfigures the system so 

that the Kinect would be used again as the solely provider of point scan to the system. 

Thus, there are two basic states in our system: one in which the Kinect is used as the 

point scan sensor; and another in which the laser is used as the point scan sensor. The 

commutation of these states can occur several times during the navigation. This way, 

the Kinect is used every time Higgs localizes itself with precision, and the laser is used 

when Higgs feels a little lost and needs to localize itself rapidly.  

Previous experimental observations proved that the following error was logged to the 

/rosout topic when amcl node had difficulties in computing the pose estimation: 

“Costmap2DROS transform timeout”. This error is sent by the move_base node when 

the pose estimation is not published into the system at the desired frequency. This error 

was used to detect when Higgs encounter difficulties in computing its pose estimation 

while using the Kinect sensor. 

The meta-monitor was re-programmed to detect this error and to inform the meta-

actuator of the “Pose estimation alert” event. When receiving the meta-message 

associated with the “Pose estimation alert”, the meta-actuator reconfigures the system 

by removing the Kinect nodelet (kinect_narrow_scan) and inserting the laser node 

(sicklms) that would be used to provide point scan to the system. While using the laser, 

the meta-monitor will wait for Higgs to arrive to the current goal position, and when 

this happens, it will send another meta-message to the meta-actuator, signaling the 

“Arrival at the goal position while using laser” event. The meta-actuator handles this 

event the same way it handles a laser fail: it removes the laser node (sicklms) from the 

system and inserts the Kinect nodelet (kinect_narrow_scan) that will provide the 

LaserScan for the navigation (move_base) and the localization (amcl) nodes. 
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 Trial  1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Mean 
(Mean %) 

Kinect time 98.0  

(37.0%) 

67.0  

(27 %) 

93.0  

(40 %) 

105.9  

(39.2 %) 

132.9 

(42.3 %) 

132.5 

(50.4 %) 

148.3 

(57.1 %) 

111.1  

(42.0 %) 

Laser time 126.0 

(48.0 %) 

134.0 

 (58 %) 

108.0  

(45 %) 

123.2 

 (45.7 %) 

140.0 

(44.6 %) 

88.9 

(33.9 %) 

69.7 

(26.9 %) 

112.8  

(43.1 %) 

Reconfiguration 

Time 
40.0  

(15.0 %) 

33.0 

(15 %) 

37.0  

(15 %) 

40.8  

(15.1 %) 

41.3 

(13.1 %) 

41.1 

(15.7 %) 

41.4 

(15.9 %) 

39.2  

(14.9%) 

Total Time 264 234 238 269.9 314.2 262.5 259.4 263.1  

(100.0%) 

 

Table 4: Time measures, in seconds, of Higgs‟s navigation through the 

rectangular corridors, using the hybrid system of Kinect and Laser  

Table 4 shows the amount of time, in seconds, it takes Higgs to make a full lap through 

the rectangular corridor of Sala de Calculo, using this hybrid system. As with the base 

control system, we made seven trials and calculated the mean and the standard 

deviation. The use percentage of each sensor for each lap corresponds to the values in 

parenthesis. As it can be seen by the values on the table, this system uses the Kinect and 

the Laser sensor in approximately equally distributed shares of time. This can be 

verified by their mean time of usage values, which are very similar (111.1 seconds vs. 

112.8 seconds). In each of the seven trial, Higgs‟s self-reconfigured itself four times. 

Almost 15% of the time was spent in reconfigurations, which is a relatively low 

percentage. The number of reconfigurations can be reduced by increasing the tolerance 

of the desired frequency in which the pose estimation must be publish to the system, 

which decreases the probability of the error that triggers the “Pose estimation alert” 

event.  

 

Figure 8.7: Comparison of the mean values for a lap time using a system with 

laser, Kinect and a hybrid system  

 

The Figure 8.7 shows that this hybrid system corresponds to an alternative robot control 

system that reduces the power consumption of a robot that uses the laser exclusively 

and, at the same time, reduces the navigation time of a robot that uses the Kinect 
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exclusively. It is important to mention that this hybrid system was developed without 

any changes to the base control system. Only the meta-control nodes were 

reprogrammed (which followed the meta-control architecture), preserving the remaining 

system‟s nodes. Therefore, the intelligent integration of this two sensors was made 

possible due to the meta-control layer, which was attached to the base control system.   
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9  Conclusions 
 

In this document, the implementation of an architecture for robust autonomy is 

presented. As a result, a robot control system, capable of autonomous self-

reconfiguration, was implemented. This enabled an autonomous mobile robot to handle 

device failures while executing a surveillance mission. The implemented control system 

is not intended to be exclusively fault-tolerant, but somehow, self-aware. The self-

awareness level in this system is not pretended to be comparable to the one that exists in 

human beings or even in natural systems in general. However, the experimental results 

show that this system is able to detect both internal errors and mission circumstances 

and intelligently react to it, which can be considered as a step (though very initial) 

towards self-awareness. 

The main contribution of this work consists in the developed architecture used to 

implement the robot control system. This architecture is based on the cognitive 

architecture The Operative Mind, included in the ASys Project of the ASLab group of 

the Technical University of Madrid (UPM). In this architecture approach, a meta-

control layer is inserted to monitor and reconfigure the system whenever necessary. 

Unlike fault-tolerant architectures, this architecture specifies a system that is not only 

fault-reactive, but can use system‟s information to increase its efficiency. To this end, 

three main elements in the meta-control layer were defined:  

- a meta-monitor that monitors the system to detect possible meta-events; 

 

- a meta-actuator that handles the meta-events, by interrupting the system, 

reconfiguring the system accordingly to the received meta-event, and re-

activating the system; 

 

- a meta-model, used by the meta-monitor and the meta-actuator, which defines 

the type of possible meta-events and the system's configuration that needs to be 

restored after the meta-event handling.  

To test the architectural approach, we specified a simple but challenging indoor 

surveillance mission to be executed by an autonomous mobile robot, in which a robot‟s 

device (laser) fails during the execution of the mission. Therefore, the system needed to 

reconfigure itself to overcome the fail occurred in the system.  

A control system for the autonomous mobile robot was implemented using the ROS 

middleware robotic platform. This control system is based on the designed architecture, 

thus containing a meta-control layer, and follows all the requirements of the specified 

mission. This thesis presents a detailed description of the implemented system, as for 

the nodes used and their functions. The mobile robot used for the mission was Higgs, a 

Pioneer 2-AT8 robotic platform that is part of the ASys Robot Control Testbed (RCT). 

Higgs is equipped with many onboard devices, such as a radial laser and a Microsoft‟s 

Kinect sensor.  

Experimental results were presented and analyzed in order to show that our system 

successfully controls the robot to fulfill its mission in all its aspects: 
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- The robot is able to autonomously navigate through the specified environment, 

localizing itself and avoiding dynamic and static obstacles. 

 

- The robot is able to autonomously recover from the laser fail that occurs during 

the mission, and continue the execution of the mission with no further problems.  

Therefore, the meta-layer inserted in the control system proved to be essential for the 

mission, because it is responsible for the system‟s reconfiguration. In addition, 

experimental results demonstrated that the interruption and re-activation of our system, 

before and after its reconfiguration, were crucial to avoid our robot to get lost in the 

environment. Without these processes and after the system‟s reconfiguration, the 

localization module had many difficulties in computing a pose estimation. By 

measuring navigation time, we could also verify that the robot navigates more rapidly 

when it uses the laser as the main radial scanner sensor than using the Kinect sensor.  

Finally, some further experiments demonstrated that our system can be easily improved 

by upgrading the meta-control layer while keeping the base control system unchanged. 

By expanding the meta-model, i.e. the meta-events that can occur in our system, and by 

programming the meta-monitor to detect these new meta-events and the meta-actuator 

to handle them, we upgraded out robotic control system to intelligently integrate the 

robot‟s main scanner sensors – Kinect and laser. This upgraded system uses the Kinect 

as the default sensor, which consumes less energy. When the robot has difficulties in 

computing its pose estimation, the system reconfigures itself to temporarily use the 

laser, which has higher energy consumption but increases the efficiency of the pose 

estimation. Thus, this hybrid system is more power efficient that the system that uses 

exclusively the laser, and the robot‟s navigation if faster compared to the system that 

uses exclusively the Kinect.  

On the other hand, the meta-operating system ROS proved to be a suitable robotic 

software platform for the implementation of our system, mainly because of the available 

monitoring utilities and its large set of implemented algorithms and drivers that we 

could reuse for our system. This helped us to focus our work in the implementation of 

the meta-control system. However, a considerable amount of time was spent to adapt 

the reused ROS components to our robot and to our environment‟s characteristic.  

Furthermore, we can state that the final implemented system is relatively stable and 

robust. In our society, it is difficult to find robust mobile robots that are capable of 

autonomously patrolling a partially known area, and it is even more difficult to find one 

capable of handling failures, or intelligently integrating two redundant devices, such as 

the laser and the Kinect.  Therefore, this work can also be suitable for those who search 

for a guideline of how implementing a robust control system into an autonomous mobile 

robot or how to implement a robotic control system that deals with redundant devices.  

9.1 Future Works 
 

The implemented control system can be compared to a fault-tolerant robotic control 

system. However, one of the main goals of this work is to provide a general 

architectural design and implementation that could be extended in the future in any 

direction of interest. These extensions could improve even more the robustness of this 

robotic control system, thus allowing the robot to deal with even more complex, 
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dynamic and unknown environments. We already verified that the implemented meta-

control layer can be easily upgraded while preserving the implementation of the 

underlying base control system. Therefore, is up to new research works to keep 

upgrading this architecture or the implemented (meta)control system, to enhance the 

robustness and autonomy of mobile robots, and even other kinds of technical systems. 

The implemented meta-control layer in our system was programmed with simple “if-

else” rules. Nonetheless, the designed architecture does not specify how the meta-

control components have to be implemented. Some more sophisticated Artificial 

Intelligence techniques can be used to implement these components, such as Markov 

decision processes, Bayesian networks or Artificial Neural Networks. In addition, 

machine learning techniques could also be implemented to enable the robot to learn and 

adapt autonomously from interactions with the environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

104 

 

 

  



 

 

105 

 

Bibliography 
 

Agre, P., and D. Chapman. "PENGI: An implementation of a theory of activity." 

Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-

87). Seattle, WA, 1987. 268-272. 

Albus, J., A. Meystel, A. Barbera, M. Del Giorno, and R. Finkelstein. "4D/RCD: A 

reference model architecture for unmanned vehicle systems version 2.0." 

Technical Report, National Institute of Standards and Technology, 2002. 

Albus, J.S., and A.J. Barbera. "RCS: A Cognitive Architecture for Intelligent Multi-

Agent Systems." Proceedings of the 5th IFAC/EURON Symposium on 

Intelligent Autonomous Vehicles, IAV 2004,. Lisbon, Portugal, 2004. 

Ambros-Ingerson, J., and S. Steel. "Integrating planning, execution and monitoring." 

Proceedings of the Seventh National Conference on Artificial Intelligence 

(AAAI-88). St. Paul, MN, 1988. 83-88. 

Anderson, J. R., and K. Gluck. " What role do cognitive architectures play in intelligent 

tutoring systems?" In Cognition & Instruction: Twenty-five years of progress, 

227-262. 2001. 

Araki, M. "PID Control." In Control Systems, Robotics, and Automation. 2000. 

Baydar, C.M., and K. Saitou. "Off-line error prediction, diagnosis and recovery using 

virtual assembly systems." IEEE International Conference on Robotics and 

Automation. 2001. 818-823. 

Bermejo-Alonso. "OASys: ontology for autonomous systems." PhD Thesis, 

E.T.S.I.I.M., Universidad Politécnica de Madrid, 2010. 

Blanke, M, M Kinnaert, J. Lunze, and M Staroswiecki. Diagnosis and Fault-Tolerant 

Control. Berlin: Springer-Verlag Berlin Heidelberg, 2006. 

Bongard, J.C., and H. Lipson. "Automated Robot Function Recovery after 

Unanticipated Failure or Environmental Change using a Minimum of Hardware 

Trials." Conference on Evolvable Hardware (EH'04). Seattle, Washington, 

USA, 2004. 169-177. 

Booth, Taylor L. Sequential Machines and Automata Theory. New York: John Wiley 

and Sons, Inc., 1967. 

Bratman, M. E. "Plans and resource-bounded practical reasoning." Computational 

Intelligence, 1988: 349-355. 

Bratman, M. E., D. J. Israel, and M. E Pollack. "Plans and resource-bounded practical 

reasoning." Computational Intelligence, 1988: 349-355. 

Brooks, R. A. "Intelligence without representation." Artificial Intelligence, 1991b: 

47:139-159. 

Brooks, R. A. "Elephants don't play chess." Designing Autonomous Agents, 1990: 3-15. 



 

 

106 

 

Brooks, R.A. "Intelligence without reason." Proceedings of the Twelfth International 

Joint Conference on Artificial Intelligence (IJCAI-91). Sydney, Australia, 

1991a. 569-595. 

Brooks, R.A. "A robust layered control system for a mobile robot." IEEE Journal of 

Robotics and Automation, 1986: 2(1):14-23. 

Calisi, D, A Censi, L Iocchi, and D Nardi. "OpenRDK: a modular framework for 

robotic software development." Proceedings of the International Conference on 

Intelligent Robots and Systems (IROS). Nice, France, 2008. 1872--1877. 

Chapman, D., and P Agre. "Abstract reasoning as emergent from concrete activity." 

Reasoning About Actions &Plans - Proceedings of the 1986 Workshop. San 

Mateo, CA: Morgan Kaufmann Publishers, 1986. 411-424. 

Cohen, P. R., M. L. Greenberg, D. M. Hart, and A. E. Howe. "Trial by fire: 

Understanding the design requirements for agents in complex environments." AI 

Magazine, 1989: 32-48. 

Conley, Ken. Introduction to ROS. 2011. http://www.ros.org/wiki/ROS/Introduction 

(accessed 2011). 

Driankov, D., and A Saffiotti. Fuzzy Logic Techniques for Autonomous Vehicle 

Navigation. Springer-Verlag, 2001. 

Egmont-Petersen, M., de Ridder, and Handels, H. D. "Image processing with neural 

networks - a review." 2279–2301. 2002. 

Etzioni, O., N. Lesh, and R. Segal. "Building softbots for UNIX." Software Agents - 

Papers from the 1994 Spring Symposium (Technical Report SS-94-03), 1994: 9-

16. 

Ferguson, I. A. TouringMachines: An Architecture for Dynamic, Rational, Mobile 

Agents. Clare Hall, University of Cambridge, UK: PhD thesis, 1992. 

Fikes, R. E., and N. Nilsson. "STRIPS: A new approach to the application of theorem 

proving to problem solving." Artificial Intelligence, 1971: 189-208. 

Fox, D. "Adapting the Sample Size in Particle Filters Through KLD-Sampling." 

International Journal of Robotics Research, 2003. 

Fox, D., W. Burgard, and S. Thrun. "The dynamic window approach to collision 

avoidance." Robotics & Automation Magazine, 1997: 23–33. 

Garcia, M. Fusión sensorial en plataforma robótica móvil (Sensing fusion in a robotic 

mobile platform). 2009. 

Genesereth, M. R, and N. Nilsson. Logical Foundations of Artificial Intelligence. San 

Mateo, CA: Morgan Kaufmann Publishers, 1987. 

Georgeff, M. P., and A. L Lansky. "Reactive reasoning and planning." Proceedings of 

the Sixth National Conference on Artificial Intelligence (AAAI-87). Seattle, WA, 

1987. 677-682. 



 

 

107 

 

Georgeff, M. P., and F. F. Ingrand. "Real-time reasoning: the monitoring and control of 

spacecraft systems." Proceedings of the sixth conference on Artificial 

intelligence applications. 1990. 198–204. 

Georgeff, M., D. Kinny, and M. Wooldridge. "The dMARS Architecture: A 

Specification of the Distributed Multi-Agent Reasoning System." Journal of 

Autonomous Agents and Multi-Agent Systems, 2004: 5-53. 

Gini, M., and G. Giuseppina. "Towards automatic error recovery in robot programs." 

Proceedings of the Eighth international joint conference on Artificial 

intelligence - Volume 2. San Francisco, CA, USA: Morgan Kaufmann Publishers 

Inc., 1983. 821-823. 

GOSTAI. "The Urbi Software Development Kit, version 2.6." Development Kit, 2010. 

Grisetti, Giorgio, Cyrill Stachniss, and Wolfram Burgard. "Improved Techniques for 

Grid Mapping with Rao-Blackwellized Particle Filters." IEEE Transactions on 

Robotics, 2006. 

Hart, P. E., N. J. Nilsson, and B Raphael. "A Formal Basis for the Heuristic 

Determination of Minimum Cost Paths." IEEE Transactions on Systems Science 

and Cybernetics. 1968. 100–107. 

Hernandez, C. "Estudio de las arquitecturas cognitivas: La necesidad de incorporar 

mecanismos de autoconsciencia en los sistemas de control inteligente." MSc 

Thesis, Madrid, Spain, 2007. 

Hernandez, C., I. Lopez, and R. Sanz. "The Operative Mind: a functional, 

computational and modeling approach to machine consciousness." International 

Journal of Machine Consciousness (World Scientific Publishing Company), 

2009: 83-98. 

Hertzberg, J., and F. Schönherr. "Concurrency in the DD&P Robot Control 

Architecture." Proceedings of The International NAISO Congress on 

Information Science Innovations. 2001. 1079-1085. 

Isla, D. "Handling Complexity in the Halo 2 AI." Gamastura online. March 11, 2005. 

(accessed December 15, 2010). 

Jalote, P. Fault Tolerance in Distributed Systems. New Jersey: PTR Prentice Hall, 1994. 

Kaelbling, L. P., and S. J Rosenschein. "Action and planning in embedded agents." 

Designing Autonomous Agents, 1990: 35-48. 

Laird, J. E., A. Newell, and P. S. Rosenbloom. "Soar : an architecture for general 

intelligence." Artificial Intelligence, 1987: 33. 

Lebiere, C., and J. R. Anderson. "A connectionist Implementation of the ACT-R 

production system." Proceedings of the Fifteenth Annual Conference of the 

Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum Associates, 1993. 

635-640. 



 

 

108 

 

Leonard, John J, and Hugh F. Durrant-Whyte. "Mobile Robot Localization by Tracking 

Geometric Beacons." IEEE Transactions in Robotics and Automation, 1991: 

376-382. 

Lopez, I. "A Fundation for Perception in Autonomous System." PhD Thesis, Madrid, 

Spain, 2007. 

Maes, P. "The agent network architecture (ANA)." In SIGART Bulletin, 115-120. 1991. 

Makarenko, A., A. Brooks, and T. Kaupp. "Orca: Components for Robotics." 

International Conference on Intelligent Robots and Systems (IROS). 2006. 

Markoski, B., S. Vukosavljev, D. Kukolj, and S. Pletl. "Mobile robot control using self-

learning neural network." Intelligent Systems and Informatics, 2009. SISY '09. 

7th International Symposium on. Subotica, 2009. 45 - 48. 

Montemerlo, M., S Thrun, D Koller, and B. Wegbreit. "FastSLAM: A factored solution 

to the simultaneous localization and mapping problem." Proceedings of the 

AAAI National Conference on Artificial Intelligence. Edmonton, 2002. 

Müller, J. P. "A conceptual model of agent interaction." Draft proceedings of the 

Second International Working Conference on Cooperating Knowledge Based 

Systems (CKBS-94). University of Keele, UK., 1994. 389-404. 

Munneke, D., K. Wahlstrom, and L. Zaccara. "Intelligent Software Robots on the 

Internet." Artificial Intelligence, 1998: 1-52. 

Newell, A., and H. A. Simon. "Computer science as empirical enquiry." In 

Communications of the ACM, 113-126. 1976. 

Nilsson, N. "Teleo-Reactive Programs and the Triple-Tower Architecture." Electronic 

Transactions on Artificial Intelligence, 2001: 99-110. 

Ozkan, M., G Kirlik, O. Parlaktuna, A. Yufka, and A. Yazici. "A Multi-Robot Control 

Architecture for Fault-Tolerant Sensor-Based Coverage." International Journal 

of Advanced Robotic Systems. Croatia, 2010. 67-74. 

Pokahr, A., L Braubach, and W. Lamersdor. "Jadex: A BDI Reasoning Engine." In 

Multi-Agent Programming, by R Bordini, M Dastani, J Dix and A Seghrouchni, 

149-174. Springer, 2005. 

Pollack, M. E., and M. Ringuette. "Introducing the Tileworld: Experimentally 

evaluating agent architectures." Proceedings of the Eighth National Conference 

on Artificial Intelligence (AAAI-90). Boston, MA, 1990. 183-189. 

Rao, S.A., and M.P. Georgeff. "BDI Agents: From Theory to Practice." Proceedings of 

the First International Conference on Multiagent Systems (ICMAS'95). 1995. 

Rosenblatt, J. "DAMN: A Distributed Architecture for Mobile Navigation." Carnegie 

Mellon University, 1997. 

Sacerdoti, E. "Planning in a hierarchy of abstraction spaces." Artificial Intelligence, 

1974: 115-135. 



 

 

109 

 

Sacerdoti, E.D. "The non-linear nature of plans." Proceedings of the Fourth 

International Joint Conference on Artificial Intelligence. Stanford, CA, 1975. 

206-214. 

Sánchez, José Alberto Arcos. "Sistema de navegación y modelado del entorno para un 

robot móvil." 2009. 

Sanz, R., and J. Zalewski. "Pattern-based control systems engineering." IEEE Control 

Systems Magazine, June 2003: 43-60. 

Sanz, R., I. Lopez, M. Rodriguez, and C. Hernandez. "Principles for consciousness in 

integrated cognitive control." Neural Networks, 2007: 938-946. 

Secchi, H., V. Mut, R. Carelli, H. Schneebeli, M. Sarcinelli, and T. Freire Bastos. "A 

hybrid control architecture for mobile robots. Classic control, behaviour based 

control, and petri nets." The Pennsylvania State University, 1999. 

Srinivas, S. "Error recovery in robots through failure reason analysis." Proceedings of 

the National Computer Conference. 1978. 275-282. 

Steels, L. "Cooperation between distributed agents through self organization." 

Proceedings of the First European Workshop on Modelling Autonomous Agents 

in Multi-Agent Worlds (MAAMAW-89). Amsterdam, The Netherlands: Elsevier 

Science Publishers B.V., 1990. 175-196. 

Stone, P., and M. Veloso. "Multiagent Systems: A Survey from a Machine Learning 

Perspective." In Autonomous Robots, 345-383. Kluwer Academic Publishers, 

2000. 

Thrun, S, W. Burgard, and D. Fox. Probabilistic Robotics. Cambridge, MA: MIT Press, 

2005. 

Vikhorev, K. S., N. Alechina, and B. Logan. "The ARTS Real-Time Agent 

Architecture." Proceedings of Second Workshop on Languages, Methodologies 

and Development Tools for Multi-agent Systems (LADS2009). Turin, Italy, 2009. 

Vol-494. 

Wise, Melonee. ROS Tutorials: UnderstandingTopics. 2011. (accessed 2011). 

Wood, S. Planning and Decision Making in Dynamic Domains. Chichester, England: 

Ellis Horwood, 1993. 

Wooldridge, M. "Conceptualising and Developing Agents." Proceedings of the 

UNICOM Seminar on Agent Software. London, 1995. 42. 

Wooldridge, M., and N. Jennings. "Agent Theories, Architectures, and Languages: A 

Survey." Lecture Notes in Computer Science (Cambridge University Press), 

1995: 1 - 39. 

 

 

 



 

 

110 

 

 


