
Integrating Cognition+Emotion+Autonomy
European Integrated Project IST-027819
6th Framework Programme - Cognitive Systems

Title

Ontology-based Software
Engineering
Engineering Support for Autonomous Systems

Author Julita Bermejo Alonso

Reference ASLab-ICEA-R-2006-016
Release 0.1 Draft

Date 2006-11-15
URL http://www.aslab.org/documents/ASLab-ICEA-2006-016.pdf

Clearance Consortium

Partners

University of Skövde, SE
Université Pierre et Marie Curie, FR
Centre National de la Recherche Scientifique, IT
Consiglio Nazionale delle Ricerche, FR
University of Sheffield, UK
University of the West of England, UK
BAE Systems, UK
Cyberbotics Ltd., CH
Hungarian Academy of Sciences, HU
Universidad Politécnica de Madrid, ES

2 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

Ontology-based Software Engineering
ASLab-ICEA-R-2006-016 v 0.1 Draft of 2006-11-15

Abstract

Keywords

Acknowledgements

We acknowledge the support of the European Commission Cognitive Systems Unit
through grant IST-027819 ICEA.

Revisions

Release Date Content Author
0.0 November 15, 2006 Initial release. J.Bermejo

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 5 of 43

Contents

1 Introduction 8

2 Software Engineering Definitions 9

3 Roles of Ontologies for Software Development 11

4 Categorization of Ontologies for Software Engineering 12

5 Benefits on the Use of Ontologies 15

6 Issues on Ontology–based Software Process 16

7 Current Research on Ontologies for Software Engineering 18

7.1 Ontologies for the Software Engineering Domain: Ontologies
of Domain . 18

7.2 Ontologies for the Software Engineering Process: Ontologies
as Software Artifacts . 31

8 Conclusions 35

6 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

List of Figures

4.1 Categorization of usage of ontologies in Software Engineering 13

7.1 The SWEBOK ontology project phases 19

7.2 The SWEBOK ontology mapping 19

7.3 Application Configuration . 20

7.4 Semantic Network of Modeling 21

7.5 Verification of Knowledge Based Systems by deploying Core
Ontologies . 23

7.6 Structure of the software maintenance projects ontology 24

7.7 Part of the Software Quality Ontology 24

7.8 Software Measurement Ontology 25

7.9 Ontology for Software Metrics and Indicators 26

7.10 Part of the Software Process Ontology 27

7.11 Software Process Metal–Level Model 28

7.12 Software Process Base Level Model 28

7.13 Architecture of Ontology for Software Development Method-
ologies and Endeavours . 29

7.14 Onto-ActRE Problem Domain Ontology 30

7.15 EOSDE components . 31

7.16 MANTIS Components . 32

7.17 Ontology Modules for use cases supporting development . . . 34

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 7 of 43

Chapter 1

Introduction

Software development is more demanding nowadays as software applica-
tions have become increasingly more complex. New procedures and tech-
niques are sought to simplify the software engineering processes with the
aim of shortening development time and costs by re–using components. The
development of software systems is a complex activity which may imply the
participation of people and machines (distributed or not). Therefore, differ-
ent stakeholders, heterogeneity and new software features make software de-
velopment a heavily knowledge–based process [Force, 2001].

To reduce this complexity, the use of ontologies might prove useful. Ontolo-
gies allow for the definition of a common vocabulary and framework among
users (either human or machines). Software development has benefited from
this conceptual modeling, allowing a common understanding of the concepts
involved in the software process. Ontologies also ease the integration issues
that usually appear while developing software applications.

8 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

Chapter 2

Software Engineering Definitions

Software Engineering or Software Process is the set of activities, methods, prac-
tices, and transformations carried out to develop and maintain software and
associated products, usually executed by a group of people who are organ-
ized according to a structure, with the support of technical tools [Acuña et al.,]

Software Process Modeling has been defined as the linguistic, diagrammatic or
numerical representation of patterns of activities (processes) [Menzel and Grüninger, 2001].
The outcome of a software process modeling is a Software Process Model, also
called Process Model. The processes are represented as models that repres-
ent, in an abstract way and at different levels of detail, the different pro-
cesses that are involved in a finished, ongoing or proposed software process
[Acuña and Ferre, 2001]. A robust foundation for process modeling should
characterize both the general process structure described by a model as well
as the class of possible instances of that structure.

The software process models could be either descriptive or prescriptive models[Acuña et al.,].
A Descriptive Model pays attention to how the software was developed within
the organization. A Prescriptive Model, on the other hand, focuses on the
guidelines required to execute the software process, i.e, how the software
must be developed. Within the later, manual and automated models could
be considered. Manual prescriptive models are standards and methodologies
to guide the software life cycle. Automated prescriptive models are compu-
terized specifications of software process standards, which help agents in-
volved in the software process to interpret the software process models in an
automatic way.

Process models are used with several purposes: to improve process under-
standing and communications, process control, specify process development
viewpoints or perspectives [Acuña and Juristo, 2005]. Furthermore, they can
be analyzed, validated, simulated and executed. Therefore, process models
provide a better way to define the development, maintenance and evolution
of software processes, both regarding individual activities or the process as a
whole [Acuña and Sánchez-Segura, 2006].

Model–driven software development (MDD) is based on models, modeling and
model transformations. Models are used to reason about the problem do-

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 9 of 43

main and the solution domain. Modeling approaches have evolved from co-
existence of model and code to a model–only one, where models are used
in software processes as discussion tools. In between, the model–centric ap-
proach regards the models as code, if defined with enough detail. Transform-
ation rules and patterns provide the tools to generate code from such models
[Brown et al., 2005].

Domain–driven development is the development of software applications within
a specific domain or application area [Hruby, 2005]. Also called Domain en-
gineering, its goal is to identify, model and implement software models to be
used in a particular application domain [Falbo et al., 2002].

Ontology–driven software development or engineering has been defined as an ap-
proach that, based on ontologies, takes into account semantic constraints,
adapting in a dynamic way to new constraints [Tanasescu, 2005]. It could
be considered a particular case of model–driven software, where models are
based on ontologies at different levels of abstraction.

10 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

Chapter 3

Roles of Ontologies for Software
Development

Ontologies, for software design and development, can be used with the fol-
lowing objectives [Ruiz and Hilera, 2006]:

• Specification: ontologies are used to specify either the requirements and
components definitions (informal use) or the system´s functionality.

• Confidence: ontologies are used to check the system´s design.

• Reusability: ontologies could be organized in modules to define do-
mains, subdomains and their related tasks, which could be later reused
and/or adapted to other problems.

• Search: ontologies are used as information repositories.

• Reliability: ontologies could be used in (semi)–automatic consistency
checking.

• Maintenance: ontologies improve documentation use and storage for
system’s maintenance.

• Knowledge acquisition: ontologies could be used as a guide for the
knowledge acquisition process.

Within Software Engineering, two main roles for ontologies have been con-
sidered [Hesse, 2005]:

• Ontologies for the Software Engineering Process: the definition, re–use
and integration of software components is aided by the use of ontolo-
gies as the conceptual basis.

• Ontologies for the Software Engineering Domain: the use of ontologies
to describe the structure and terminology of the software engineering
domain itself.

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 11 of 43

Chapter 4

Categorization of Ontologies for
Software Engineering

To clarify the usage of ontologies within the software engineering and soft-
ware technology, a taxonomy of ontologies is proposed in [Ruiz and Hilera, 2006].
Two different categories are considered and further detailed:

1. Ontologies of Domain: to represent (partial) knowledge of a particular
domain within Software Engineering and Technology.

• Software Engineering (SE)

– Generic
– Specific: requirements, design, construction, testing, mainten-

ance, configuration management, quality, engineering tools
and methods, engineering process, engineering management.

• Software Technology (ST)

– Software: programming techniques, programming languages,
operating systems.

– Data: data structure, data storage representations, data en-
cryption, coding and information theory, files.

– Information Technology and Systems: models and principles,
database management, information storage and retrieval, in-
formation technology and systems applications, information
interfaces and representation.

2. Ontologies as Software Artifacts: ontologies are used as some kind of ar-
tifact during a software process.

• At Development Time

– For Engineering Processes: when ontologies are used during
development and maintenance processes

– For Other Processes: when ontologies are used during com-
plementary customer–supplier, support, management and or-
ganization processes.

12 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

• At Run Time

– As Architectural Artifacts: when ontologies are part of the sys-
tem software architecture.

– As (Information) Resources: when ontologies are used as re-
source at run time by the system.

The categories in this taxonomy could be mapped to the two main roles
defined beforehand (Sec. 3) :

Roles TaxonomyCategories

Ontologies for Software Engineering Domain Ontologies of Domain
Ontologies for Software Engineering Process Ontologies as Software Artifacts

Table 4.1: Mapping of Roles and Taxonomy Categories

An additional categorization of ontologies for software engineering is provided
in [Happel and Seedorf, 2006]. Two dimensions for comparison are considered:
the role of ontologies (at run time vs. at development time) and the kind
of knowledge (domain vs. infrastructure). Combining this two dimensions,
four different areas are defined:

Figure 4.1: Categorization of usage of ontologies in Software Engineering

• Ontology–driven development (ODD): ontologies are used at develop-
ment time to describe the domain.

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 13 of 43

• Ontology–enabled development (OED): ontologies are used at devel-
opment time to support developers with their activities.

• Ontology–based architectures (OBA): ontologies are used at run time as
part of the system architecture.

• Ontology–enabled architectures (OEA): ontologies are used at run time
to provide support to the users.

This categorization provides a similar viewpoint about the use of ontologies
corresponding to the category “Ontologies as software artifacts” previously
described. Both consider the same temporal dimension (at run time v.s at
development time), as described in [Guarino, 1998]. Paying attention to the
definitions (not the names) used in the categorization, the other dimension
about kind of knowledge (infrastructure vs. software) is underlying in the
subcategories considered by the taxonomy

14 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

Chapter 5

Benefits on the Use of Ontologies

Ontologies provide benefits regarding the process of software development,
which could be summarized as follows , [Falbo et al., 1998], [Falbo et al., 2002],
[Liao et al., 2005], [Ruy et al., 2004], [Abran et al., 2006], [Ruiz and Hilera, 2006]:

• Ontologies provide a representation vocabulary specialized for the soft-
ware process, eliminating conceptual and terminological mismatches.

• The use of ontologies and alignment techniques allow to solve compatib-
ility problems without having to change existing models.

• Ontologies might help to develop benchmarks of software process by col-
lecting data on the Internet and the use of the Semantic Web.

• Ontologies allow both to transfer knowledge and to simplify the develop-
ment cycle from project to project.

• Ontologies promote common understanding among software developers,
as well as being used as domain models.

• Ontologies allow for an easier knowledge acquisition process, by sharing a
same conceptualization for different software applications.

• Ontologies allow to reduce terminological and conceptual mismatches, by
forcing to share understanding and communications among different
users during the ontological analysis.

• Ontologies also provide for a refined communication between tools form-
ing part of an environment.

• Ontologies, when as machine–understandable representations, help in the
development of tools for software engineering activities.

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 15 of 43

Chapter 6

Issues on Ontology–based Software
Process

Although ontologies are considered a useful element within software engin-
eering activities, some issues should still be born in mind when developing
ontology–based software development projects [Hesse, 2005]:

• The ontology–based approach is adequate for those software develop-
ment projects that belong to a set of projects within the same domain.

• The ontology–based approach allow to extend the notion of reusability
to the modeling phase, not only the usual implementation one. There-
fore, ontologies could be considered reusable model components in the
system.

• Model–Driven Developments can benefit from the use of ontologies as
model re–use mechanisms.

• The ontology–based approach affects all the software development pro-
cess phases, from requirement analysis and domain analysis to integra-
tion, deployment and use of the developed software.

• The ontology–based approach allow ontologies to be used to facilitate
software development in the long term, as well as addressing interop-
erability and re–use issues.

Furthermore, ontologies should exhibit some specific properties to facilitate
their use within the software engineering community [González-Pérez and Henderson-Sellers, 2006]:

• Completeness: to assure that all areas of software development are
covered. It could be achieved by paying attention to the different activ-
ities carried out by software development enterprises.

• Unambiguity: to avoid misinterpretations. Ambiguity could be avoided
by using both concise definitions of concepts and semi–formal models.

• Intuitive: to specify concepts familiar to users’ domain.

16 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

• Genericity: to allow the ontology to be used in different contexts. It
could be done by keeping the ontology as small as possible, to achieve
maximum expressiveness while being minimal.

• Extendability: to facilitate the addition of new concepts. It could be
achieved by providing appropriate mechanisms defining how to extend
the ontology.

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 17 of 43

Chapter 7

Current Research on Ontologies for
Software Engineering

This section attempts at providing a literature review of current research on
the use of ontologies within software engineering. The examples provided
have attempted to cover most of the current research under different topics.
The review is as comprehensive as it could be up to date, since the use and
development of ontologies for software engineering are ongoing topics under
continuous research and development.

To achieve some level of organization within the several extant ontologies,
environments and projects, they have been classified according to the map-
ping of roles and the taxonomy described in Table 4.1.

7.1 Ontologies for the Software Engineering Domain: Ontologies of
Domain

Ontologies are used, in general, to represent (partial) knowledge of a partic-
ular domain within Software Engineering.

1. Software Engineering

• Generic

Ontologies based on the SWEBOK guide: The Guide to the Software
Engineering Body of Knowledge (SWEBOK) [Society, 2004] seeks
to identify, describe and organize a portion of the body of know-
ledge of the discipline of software engineering that is generally
accepted (i.e. knowledge and practices described are applicable to
most projects most of the time, with an existing consensus about
their value and utility).
Based on the SWEBOK guide, several attempts to develop a gen-
eric ontology for software engineering have taken place. As a
first approach, several ontology development methodologies were

18 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

analyzed to specify the main activities to develop such ontology
[Mendes and Abran, 2005b]. Three phases were finally defined:
proto–ontology construction, internal validation cycle and finally,
external validation and possible extension Fig. (7.1). The SWEBOK
proto–ontology contains over 6,000 concepts and 1,200 facts or in-
stances of concepts [Mendes and Abran, 2005a].

Figure 7.1: The SWEBOK ontology project phases

Another approach for an ontology based on the SWEBOK guide
falls within the Onto–SWEBOK project [Sicilia et al., 2005], where
essential software engineering concepts are mapped into OpenCyc
(the open source version of Cyc (MISSING REF!))definitions. Such
concepts encompasses the idea that a software engineering deals
with artifacts created by agents as a result of activities guided by
rules. As a result, some propositions for the general mapping have
been proposed Fig. (7.2).

Figure 7.2: The SWEBOK ontology mapping

A summary of both approaches could be found in [Abran et al., 2006].

Ontology–Based Domain–Driven Design [Hruby, 2005]: the research
focuses on the development of software applications for a specific
domain, based on the use of ontologies. A method consisting of

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 19 of 43

four steps is proposed:

(a) Determination of the domain: the first step is to determine the
scope of the application.

(b) Election of an ontology for the domain: this step requires either
to choose an existing ontology or to develop one suitable for
it. A metamodel can aid to develop a domain ontology.

(c) Consideration of users requirements: this step considers the
requirements for functionality that are not part of the onto-
logy, as they are not needed in all applications belonging to
the chosen domain.

(d) Construction of the application model: this step implies con-
figuring objects from ontological categories (metaclasses) with
aspects (concepts) originated from specific user requirements.

Hruby distinguishes clearly between domain ontology (which spe-
cifies the structure of concepts to be applied to all systems in the
domain, with the compromise of minimal possible conceptualiza-
tion) and application functionality (which specifies the function-
alities and user requirements which might differ from application
to application, and cannot be fully considered at the time of on-
tology creation), The former is addressed by using two dimen-
sions. The first one, Object dimension, implemented as Ontolo-
gical Categories, whose instantiation are the Application Objects.
The second one, Aspect dimension, to reflect behavior by consid-
ering Aspect Categories, whose instantiation produce Application
Aspects.

Figure 7.3: Application Configuration

• Specific

Software Requirements

Generic Requirement Analysis Method based on Ontologies (GRAMO)
[Girardi et al., 2004]: it is an ontology–based technique for the spe-

20 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

cification of domain models in the analysis phase of Multi–Agent
Domain Engineering . Different modeling tasks are considered:

– Goal modeling: both the general goal of the system as well as
specific goals are considered. Additionally, the responsibilities
needed to reach a specific goal are described. The outcome is
a goal model as a three level chart (general goal as first level;
specific goals as second level; responsibilities as third level).

– Role modeling: the responsibilities identified in the former task
are assigned to an internal or external role. Later, the activit-
ies needed for each responsibility are defined, as well as the
inputs, resources and outputs of each activity. The outcome
is a three level organizational chart (responsibility in the first
level; activity in the second one and, resources in the third
level).

– Variability modeling: Several rules have been defined to allow
the refinement of goals, roles, responsibilities, activities and
resources. The outcome is the definition of fixed features (ex-
isting in all subsystems of a family of systems in the domain)
or variable features (specific characteristics of a particular sys-
tem in the family).

– Interaction modeling: the interaction among internal and ex-
ternal roles are analyzed by considering their activities, in-
puts, and outputs. The outcomes is an interaction model for
each goal, similar to the collaboration diagram in UML.

– Concept modeling: the concepts of the domain and their rela-
tions are considered as part of the modeling task. The outcome
is a concept model as a semantic network (nodes as concepts;
links as relationships).

Figure 7.4: Semantic Network of Modeling

Domain Modeling, within this context, refers either to the formu-
lation of a problem (by using the Goal, Role, Variability and Inter-

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 21 of 43

action modeling tasks) or the representation of a knowledge area
(by carrying out the Concept and Variability modeling tasks). The
knowledge of the GRAMO technique is represented by an onto-
logy ONTODM [Girardi and Faria, 2003], which is an instantiation
of the Domain Model class (and therefore, of the Concept, Goal,
Role, Variability, and Interaction Models).

Software Design

Ontologies in Software Design [Kalfoglou, 2000]: Ontologies are used
as domain knowledge to check the initial phases of software sys-
tems design, with the aim of detecting conceptual errors within
the domain knowledge (Fig. (7.5)).

The reliability of software systems, with respect to consistency check-
ing, is tested in different domains such as business process model-
ing or systems dynamics.

Software Maintenance

Software Maintenance Ontologies: Software maintenance is a knowledge–
intensive process, where knowledge of activities, legacy software,
system architecture, problem requirements coming from different
sources is handled to maintain the software [Anquetil et al., 2006].
Therefore, ontologies provide a solid basis to conceptualize such
knowledge. Ontologies for software maintenance have been de-
veloped by [Dias et al., 2003] and [Ruiz et al., 2004], where the on-
tology consists of sub–ontologies Fig. (7.6). Due to some similarit-
ies among the two of them, an attempt to merge them is described
in [Vizcaı́no et al., 2005].
A detailed version of the aforementioned efforts is summarized
in a Maintenance Ontology [Anquetil et al., 2006]. The knowledge
required to maintain a software system is organized as five differ-
ent sub–ontologies: system, computer science skills, maintenance
process, organizational structure and application domain.

Software Quality

The importance of quality in software is a topic under study within
software engineering. However, what it is understood by software
quality is not fully defined.
Software Quality Ontology [Falbo et al., 2002]: To tackle this variab-
ility, a Software Quality Ontology was developed as part of Ontology–
based Domain Engineering (ODE). Different competency questions,
regarding quality characteristics, relevance, metrics and paradigms
were considered. The concepts and relationships defined as a res-
ult are shown in Fig. (7.7).

Likewise, within software quality, several standards and propos-

22 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

Figure 7.5: Verification of Knowledge Based Systems by deploying Core On-
tologies

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 23 of 43

Figure 7.6: Structure of the software maintenance projects ontology

Figure 7.7: Part of the Software Quality Ontology

24 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

als exist when it comes to software measurement terminology. In
an effort to address this issue, ontologies have been used as means
to come up with a common vocabulary and terminology. Two ex-
amples of such effort are provided. usually utilized in software
engineering.

Software Measurement Ontology (SMO) [Bertoa et al., 2006]: An on-
tology to provide a common vocabulary for software measure-
ment was developed by using different standards. Concepts were
identified, their definitions were provided and the relationships
among them were described. The ontology was organized in four
sub–ontologies: software measurement characterization and ob-
jectives, software measures, measurement approaches and finally,
measurement Fig. (7.8) using REFSENO [Tautz and Wangenheim, 1998]
as representation mechanism and development guide.

Figure 7.8: Software Measurement Ontology

Ontology for Software Metrics and Indicators [Martı́n and Olsina, 2004]:
An ontology was developed to aid in reaching a consensus on
quality, performance and measurement related concepts when it
comes to software metrics and indicators, as seen in Fig. (7.9).

Software Engineering Process

Ontology–based Development Environment (ODE) : ODE is an envir-
onment to develop software based on ontologies for the software

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 25 of 43

Figure 7.9: Ontology for Software Metrics and Indicators

26 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

development domain. The ontological approach to domain engin-
eering considers three main activities: domain analysis in the form
of ontology development with a systematic approach [Falbo et al., 1998],
infrastructure specification made by mapping the ontology into
object models and finally, infrastructure implementation by devel-
oping Java components [Falbo et al., 2002].
The ODE’s architecture consists of different levels, defined and cla-
rified throughout the research [Falbo et al., 2003], [Falbo et al., 2004b],
[Falbo et al., 2005]:

(a) Ontological level: description of the ontologies themselves by
using such as concepts, properties, relationships, axioms and
competence questions. It corresponds to the ODE’s meta–ontology.

(b) Meta level: description of the classes related to the knowledge
of the software engineering domain. Such classes are instances
of the former level elements.

(c) Base level: definition of the classes that implement ODE’s ap-
plications. The classes can be derived from the two former
levels, but for particular applications, new classes, associations
and attributes could be defined as needed.

Figure 7.10: Part of the Software Process Ontology

The environment also considers an Organizational Memory to store,
handle and update the knowledge acquired, both from formal and
informal sources [Falbo et al., 2004a]. ODE has been extended with
both an ontology (ODEd) and axioms (AxE) editors [Souza and Falbo, 2005].
Their experiences, when it comes to strong points and weaknesses
of ODE have been summarized in [Falbo, 2004]. Additionally, the
terms used in ODE have been mapped to well–established soft-
ware process quality standards, methodologies and models [Falbo and Bertollo, 2005].

Ontology for Software Development by Method Engineers and Software

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 27 of 43

Figure 7.11: Software Process Metal–Level Model

Figure 7.12: Software Process Base Level Model

28 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

Developers [González-Pérez and Henderson-Sellers, 2006]: The fo-
cus is to consider concepts and methodologies to be used both by
method engineers and software developers when developing soft-
ware. The ontology considers a three–layer architecture based on
domains (metamodel, method and endeavor) Fig. (7.13).

Figure 7.13: Architecture of Ontology for Software Development Methodolo-
gies and Endeavours

A concept is placed in a layer not based on structural relationships,
but on semantics depending on the concept being a generic one,
used by method engineers and by software developers.

Ontology–based Active Requirements Engineering Framework (Onto–
ActRE framework)[Lee and Gandhi, 2005]:
A framework called Onto–ActRE was developed to elicit, repres-
ent and analyze the myriad of elements and factors involved in the
development of software–intensive systems. Such systems’ capab-
ilities depend strongly on the interweaved relationships with sub–
systems and environment.
The framework includes different models (based on well–establish
requirements engineering techniques): goal–driven scenario com-
position (to model goals and objectives at different level of abstrac-
tion); requirements domain model (to model requirements from
top–level to sub–domains); viewpoint hierarchy (to model view-
points from different stakeholders, system’s and environment’s
concerns); other domain taxonomies (to classify domain concepts,
properties and relationships). As a result, the Problem Domain
Ontology (PDO) is obtained (Fig.7.14).

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 29 of 43

Figure 7.14: Onto-ActRE Problem Domain Ontology

The engineering processes to develop the different models are sup-
ported by the GENeric Object Model (GenOM) tool, which allows
to create and handle knowledge bases associated with such pro-
cesses.

The framework and its support tool has been used to the automa-
tion of the Department of Defense Information Technology Secur-
ity Certification and Accreditations Process.

Software Process Ontology (SPO) [Liao et al., 2005]: the authors ana-
lyze two different software process models such as Capability Ma-
turity Model (CMM) and ISO/IEC 15504 to define key concepts in
software process (which are later mapped from one to another).
The analysis allows for the definition of an ontology–based soft-
ware process model framework which encompasses a Software
Process Ontology (SPO), which defines the process model at a con-
ceptual level. The SPO is used to build two different ontologies to
fulfil for the two analyzed models. The use of the SPO and its ex-
tensions consists in allowing an user to check the description of
the processes and practices recommended by the reference model.
Ontology based Requirements Elicitation (ORE) [Saeki, 2004], [Kaiya and Saeki, 2006]:
the research proposes a requirement elicitation method based on a
domain ontology. The artifacts used to elicit requirements are a
requirement list provided by users in natural language, a domain
ontology and finally, both a mapping and inference rules between
the requirements list and the ontology concepts and relationships.

2. Software Technology This subcategory has not been included, as it was
considered to fall apart from the research focus of this dissertation. It
mainly concerns ontologies for software techniques, languages, data
and information related technology and systems.

30 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

7.2 Ontologies for the Software Engineering Process: Ontologies as
Software Artifacts

Within this category, ontologies are used as some kind of artifact during a
software process.

1. At Development Time

• For Engineering Processes

Development process

Domain Oriented Software Development Environment (DOSDE) [de Oliveira et al., 2004]:
the aim was to develop an environment to help software developers
in domains which are not familiar to them. They considered two
different types of knowledge: related to the application domain
and related to tasks. The first kind of knowledge was implemen-
ted as a domain ontology, divided into sub–ontologies to model the
main concepts of the domain. The second kind as a task ontology
combined with a Problem Solving Method (PSM) into a single model
(PST) that considered three different levels to describe both the
tasks and the way to carry them out (verbal description using nat-
ural language; conceptual description as an intermediate stage de-
scribing both concepts and an algorithm to solve the task; and a
formal description of the former using Prolog language to formal-
ize both the concepts and inferences to solve the task). Addition-
ally, the sub–ontologies of the domain ontology were mapped to
the tasks of the PST. The environment was tested with knowledge
domain regarding software requirements within a software devel-
opment process for cardiology and acoustic propagation domains.
An extension of DOSDE, to support also organizational knowledge
has been implemented as an Enterprise–Oriented Software Devel-
opment Environment (EOSDE) [Oliveira et al., 2006] whose com-
ponents can be seen in Fig. (7.15).

Figure 7.15: EOSDE components

Part of the Organizational Memory, it is the Enterprise Ontology,
fundamental to support common vocabulary that represents use-

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 31 of 43

ful knowledge for software developers within an organization. It
consists of different subontologies (intellectual capital, behavior,
artifacts, structure and general strategy) to address different as-
pects of the enterprise.
Maintenance process

Software Maintenance Environment MANTIS [Ruiz et al., 2002]: In
addition to define software maintenance concepts in the form of
an ontology, the authors realized the necessity of an environment
to handle software maintenance projects. They used the Mainten-
ance Ontologies [Ruiz et al., 2004] as common conceptual frame-
work to be used in MANTIS (Fig. (7.16). The ontology allows
to share knowledge among those taking part in a software main-
tenance project. The ontology has also been used in a knowledge
management system (KM–MANTIS).

Figure 7.16: MANTIS Components

• For Other Processes

Ontology–based Software Engineering for Multi–Site Software Develop-
ment [Wongthongtham et al., 2005b], [Wongthongtham et al., 2005a]:
the development of multi–site software projects involves the de-
velopment teams to reside in different geographically dispersed

32 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

sites. Therefore, this kind of projects are prone to misunderstand-
ings within teams communication. This research has focused on
this kind of problems by using ontologies as both common conceptu-
alization and communication mechanism among teams. The proposed
solution considers two different ontologies: Generic ontology (to
define terms, vocabulary, semantic interconnections, and rules of
inference) and Application–specific ontology (to specify object–
oriented development for a particular project). Benefits of this ap-
proach are the use of an explicit, formalized, machine–readable
and consistent concepts among multi–site developers.

2. At Run Time

• As Architectural Artifacts (ontology–driven software)

Ontology Driven Architecture (ODA) [Force, 2001]:
The W3C’s Software Engineering Task Force has proposed the On-
tology Driven Architecture (ODA), where an ontology describes
the properties, relationships and behaviors of the components re-
quired in a software development process.
A particular case of the above, is the scenario described in [Knublauch,]
for the tourism domain within the Semantic Web. Ontologies are used
for input (e.g. core travel and geography ontologies) and output
(e.g. instances of them by service providers) data structures. On-
tologies are furthermore used to represent background knowledge
needed by an application to fulfil its task. It is worth mentioning
it, that “domain models are not only used for code generation, but
they are used as executable artifacts at run–time”.
Similarly, an ontology–based approach has been used to aid in the
development of software components in an application server [Oberle et al., 2004].
The ontology is used as a conceptual model both for develop-
ment and run–time of software components. The ontology is di-
vided into generic modules, to model both semantic and syntactic
metadata. Additionally, domain modules have been implemented
to formalize knowledge specific to a certain application.
Another example of the use of ODAs within the Semantic Web is
the Telelearning Operating System (TELOS) [Magnan and Paquette,]
devised to tackle learning and knowledge management problems
within the LORNET pancanadian eLearning project [Project,]. On-
tologies are used as conceptual models not only for the system re-
quirements but as part of the system itself. Inference engines are
used to carry out queries and reason with the core ontology.

• As Information Resources (ontology–aware software)

Ontology–based Infrastructure for Intelligent Systems [Eberhart, 2003]:
ontologies are used twofold: for data integration from several sources
and for intelligent systems operations. The use of ontologies is

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 33 of 43

Figure 7.17: Ontology Modules for use cases supporting development

tested as part of a help system for online learning. Ontology Driven
Web Information System Environment (WISE) [Tang et al., 2006]: on-
tologies are used as domain models to develop Web Information
System. Two ontologies are considered: the domain ontology and
the behavior ontology. The first one models static entities such as
system structures and stored data [Tang et al., 2005a]. The second
one describes dynamic processes such as system activities and in-
teractions [Tang et al., 2005b].

34 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

Chapter 8

Conclusions

Software development processes are becoming increasingly complex, with
shorter development times at lower cost. Therefore, the described research
has pinpointed ontologies as a core element for software engineering.

On the one hand, ontologies allow for a common vocabulary both of the
domain and different subdomains (requirements, design, maintenance, etc.).
Ontologies provide a backbone for software projects as conceptualization of
fundamental concepts and their relationships for a (sub)domain. Being too
complex a task, several ontology–based software engineering research pro-
jects have tackled this complexity twofold:

Firstly, by considering different levels within the ontology. Despite the myriad
of names, the underlying idea is to distinguish different levels to address
from general to detail. In general, researchers have considered a general
meta–level to describe the ontologies themselves. This level can be instanti-
ated into a knowledge level which comprises the domain knowledge in a gen-
eral and unspecified way, always with a minimal ontological commitment.
When applied to specific applications, such knowledge is instantiated into,
generally called, objects as an application or base level. How the instantiation
has been made from level to level is worth considering it. Not all entities or
classes from level to level will be instantiated.

Secondly, by dividing the knowledge (sub)domain under consideration in
different subontologies. This allows to split the definition efforts, focusing
on a topic (agents, structure, organization, etc.) at each time. Furthermore,
subontologies also allow a more organized of the domain knowledge.

Another topic of concern, when ontologies are used to describe knowledge
domain, has been the semantic issue. In other words, the problem on how
to confer a meaning to the concepts encompassed in the ontologies. Axioms
and rules are the usual means to provide for such meaning. Inference based
on such axioms is used to expand and keep up to date the ontologies with
new terms.

On the second hand, to support software development processes. Related
to it, the underlying idea is that of ontologies being used at development
time (as artifacts for software processes) or at run time (ontologies either as

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 35 of 43

component of the software system or as information resource). Possibly, the
use of ontologies at run time as system’s components open a wide range of
possibilities for software re–use.

Despite the obvious benefits on the usage of ontologies, some issues still
remain. The research projects described in former sections seem to show
common features, as aforementioned. Nevertheless, except for some efforts
that are based on both existing software engineering standards or the body
of knowledge, the rest are developed ad-hoc according to the requirements
of a specific software project. Methodologies and tools originally for onto-
logy engineering, but not developed to fulfil software engineering require-
ments, have been used (except for [Tautz and Wangenheim, 1998]). Possibly,
to reach a consensus among ontology developers within the software engin-
eering community is too time and effort consuming. As a consequence, we
will witness to a myriad of local developments which do not benefit from
each other. NOTE: this conclusion made when OMG efforts with ODM and MDA
are not fully grasped. It might change in the future

36 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

Bibliography

[Abran et al., 2006] Abran, A., Cuadrado, J., Garcı́a-Barriocanal, E., Mendes,
O., Sánchez-Alonso, S., and Sicilia, M. (2006). Ontologies for Software En-
gineering and Software Technology, chapter Engineering the Ontology for the
SWEBOK: Issues and Techniques, pages 103–121. Springer-Verlag Berlin
Heidelberg.

[Acuña and Juristo, 2005] Acuña, S. and Juristo, N. (2005). Software Process
Modeling, volume 10 of International Series in Software Engineering, chapter
Software Process Modeling: A Preface, pages xiii–xxiv. Springer NY.

[Acuña and Sánchez-Segura, 2006] Acuña, S. and Sánchez-Segura, M. (2006).
New Trends in Software Process Modeling, volume 18 of Series on Software
Engineering and Knowledge Engineering, chapter Preface, pages v–ix. World
Scientific.

[Acuña et al.,] Acuña, S. T., Antonio, A. D., Ferre, X., Lopez, M., and Mate,
L. The software process: Modelling, evaluation and improvement.

[Acuña and Ferre, 2001] Acuña, S. T. and Ferre, X. (2001). Software process
modelling. In Proceedings of ISAS-SCI (1), pages 237–242.

[Anquetil et al., 2006] Anquetil, N., de Oliveira, K., and Dias, M. (2006). On-
tologies for Software Engineering and Software Technology, chapter Software
Maintenance Ontology, pages 153–173. Springer-Verlag Berlin Heidelberg.

[Bertoa et al., 2006] Bertoa, M., Vallecillo, A., and Garcı́a, F. (2006). Ontologies
for Software Engineering and Software Technology, chapter An Ontology for
Software Measurement, pages 175–196. Springer-Verlag Berlin Heidelberg.

[Brown et al., 2005] Brown, A., Conallen, J., and Tropeano, D. (2005). Model-
Driven Software Development, chapter Introduction: Models, Modeling, and
Model-Driven Architecture (MDA), pages 1–16. Springer-Verlag Berlin
Heidelberg.

[de Oliveira et al., 2004] de Oliveira, K., Zlot, F., Rocha, A., Travassos, G.,
Galotta, C., and de Menezes, C. (2004). Domain–oriented software de-
velopment environment. Journal of Systems and Software, (72):145–161.

[Dias et al., 2003] Dias, M., Anquetil, N., and de Oliveira, K. (2003). Organ-
izing the knowledge used in software maintenance. Journal of Universal
Computer Science, 9(7):641–658.

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 37 of 43

[Eberhart, 2003] Eberhart, A. (2003). Ontology-Based Infrastructure for Intelli-
gent Applications. Phd thesis, University of Saarbrücken.

[Falbo, 2004] Falbo, R. (2004). Experiences in using a method for building do-
main ontologies. In Proceedings of Sixteenth International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE’2004), pages 474–477,
Alberta, Canda.

[Falbo et al., 2004a] Falbo, R., Arantes, D., and Natali, A. (2004a). Integrating
knowledge management and groupware in a software development envir-
onment. In Karagiannis, D. and Reimer, U., editors, Proceedings of 5th In-
ternational Conference on Practical Aspects of Knowledge Management (PAKM’
2004), number LNAI 3336, pages 94–105, Vienna, Austria. Springer–Verlag
Berlin Heidelberg.

[Falbo and Bertollo, 2005] Falbo, R. and Bertollo, G. (2005). Establishing a
common vocabulary for software organizations understand software pro-
cesses. In Proceedings of EDOC International Workshop on Vocabularies, On-
tologies and Rules for the Enterprise (VORTE’2005), Enschede, The Nether-
lands.

[Falbo et al., 2002] Falbo, R., Guizzardi, G., and Duarte, K. (2002). An onto-
logical approach to domain engineering. In Proceedings of 14th International
Conference on Software Engineering and Knowledge Engineering (SEKE’02),
pages 351–358, Ischia, Italy.

[Falbo et al., 1998] Falbo, R., Menezes, C., and Rocha, A. (1998). A systematic
approach for building ontologies. In Heidelberg, S.-V. B., editor, Proceed-
ings of 6th Ibero–American Conference on AI, number LNCS1484 in Lecture
Notes in Artificial Intelligence, pages 349–360, Lisbon, Portugal.

[Falbo et al., 2003] Falbo, R., Natali, A., Mian, P., Bertollo, G., and Ruy, F. B.
(2003). ODE: Ontology–based software development environment. In Pro-
ceedings of IX Congreso Argentino de Ciencias de la Computación, pages 1124–
1135, La Plata, Argentina.

[Falbo et al., 2005] Falbo, R., Ruy, F., and Moro, R. (2005). Using ontologies
to add semantics to a software engineering environment. In Proceedings of
17th International Conference on Software Engineering and Knowledge Engin-
eering (SEKE’2005), pages 151–156, Taipei, China.

[Falbo et al., 2004b] Falbo, R., Ruy, F., Pezzin, J., and Moro, R. D. (2004b). On-
tologias e ambientes de desenvolvimento de software semânticos. In Pro-
ceedings of IV Jornadas Iberoamericanas de Ingenierı́a del Software e Ingenierı́a
del Conocimiento (JIISIC’2004), volume I, pages 277–292, Madrid, Spain.

[Force, 2001] Force, S. E. T. (2001). Ontology driven architectures and poten-
tial uses of the semantic web in systems and software engineering.

[Girardi et al., 2004] Girardi, R., de Faria, C. G., and Balby, L. (2004).
Ontology–based domain modeling of multi–agent systems. In Proceedings

38 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

of Third International Workshop on Agent–Oriented Methodologies (OOPSLA
2004), Vancouver, Canada.

[Girardi and Faria, 2003] Girardi, R. and Faria, C. (2003). A generic ontology
for the specification of domain models. In Overhage, S. and Turowski, K.,
editors, Proceedings of 1st International Workshop on Component Engineering
Methodology (WCEM’03), pages 41–50, Erfurt, Germany.

[González-Pérez and Henderson-Sellers, 2006] González-Pérez, C. and
Henderson-Sellers, B. (2006). Ontologies for Software Engineering and
Software Technology, chapter An Ontology for Software Development
Methodologies and Endeavours, pages 123–151. Springer-Verlag Berlin
Heidelberg.

[Guarino, 1998] Guarino, N. (1998). Formal ontology in information systems.
In Proceedings of FOIS’98, pages 3–15, Trento, Italy. IOS Press, Amsterdam.

[Happel and Seedorf, 2006] Happel, H. and Seedorf, S. (2006). Applica-
tions of ontologies in software engineering. In Proceedings of 2nd Interna-
tional Workshop on Semantic Web Enabled Software Engineering (SEWE 2006),
Athens, GA, U.S.A.

[Hesse, 2005] Hesse, W. (2005). Ontologies in the software engineering pro-
cess. In Lenz, R., editor, Proceedings of Tagungsband Workshop on Enterprise
Application Integration (EAI2005), Berlin, Germany. GITO–Verlag.

[Hruby, 2005] Hruby, P. (2005). Ontology–based domain–driven design. In
Proceedings of Object-Oriented Programming, Systems, Languages And Applic-
ations (OOPSLA’05), San Diego, California, U.S.A.

[Kaiya and Saeki, 2006] Kaiya, H. and Saeki, M. (2006). Using Domain Onto-
logy as Domain Knowledge for Requirements Elicitation. In Proceedings of
14th IEEE International Requirements Engineering Conference,(RE’06), pages
189–198, Minneapolis/St. Paul, Minnesota, USA. IEEE CS.

[Kalfoglou, 2000] Kalfoglou, Y. (2000). Deploying Ontologies in Software
Design. Phd thesis, University of Edinburgh.

[Knublauch,] Knublauch, H. Ontology–driven software development in
the context of the semantic web: An example scenario with protègè/owl.
In Proceedings of International Workshop on the Model–Driven Semantic Web
(MDSW2004.

[Lee and Gandhi, 2005] Lee, S. and Gandhi, R. (2005). Ontology-based active
requirements engineering framework. In Proceedings of 12th Asia-Pacific
Software Engineering Conference (ASPEC’05), Taipei, Taiwan. IEEE.

[Liao et al., 2005] Liao, L., Qu, Y., and Leung, H. (2005). A software process
ontology and its application. In Proceedings of Workshop on Sematic Web
Enable Software Engineering (SWESE), Galway, Ireland.

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 39 of 43

[Magnan and Paquette,] Magnan, F. and Paquette, G. Telos: An ontology
driven elearning os. In Proceedings of 4th International Conference on Adaptive
Hypermedia and Adaptive Web–based Systems (AH2006).

[Martı́n and Olsina, 2004] Martı́n, M. and Olsina, L. (2004). Towards an onto-
logy for software metrics and indicators as the foundation for a cataloging
web system. In Proceedings of 4th International Conference Web Enginering
(ICWE 2004), volume 3140 of Lecture Notes in Computer Science, Münich,
Germany. Springer Berlin-Heidelberg.

[Mendes and Abran, 2005a] Mendes, O. and Abran, A. (2005a). Issues in
the development of an ontology for an emerging engineering discipline.
In Proceedings of 1st Workshop on Ontology, Conceptualization and Epistemo-
logy for Software and Systems Engineering (ONTOSE), volume 163, Alcalá de
Henares, Madrid, Spain. CEUR Workshop Proceedings.

[Mendes and Abran, 2005b] Mendes, O. and Abran, A. (2005b). Software
engineering ontology: A development methodology. METRICS NEWS,
(9):68–76.

[Menzel and Grüninger, 2001] Menzel, C. and Grüninger, M. (2001). Formal
Ontology and Information Systems, chapter A Formal Foundation for Process
Modelling, pages 256–259. New York, ACM Press.

[Oberle et al., 2004] Oberle, D., Eberhart, A., Staab, S., and Volz, R. (2004).
Developing and managing software components in an ontology–based ap-
plication server. In Jacobsen, H., editor, Proceedings of Middleware 2004,
ACM/IFIP/USENIX 5th International Middleware Conference, volume 3231 of
LNCS, pages 459–477, Toronto, Ontario, Canada.

[Oliveira et al., 2006] Oliveira, K., Villela, K., Rocha, A., and Travassos, G.
(2006). Ontologies for Software Engineering and Software Technology, chapter
Use of Ontologies in Software Development Environments, pages 275–309.
Springer-Verlag Berlin Heidelberg.

[Project,] Project, L.

[Ruiz et al., 2002] Ruiz, F., Garcı́a, F., Piattini, M., and Polo, M. (2002). Ad-
vances in Software Maintenance Management: Technologies and Solutions,
chapter Environment for Managing Software Maintenance Projects, pages
255–290. Idea Group Inc.

[Ruiz and Hilera, 2006] Ruiz, F. and Hilera, J. (2006). Ontologies for Software
Engineering and Software Technology, chapter Using Ontologies in Software
Engineering and Technology, pages 49–102. Springer-Verlag Berlin Heidel-
berg.

[Ruiz et al., 2004] Ruiz, F., Vizcaı́no, A., Piattini, M., and Garcı́a, F. (2004). An
ontology for the management of software maintenance projects. Interna-
tional Journal of Software Engineering, 14(3):323–349.

40 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

[Ruy et al., 2004] Ruy, F., Bertollo, G., and Falbo, R. (2004). Knowledge-based
support to process integration in ODE. CLEI Electronic Journal, 7(1).

[Saeki, 2004] Saeki, M. (2004). Ontology-based software development tech-
niques. ERCIM News, (58):14–15.

[Sicilia et al., 2005] Sicilia, M., Cuadrado, J., and Rodrı́guez, D. (2005). On-
tologies of software artifacts and activities: Resource annotation and ap-
plication to learning technologies. In Proceedings of 17th Software Engineer-
ing and Knowledge Engineering Conference (SEKE’05), pages 145–150, Taipei,
Taiwan.

[Society, 2004] Society, I. C. (2004). Guide to the software engineering: Body
of knowledge 2004 version.

[Souza and Falbo, 2005] Souza, V. and Falbo, R. (2005). Supporting on-
tology axiomatization and evaluation in oded. In Proceedings of VIII
Workshop Iberoamericano de Ingenierı́a de Requisitos y Ambientes de Software
(IDEAS’2005), pages 59–70, Valaparaı́so, Chile.

[Tanasescu, 2005] Tanasescu, V. (2005). An ontology–driven life–event
portal. Master, Computer Science.

[Tang et al., 2005a] Tang, L., Li, H., Pan, Z., Tan, S., Qiu, B., Tang, S., and
Wang, J. (2005a). Podwis: A personalized tool for ontology developing in
domain specific web information systems. In Proceedings of 7th Asia Pacific
Web Conference (APWeb 2005), Shanghai, China.

[Tang et al., 2005b] Tang, L., Li, H., Pan, Z., Yang, D., Li, M., Tang, S., and
Ying, Y. (2005b). An ontology based approach to construct behaviors in
web information systems. In Proceedings of 6th International Conference on
Web-Age Information Management (WAIM 2005), Hangzhou, China.

[Tang et al., 2006] Tang, L., Li, H., Qiu, B., Li, M., Wang, J., Wang, L., Zhou,
B., Yang, D., and Tang, S. (2006). Wise: a prototype for ontology driven
development of web information systems. In et al., X. Z., editor, Proceed-
ings of 8th Asia Pacific Web Conference (APWeb 2006), number 3841 in LNCS,
pages 1163–1167, Harbin, China. Springer-Verlag Berlin Heidelberg.

[Tautz and Wangenheim, 1998] Tautz, C. and Wangenheim, C. V. (1998).
REFSENO: A representation formalism for software engineering ontolo-
gies. Technical Report IESE-Report 015.98/E version 1.1, Fraunhofer Insti-
tute for Experimental Software Engineering.

[Vizcaı́no et al., 2005] Vizcaı́no, A., Anquetil, N., Oliveira, K., Ruiz, F., and
Piattini, M. (2005). Merging software maintenance ontologies: Our ex-
perience. In Proceedings of 1st Workshop on Ontology, Conceptualization and
Epistemology for Software and Systems Engineering (ONTOSE), volume 163,
Alcalá de Henares, Madrid, Spain. CEUR Workshop Proceedings.

ICEA / Ontology-based Software Engineering / ASLab-ICEA-R-2006-016v 0.1 Draft 41 of 43

[Wongthongtham et al., 2005a] Wongthongtham, P., Chang, E., and Cheah,
C. (2005a). Software engineering sub-ontology for specific software devel-
opment. In Proceedings of 29th IEEE/NASA Software Engineering Workshop
(SEW’05), pages 27–33, Greenbelt, Maryland.

[Wongthongtham et al., 2005b] Wongthongtham, P., Chang, E., and Dillon,
T. (2005b). Towards ontology-based software engineering for multi-site
software development. In Proceedings of 3rd IEEE International Conference
on Industrial Informatics (INDIN), pages 362–365, Perth, Australia.

42 of 43 ASLab-ICEA-R-2006-016 v 0.1 Draft / Ontology-based Software Engineering / ICEA

Document information

Reference: ASLab-ICEA-R-2006-016 v 0.1 Draft
Title: Ontology-based Software Engineering
Subtitle: Engineering Support for Autonomous Systems
URL: http://www.aslab.org/documents/ASLab-ICEA-2006-016.pdf
Date: 2006-11-15

c© 2006 ICEA Consortium

EUROPEAN INTEGRATED PROJECT IST-027819
Integrating Cognition, Emotion and Autonomy

www.ist-icea.org

