The Specification of Transitions In DAE Embedded Hybrid Systems

FOCAPO 2008

S. Galan (santos.galan@upm.es) Autonomous Systems Laboratory, Universidad Politécnica de Madrid (Spain)

Introduction Linear Time Invariant DAEs

Process simulation is a routinely used tool in chemical engineering and process
analysis. While steady state simulation can be considered, more or less, a ma-
ture technology, dynamic models still pose challenges that increase with the
incorporation of new features or formalisms that improve the capabilities of the
software packages. One of the consequences of this continuously evolving and
developing technology is the existence of applications with incomplete function-
ality, inaccurate algorithms or inefficient codes. Just to mention a decent process
simulator that disappeared some years ago, SPEEDUP, notwithstanding the big
claims of the comercial brochures, it was limited to index 1 differential-algebraic
equations (DAEs), it was unable to correctly detect state events, support for
model building (the Specity environment) was a little bit primitive and, to the
surprise of the users coming from the steady-state world, one of the principal
problems they have to face to run a simulation was to get initialized the model,
solving a system of nonlinear algebraic equations.

Nowadays, a field in dynamic simulation where further research is needed
is that of hybrid discrete/continuous systems, those exhibiting discrete and
continuous state dynamics, important in many areas of science and engineering,
in particular in chemical engineering. Several modeling formulations have
been proposed to describe hybrid systems. In this paper we will refer to the
hybrid automaton representation (Back et al., 1993; Galan & Barton, 1998) with
embedded DAEs.

In the area of hybrid systems, one of the problems approached by researches in
past years is that of transitions between different modes, specially when there is
a discontinuity in the state variables or in the forcings. When the continuous
part of the system is modeled by DAE, the solution is contained in a manifold,
what imposes constraints not necessarily explicit on the variables, reducing
the degrees of freedom. Only transitions leading to a consistent initialization
in the new mode (consistent transitions and consistent reinitializations) are
correct. Consistent initialization is related to the index of the DAE system, but
the important quantity here is the dimension of the solution manifold.

Usually it is desired to keep continuity of the state variables over the transition
(what is direct with ordinary differential equations, ODEs), but due to the
manifold constraints several variables not known a priori may jump. Different
authors have proposed methods to obtain consistent initial values in the new
state after the transition when there is no explicit specification for the transfer
of the states (the transition functions), leading to, e.g., the use of successive
linear programming (Gopal & Biegler, 1999) or the so called natural transition

functions (Barton & Lee, 2002; Reifsig et al., 2002).

Unfortunately, those methods are not always applicable and are in many cases
arbitrary since they exist other valid solutions. The main thrust of this paper
is that there is no shortcut to the correct specification of the problem, which
must include explicitly the transition functions. But the theory and software for
modelling hybrid systems provides weak support for that specification.
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We will consider a system described by a state space S = | J,*, Sk where each
mode Sy, is characterized by:

1. A set of variables {x(*), x(¥) y(*) (k) p ¢}, where x(¥) ¢ R are the
differential state variables, y(*) ¢ R the algebraic state variables and

u® € R™ the controls. The time invariant parameters p € R"» and
time ¢ are independent variables. For convenience: z(¥) = [x(¥) y ()T,

2. A set of equations:
f(k) (X(k)a X(k) 9 y(k)a u(k)v P, t) =0 (1)

usually a coupled system of differential and algebraic equations. In the
mode S the specification of the parameters p and the controls coupled
with a consistent initial condition T}, (x*), x(¥) y(F) u(*®) p t) =0att =

t(()k) determines the evolution of the system in [t(()k) : t;k)).

3. A (possibly empty) set of transitions to other modes described by:

(a) Transition conditions:

determining the transition times ¢t = tgck) at which switching from
mode k£ to mode j occurs. The transition conditions are formed by
logical propositions that trigger the switching when they become
true.

(b) Transition functions:

TF) (58) 5(H)

; ,u(k),z(j),z(j),u(j),p,t) (2)

associated with the transition conditions, relating the variables in the
mode S}, and the variables in the new mode S; at the transition time

P = tgck>. A special case of the transition functions is the set of initial
conditions for the initial mode S;.

In practice for many problems the transitions between modes affects only a few
equations and variables and the specification of the model is concise.

Transition Functions

When the event is triggered by a transition condition the mapping between the
variables in the previous mode (S, S—) and the new mode (S;, S4) is described
by the transition functions at time ¢, :

T (z ,z ,u ,z",z",u",p,t) =0 (3)

Not all transitions functions are valid. Only transition functions that provide

consistent initialization in the new mode (consistent transitions) are well posed.

The consistency feature means that the initial state is contained in the solution
manifold.

For DAESs the solution manifold is, in general, implicit, what makes difficult to
specify the transition functions. In a first approach, we can consider three cases
depending on the dimensions of the solution manifolds in the predecessor (d_)
and successor (01 ) modes at a transition:

1. If AT =4, —6_ > 0 it is compulsory to specify at least A* additional
transition functions, provided that it is possible to assume state continuity
for the rest.

2. If 64 = 0_ may be possible to assume state continuity without specify
transition functions.

3. 0+ —d_ < 0itis compulsory to specify d transition functions even if they
are state continuity functions.

Let us consider the linear constant coefficient DAE:
Az + Bz = F(t) (4)

This system is solvable if AA 4 B is a regular pencil (Brenan et al., 1996). In this
case, there exist nonsingular matrices P and Q such that:

z = Qw (5)
PAQw + PBQw = PF(t) = F'(¢) (6)

A’:PAQ:[(I) 1%] B’:PBQ:[g (1)] 7)

where N is a matrix of nilpotency v (the differential index). The dimension 4 of
the solution manifold z(¢) is equal to the dimension of I in A’ and the transition
function to the mode cannot specify more than ¢ values of z and z.

The resulting system after the change of coordinates is:

w1 + Cwy; = F4 (8)
Nwy +wy = Fy 9)

The second equation has the only one solution, that depends on the forcing
functions:

r—1 :
wy =) (-)'N' = (10)
1=0

algebraic equation that defines the solution manifold:

wo = Q) 'z (11)
Q—l
with Q! = [Qill (12)
If:
T (z ,z",u,p,t) =T (z",t) =0 (13)

is the transition function from mode — to + a sufficient condition for it to be a
well posed transition is that:

) =0 (14)

wy =Qy 'z’ (15)

is a solvable system. If, additionally, transition functions are linear in z*, these
are well posed if and only if the previous system is nonsingular.

Example: the problem

Let consider the mechanical system formed by two rotating masses used by
Mattsson (1989) and whose transitions were studied later by Barton & Lee
(2002). The masses, whose axis of rotation coincides, can be connected by a
rigid coupling or a slip coupling. When the slip coupling is acting, the physical
system can be described by the following equations:

Liwi =71 + T2 (16)
Iowg =T — T2 1 (17)
72,1 — d(wz — wl) (18)

where I, I; are the moments of inertia (subindex 1 and 2 refers to each mass),
w1,wy the angular velocities and 71, 72 the torques, known functions of time.
The damping coefficient d relates the transmitted torque 7> ; to the slip velocity.
When the coupling is rigid, the last equation is substituted by:

W1 — Wy =— 0 (19)

Conclusions

The specification of the transition functions in hybrid discrete continuous systems is a modelling issue. It is
necessary the implementation of software tools in modelling and simulation environments that enforce valid
transition functions, differentiating what is a mathematical requirement and what is a reasonable help.

F(t) — | T2 (t) Z — | W9 (20)
L O | _7'2’1_
In the slipping mode:
I, 0 0O 0 0 -1
A=10 I, O B={(0 0 1 (21)
0 0 O] _d —d 1 ]

changing B when the coupling is rigid to:

0 0 —1
B=1|0 0 1 (22)
1 -1 0

The dimensions of the solution manifolds are 9; = 2 and d», = 1 for each mode,
being the index of the systems v; = 1 and v» = 2 respectively. Let us concentrate
on the transition from mode 1 (—) to mode 2 (+). According to Eq. (11):

11[2 11[2 O_ _wl 1
W2:Q2_1ZZ L +1s I1+ 1o W2 (23)
L O O 1_ _7'1,2_
Also: i i
;1 -
0 0 ——2|[n
F, — P,F — ; ; L+l | (24)
B 2 1 0 0
. L+ L1 + I = -
and;:
0 O
S -

From Egs. (10), (23) and (24), the solution manifold is determined by:
W1 = W2 (26)

To1 = (27)

Thus, from purely mathematic arguments, there is still a degree of freedom
left to specity the transition functions. If we use physical considerations, a
reasonable constraint is the conservation of angular momentum:

]1w1_ -+ 12w2_ — (Il + ]Q)Wi'_ (28)
or equivalently, the energy balance taking into account the dissipated energy:

B 1 B 1
— I (wy ) + 512(002 )? = 5(11 + L) (wi)? +

L1 (wy —wy )?

2(1 + 1) (29)

Barton & Lee (2002) apply the theorems developed by Reifsig et al. (2002), (the
analysis of those theorems is out of the scope of this paper), to obtain the natural
transition function for this case, what happens to be precisely conservation
of angular momentum. This fact suggest that it is possible to implement on
software packages methods to automatically derive the (natural) transition
functions relieving the engineer from that task, and even that there is a physical
foundation for these transition functions incorporated in the mathematics.
Revisiting the example considered, what we are dealing with could be seen as a
simplified model of a clutch. Actually, it is at the transition where the complica-
tions of the phenomena occurring during engagement and disengagement are
radically reduced. This is one of the reasons to use hybrid discrete-continuous
models: to obtain simpler, efficient models that retain the essential character-
istics of the system. But the price to pay is not so extreme simplicity, we still
have degrees of freedom left to model the transitions and introduce the relevant
information there. In fact, we must model the transition and we do it, either
explicitly or relying on the program that, in the best case, will find the natural
transition functions.

For the example of the clutch, a more realistic transition condition in form of
energy dissipation (Howrie, 1987) is:

1
(-2
Td Td

where 74 is the dynamic torque clutch capacity, function of the friction coefficient
and the clutch engagement force.

(30)




