© 2007 ASLab

Title

Author

Reference
Release
Date

Address

The ASys Vision

Engineering Any-X autonomous systems

Ricardo Sanz, Manuel Rodriguez

R-2007-001
0.3 Draft
February 11, 2008

Autonomous Systems Laboratory !
UPM - ETS Ingenieros Industriales
José Gutierrez Abascal 2

28006 Madrid

SPAIN

The ASys Vision

ASLab R-2007-001 v 0.3 Draft of February 11, 2008

Abstract

This report describes the vision behind the ASys Project.

This is a long-term research project focused in the development of technology for
the construction of autonomous systems. What makes ASys different from other
projects in this field is the extreme ambitious objective of addressing all the domain
of autonomy. We capture this purpose in the motto “engineering any-x autonomous
systems”.

The report presents the context for the technology sought and the different aspects
under consideration in its development.

It also contains the strategic approach taken — i.e. the vision itself— including
summaries of the knowledge of relevance in the different areas involved.

One of the central topics in the ASys Project is the pervasive model-based ap-
proach. An ASys will be using models to perform its activity. An ASys will be
built using models of it. An ASys can exploit its own very models in driving its
behavior. Model-based engineering and model-based behavior then merge into a
single phenomenon: model-based autonomy.

Keywords

Autonomy, product-line engineering, control architectures, complex control sys-
tems, software-intensive real-time systems.

Acknowledgements

We acknowledge the support get from the Spanish Ministry of Education and Sci-
ence, the European Comission and the Goverment of the Madrid Autonomy that have
provided support for this project through several grants (MEC M3, MEC C3, IST
ICEA).

Table of Contents

1 A Rationale for ASys

1.1 Introduction
1.2 Automated systems desideratum
1.3 Bounding autonomy
14 The meaning of “autonomy”
1.5 Problems and strategies for increased autonomy
1.5.1 Two ways for increasing autonomy
152 Sourcesofneed
1.5.3 Strategies for autonomy

1.6 The ASysvision.

2 The Architectural Approach

2.1 Engineering Desiderata.

2.2 Implications of Architectural Traits

2.3 Core Architectural Aspects.
2.4 Domain Specific Architectures
2.5 Architectural Patterns

2.6 Dimensionsin Any-X

261 Domain
262 Size
263 Tme

264 Intelligence
26.5 Robustness
266 Cost,
26.7 Platform

3 The Seamless Life-Cycle

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft

5 of 53

3.1 TheProcess-ProductGap. 25
3.2 A Seamless Engineering Life-cycle for Systems 26
3.3 Product, system and process characterisations 27
3.4 What's first, the process or the product? 30
3.5 Progressive Domain Focalisation 30
3.6 Research focusedonmodels 31
The Scaled Workplan 33
41 TheWorktoDo 33
42 The Too Many Threadsof ASys 33
43 Ontologies 35
43.1 DomainOntologies 35
43.2 Autonomous Systems Ontology 35
43.3 From ontologies to models (O2M) 36
44 Modelso 36
44.1 Model characterization. 36
442 Model Development Methodology 37
443 Model Integration 37
45 Beyondmodels 38
45.1 Functional and structural views 38
452 Metamodels Lo 39
4.6 Architecture 39
4.6.1 Architecture suitability and requirements 40
4.6.2 Architecture. Putting all together 40
4.7 Documentation oo 41
4.8 Testbed Applications 41
48.1 Testapplications 41
48.2 Finalapplications 41
49 Roadmap 42
The Thing Reconsidered 43
51 Reconsidering ASys. L. 43
5.2 Questions for aresearchline 43
52.1 Architecture requirements 43
522 Epistemology 44

6 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

523 Engineering Knowledge

524 Operation

525 Components.

6 Glossary and Acronyms

6.1 Glossary
6.2 Acronyms

ASLab.org / The ASys Vision / R-2007

-001v 0.3 Draft 7 of 53

Chapter 1

A Rationale for ASys

1.1 Introduction

After many years of research and many projects with lost of deliverables there
is no cosolidated base of tangible results that can sustain with adequate sup-
port future endeavours of the ASLab research group.

But, if analysed from a certain distance, this shouldn’t be impossible because
the central topic is clear and precise: develop science and technology for building
custom autonomy in any technical system.

Obviously the task is daunting and thousands of researchers during decades
have not reached the level of competence and technoogy that we are envi-
sioning. No matter how dreamy this may sound, the path is clear and it
starts with a decided, somewhat sttuborn, step in the right direction.

And this direction comes from a simple observation we did many years ago:
there certainly exists a class of competence that may maximise system auton-
omy; we observe when technical systems overcome the unexpected beyon
wat was technically planned and set into them; it is the competence of res-
ident engineers. The maximal efficacy controller is an engineer —human or
cybernetic.

When we exploit technical systems they can be operating in many types of
situations:

1. The operational situation: when all is working as planned; e.g. the
plant is producing the methyl-isocyanide with all plant units working
as planned! or the spacecraft is approaching Mars with all flight sys-
tems working as planned?. The system is working in design operational

10On December 3, 1984, the Union Carbide’s plant at Bhopal (India) filled the air with the
deadly poison methyl isocyanide (MIC), leading to one of the world’s biggest industrial dis-
asters. According to the posterior investigation, the problem was the triggering of a release
valve due to excess temperature caused by a limited refrigeration caopability caused by a
program of operation cost reduction.

*The Mars Polar Lander entered Mars atmosphere entry on December 3, 1999. No further
signals were received from the lander. According to the investigation that later followed, the

8 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

setpoints.
2. The abnormal situation: when something is not working as planned.

(a) The abnormal expected situation: something is not as it should
be but in any case it was previewed and then it can be understood
and dealt with using predefined strategies; e.g. a refrigeration
pump breaks and a secondary pump is activated to provide the
necessara refrigerant pressure.

(b) The abnormal unexpected situation: something is not as it should
be and it was not previewed and then it cannot be dealt with pre-
defined strategies; e.g. a truck doing some maneouvers gets rid of
a “failure free” stock pipe.

i. The abnormal unexpected manageable situation; the pipe broke
releases gasoline in the soil that is evetually detected by gen-
eral fugue detectors and the punping is shutdown as a protec-
tion meassure.

ii. The abnormal unexpected unmanageable situation; the fugue
pass unnoticed because there’s no sensing around to trigger
any effective countermeasure.

A. The abnormal unexpected unmanageable engineerable
situation: the operator detects the fugue by realising some
abnormal slowing in the filling of the storage tanks and a
tield worker is sent to identify the problem. Upon identi-
fication an emergency task force is sent to the stock piping
to repare it.

B. The abnormal unexpected unmanageable unengineerable
situation: the spilt fuel ignites and eventually produces a
BLEVE? in the storage tanks. No system enough remains
to be re-engineered and, worse enough, no engineer re-
mains to re-enegineer the system.

What is the morale of this story? There are degrees of anticipation and vari-
eties of strategies to be used in the plethora of states that a technical system
may have.

The first step to reach universality in autonomous behavior technology is to
clarify the issues and decide if we want to go for 1., 2.a, or, being driven by
total hubrys, go for 2.b.ii.B if some remainings still keep some intelligence
into them.

This is ASys : let’s go for downsizing engineer’s capabilities to the level of
atomic, resilient subsystems in all kinds of operational conditions in technical
systems.

most likely cause of the failure of the mission was a software error that mistakenly identified
the vibration caused by the deployment of the lander’s legs as being caused by the vehicle
touching down on the Martian surface, resulting in the vehicle’s descent engines being cut off
while it was still 40 meters above the surface, rather than on touchdown as planned.

*One of the horrors of the chemical plant catastrophe movies: Boiling Liquid Expansion
and Vapor Explosion. A 30 meters diameter bomb.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 9 of 53

Ly b TW ‘“ an} *L-ﬁ:-ﬁ‘ ¥

- METEOPOLD&\" MAST: {(MET)

———— MEDIUMGAIN ANTENNA

LIGHT DETECTION AND
RANGING (LIDAR)

ELBOW TEMPERATURE
SENSOR (MET)

5

—-————— ROBOTIC ARM

Figure 1.1: Frontal representation of the Mars Polar Lander probe as it should be in
the surface of Mars if everything had worked as expected.

1.2 Automated systems desideratum

Obviously, there are still many open issues in the varios fields of competence
involved in the different technical processes that subserve complex system
engineering. This is a field plenty of opportunities for a control systems re-
search program.

Some of these issues fall into the category of being able to solve concrete prob-
lems regarding particular domain aspects of certain systems, e.g. program-
ming automata effectively or improving substratal plant resilience. Other
issues shall be considered transversal as they potentially affect many of the
systems of tomorrow. They constitute the fundamental desiderata of general
research programs. Two of these issues are specially relevant for us:

e The maximal desideratum of production engineers is both simple and
unrealizable: let the plant work alone.

e The maximal desideratum of automation engineers is both simple and
unrealizable: make the plant work alone.

Working alone — i.e. being autonomous— seems to be at the very central objec-
tives of most engineers. Autonomy is one of such transversal issues that may
potentialy affect most future systems.

10 of 53 R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

The search for autonomy has many reasons and implications but the concrete
research target of this field is not clear at all as demonstrates the fact that
even the very term autonomy has too many interpretations. But the search for
autonomoy is a major thrust in systems innovation. This is generally true for
two main reasons: economical and technical.

Economical motivation is a major force because automated plants are less
costly from an operational point of view (human personnel cost reduction,
improved operating conditions implying less failures, etc. But technical rea-
sons are, in some cases, no less important because automated plants can be
more productive, can operate fast processes beyond human control capabili-
ties, can be made safer, more available, efc.

1.3 Bounding autonomy

In a sense, full autonomy seems to be the central objective of any automatic
control systems research program. But, for different reasons, it is not (re-
member the story in section 1.1). Let’s analise some of the reasons for this
apparent paradox.

First, nobody in charge of real production systems want the plants to be fully
autonomous because of trust*. Not just due to the perceivable higher robust-
ness of human behavior but because in general full autonomy would mean
that the systems were not complying with our own objectives but with theirs
(i.e. of the plant, not of the owner). This is, in fact, a big difference between
research programs that focus on pure biomimicry, e.g. animatronics or arti-
ficial life, and research programs that focus on pure economical value, e.g.
process control or vetronics. This last —economic operation— is our case; so,
in a sense, what we want as engineers is not full autonomy but bounded auton-
omy, i.e. we want to be able to make the system being autonomous up to the
level where this autonomoy may impinge on the system ceasing to comply
to some constraints imposed by us, their masters.

@ Engineers want bounded autonomy.

Second, no automation engineer tries to build a fully autonomous plant be-
cause in the general case of having plant-environmental uncertainty, that is a
daunting, not-yet-clear-how-to-do task. There are indeed too many issues to
take into account and less than perfect knowledge on how to achieve them.
This iplies that some levels of autonomy may be not easy to reach not only
technically but economically (i.e. the effort needed to achieve them is not
justified by its value).

@ Engineers want made-to-fit autonomy.

*And old joke in control systems engineering: Some people runs afar a machine one of
them screaming “It’s out of control! It’s automatic!”.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 11 of 53

So what we really want as automation engineers is just bounded and made-to-
fit autonomy, i.e. we strieve to having the (control) knowledge, the (software)
technology and the (engineering) process necessary for making the system
autonomous up to the level where i) this autonomoy may make the system
violate some constraints imposed by design; and ii) this level of autonomy
does not cost too much to achieve.

Real considerations notwithstanding, generally speaking, and from a systems
researcher point of view, there is still no clear way on how to achieve full au-
tonomy or how to progres in this made-to-fit autonomy way. Humans seem
to be the most autonomous entities we know about (thanks to their reason-
ing, learning and creativity capabilities) and that is the reason for bioinspired
approaches. No matter how poetic or sensible this may sound, we have no
definitive clues on how to leverage our limited knowledge of these humanly
capabilities.

1.4 The meaning of “autonomy”

Obvioulsy there is another, for sure marginal, aspect that increases difficul-
ties. Research implies comunnication with peers and problems may arise
related to the hermeneutics of the very term “autonomy”.

Etimologically it means “giving itself its own laws". That meaning, translated
to the language of technical systems, can be read as “the system decides about
the control strategies to follow”. From this perspective, the main difference be-
tween natural autonomy and artificial autonomy seems to be related with
the the origin of the laws to attain-to and perhaps the objectives to pursue by
following them®.

The main argument against the possibility of autonomous artificiality coming
from the biological systems world is related to this aspect of self-goaling (e.g.
the highly mentioned causal closure of autopoietic systems). Natural systems
seem to pursue their own objectives while technical systems pursue exter-
nally specified objectives. This analysis is indeed debatable, because artificial
systems’ can establish by themselves intermediate goals and even biological
systems cannot escape the external fixation of goals — e.g. by evolutionary
pressure (33)— then banning any real possibility of freedom in top-level goal
setting.

However, this analysis will not be continued here because it deserves more
detail and, perhaps, a different setting.

5Greek awros-self and vopos-law.

®Strictly speaking autonomous means just self-laws not self-objectives as some may inter-
pret. But in the context of autonomous systems research there is not much clarity concerning
the otherwise necessary separation of goals and laws.

’Care must be taken around the use of the word “artificial”. We use it here in Simon’s sense
(40) of “built for a purpose” and not in the sense of “built by humans”. In this last case, top level
goals to be pursued by the system may not be explicitly set by the constructor as is the case of
art or artificial life.

12 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

Another question of relevance is that given a certain interpretation of auton-
omy, we need a metric of it if we want to assess the perfromance of the differ-
ent engineering methods for autonmous systems construction. Bertschinger
(6) proposes a measure of autonomy based on information theory. Baran-
diaran (4, p. 18) gives a formal definition of autonomy based on agent and
environment interaction models. A formal but more encompassing model of
autonmoy will be necessary to support this task of evaluation.

1.5 Problems and strategies for increased autonomy

1.5.1 Two ways for increasing autonomy

The strategies for building autonomous systems fall into two main categories:

e build systems that are intrinsically autonomous and

e improve autonomy by means of a control system.

In purely theoretical sense, the first strategy seems to be the best —intrinsically
sounds good for a property—, however, this implies that the system enginer-
ing process may get very complicated as it must take into account cybernetic
aspects into the very design of the core physical process. This implies for ex-
ample, that the physical design of a chemical reactor takes into account ques-
tions regarding weather or strategic decissions concering product quality. In
some cases that will be possible, in many others the strategy to follow will
be to try to encapsulate behavior to achieve modularity that renders proper
operation no matter the environmental changes. So, in general, the second
strategy is what is usually followed: improve autonomy adding control ca-
pability. However we should remember that these are just approaches for the
engineering of autotonomy and not intrisically different types of autonomy.

1.5.2 Sources of need

We may consider what are the reasons why the systems do not operate prop-
erly. There are three main classes considering the standard core process of
control systems engineering —specification, construction, operation:

External perturbations: when the system suffers an alternation in the oper-
ational conditions that suround it and induce a departure form the de-
sired operational state.

Internal departure from specification: when the system changes and starts
behaving in a different way that does not fulfill the original specifica-
tions and design.

Unmodelled dynamics: when the system operates as specified /built and in
the proper operational conditions but it reaches an undesirable opera-
tional state that we failed to predict.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 13 of 53

All the three cases can be considered part of two general cases of imperfect
model of the system+environment in operational conditions and lack of ca-
pacity to have a perfect implementation of the system model.

1.5.3 Strategies for autonomy

Improving implementations —the mapping from specifications to realisations—
is an obvious way to improve system autonomy. The model-driven approach,

a genralisation of formal development methods, is the current engineering
trend trying to tackle this problem. Later, section 3.6 will address this topic
in more detail.

Improving models is the task of science and improving the model selection
process is the task of design. Being the two sides of the engineering coin
analysis and synthesis cannot be fully separated. Perfectioning our theories
about the workings of reality will certainly improve the quality of our sys-
tem+environment models. However, from the synthesis point of view, it will
be necessary to reach an economical trade-off between model complexity and
cost, tecnological limitation notwithstanding. But this limitations and trade-
offs can also be modelled and embedded into the system inner knolwedge,
hence making it more aware of its own limitations, something fundamentally
missing in the control systems of the past®.

In spite of modeling limitations —or perhaps because of them— one of the
central topics in ASys is the pervasive model-based approach. This is based
on the matching of two facts: i) the methods for engineering tend to become
model-based (see section 3.6), and ii) autonomous control shall be based on
model exploitation. Bacon’s insight that knowledge is power can be mapped to
the model is control motto for ASys .

Obviously, the models used by the agent in driving its behavior must to be in
constant revision and tuning to be of any practical use in a changing, uncer-
tain world. (42) for example claim for “making models self-evolving, such that
they continuously evaluate their accuracy and adjust their predictions accordingly”.
For some, this learning capability lie at the very core of intelligence.

An ASys will be using models —of its environment, of itself— to perform
its activity. An ASys will be built using models —of it, of its environment.
Model-based engineering and model-based behavior then merge in a single
realisational phenomenon: model-based autonomy.

1.6 The ASys vision

In this context, stating the ASys Vision is simple:

8In the field of expert systems, a technology widely used in the implementation of intel-
ligen controllers, the phenomenon of the system going beyond its cognitive capabilities is
known as the cliff effect due to the enormous lost of perfromace when operating beyond the
limist of knowledge.

14 of 53 R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

It is possible to engineer any-level autonomy systems using cog-
nitive control loops.

A cognitive control lop is a control loop based on knowledge, i.e. an inter-
nalised information structure that is isomorphic from a certain, useful per-
spective with some portion of reality. This knowledge —a model— will ad-
dress the environment of the ASys , the ASys itself and the task that the
ASys must fulfil in that context.

This vision does not intrinsically bound autonomy as it was argued for be-
fore, possibly going even beyond the engineering criteria limit for autonomy.
We need an aproach to this that is both economically effective and boundable.
We intend an engineering process, a toolset and an asset base that subserve this
vision.

What follows in this document describes the ASys vision in some more de-
tail; in paticular it focus on three core aspects:

e The Architecture-centric design approach (chapter 2): focusing on the
architecture of the systems as the core aspect for guaranteeing a certain
level of perfromance.

e The Seamless Process for Any-X (chapter 3): being able to reach any
level of autonomy by means of a clear methodology.

e The Scaled workplan for asset construction (chapter 4): building mod-

ular elements to fill the roles specified in the architectures.

The report ends with some bits and pieces to be properly addressed in future
releases and some bibliographic references.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 15 of 53

Chapter 2

The Architectural Approach

The architectural approach seems the best alternative for tackling the inherent
complexity of any technology fulfilling the ASys Vision.

Focusing on systems architecture is focusing on the structural properties of
systems that constitute the more pervasive and stable properties of them (39).
Architectural aspects are what critically determine the final ppossibilities of
any information processing technology. Obviously this is true if any aspect of
relevance is considered architectural, but the consideration that we do here
is different: architecture —as the core set of organisational aspects— is what
critically determine the capabilities. The form drives the function.

@ Architecture is key to function.

Many of the system capabilities sought in systems engineering are classified
as functional and non functional capabilities (the first ones being critical for
the provision of the service, the others considered ancillary aspects): this
distinction becomes blurred in a detailed analisys; e.g. the functional/non-
functional distinction dissapears when consider that some purely non-funcional
aspect like portability can effectively hamper the provision of a certain service
in a context of continuous platform change; the dream of the system built,
frozen and exploited for years is nothing but a dream in real-world cyber-
netic technologies.

In the following section we will analise system traits highly affected by the
architecture. This will be seen as a set of requirements to be met by the ASys
architectures.

Later we will analise the architectural approach followed so far in previous
projects to try to offer a path into these traits.

2.1 Engineering Desiderata

There are many system desiderata for fielded systems: Functional, the system
perform the function it is intented for; Flexible, the system can be tweaked to

16 of 53 R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

meet departing requirements; ready, precise, integrated, autonomous, evolvable,
dependable, cost effective, open, etc.

These desiderata can be mapped into many system traits that critically de-
pend on systems architecture:

Availability: The degree to which a system is operable and in a committable
state at the start of a mission, when the mission is called for at an un-
known, i.e. , a random, time. Simply put, availability is a measure of
the time a system is in a functioning condition.

Accessibility: The degree to which a system can be accessed to its parts and
workings for the different purposes of long term operation.

Constructable: The degree to which it requires exceptional effort to build the
system.

Evolvability: The degree to which the system can be adapted to changing
environmental and operational conditions.

Integrability: The dregree to which a system can be part os a bigger system
(a systems of systems, SoS).

Integrity: The degree to which a system maintains its functional structure no
matter what are the perturbations its suffering.

Maintainability: The degree to which a system can be kept into operation
—Dby solving new appearing or old manifesting problems.

Performance: The amount of valuable result the system is producing.
Reconfigurable: The amount of form change tolerance to keep function.
Regulatory: The degree of compliance to commmon policies and regulations.
Reliable: As measured by its mean time between failures (MTBF).

Resilience: The capability of keeping function in the presence of perturba-
tion.

Reusability: The possibility of resuing the system or parts of it in the con-
truction of a new system-

Scalability: The possibility of increasing the size of the task that the sytem is
handling without negative effect on other traits.

Security: The protection against intrussion.
Upgradability: The availabity of a series of levels of performance with seam-

less transitions between them

See for example (31) for a mapping desiderata-traits in the context of military
field applications.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 17 of 53

2.2 Implications of Architectural Traits

The software engineering community, and in particular those related with
the complex systems community, is becoming progressively aware of the im-
portance of software architecture. Architecture based development is seen as
the “good way” to achieve high levels of software quality. Especially those
referred to non-functional requirements for the software systems.

As (10) say, architecture based development offers promising perspectives
that we are trying to achieve for autonomous control systems:

e Systems can be built in a rapid, cost-effective manner by importing (or
generating) large externally developed components.

It is possible to predict qualities analyzing the architecture

Developing product lines sharing architectural design

Separation of interface and implementation at the component level

Advantages of design variability restrictions

Based on domain analysis, generic architectures are proposed to address a
whole bunch of applications in a specific domain. See in Figure 1 to the archi-
tecture based process proposed by the ARPA STARS project. Development is
divided in two separate phases:

Domain engineering: One effort shared by a complete collection of instances
of a product line. Its final product is threefold: a domain model, a
generic architecture and some reusable components.

Application engineering: The process of getting the real applications (the
products in the product line).

A great level of effort has been put in the last years in addressing the archi-
tectural problem for all types of software systems. In the case of autonomous
systems, many generic architectures have been proposed and components
developed. Stunningly, most of them use a layered approach based on three
levels of control.

2.3 Core Architectural Aspects

As commonly defined in many contexts, a system architecture describes the
topology of system elements, specifies the element interfaces, and identifies
functional models associated with those element arrangings.

From the experience gained in the past —in our own research and also in
others’— we have reached some design principles of major importance in
ASys :

18 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

Multi-level abstraction: Organise the system in layer according to the ab-
straction level of the informational entities used.

Functional modularity: Modularise the system in terms of functions —and
not platforms, or technologies, or domains, etc.

Standardisation: Follow/establish standards and standardised practices.
Composability: Build complexity by decomposition/composition.

Late design: Postpone any design decission that is not necessary to do at any
point in th life-cycle.

A core objective of ASys should be to address these and other design princi-
ples witht breadth and precision.

2.4 Domain Specific Architectures

Domain Specific Software Architectures (DSSA) was a trendy approach in the
nineties! that still has a lot of hold in the different technological domains of
interest to ASys .

DSSA-based technology is grounded on the concept of an accepted and prac-
ticed generic software architecture for the target domain: e.g. process control,
avionics, manufacturing execution, command and control, efc. To be a do-
main architecture the architecture must apply to a wide range of systems in
the domain; then being general and adaptable.

Over an established architecture is is possible to build the system by popu-
lating the empty architecture with the right components in the right places.
The components must necessarily conform to the architecture design specifi-
cations, i.e. they must implement their functionality and offer it —or request
from other components— within the proper interaction framework. See for
example the architectural guidelinges of our former COMPARE project (13).

Reusable components to fulfil architecture-ladden roles may be acquired by
identifying, gathering, tyiding and adapting existing components or by specif-
ically creating them. See for example the Object Management Group OMA
Approach (26). One of the ways they may be created is through automated
component generation; e.g. DARPA has sponsored work in this area at USC
Information Sciences Institute —the AP5 application generator project (7).

The existence of a domain-specific architecture and conformant component
base was promising to enable a significantly different approach to software-
intensive system development. This promise is still not fulfilled as demon-
strate for example the GENESYS project recetly started (see ASLab website
for more info).

thttp:/ /www.umcs.maine.edu/ larry/latour/WISR/ contains proceedings of workshops
of that time.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 19 of 53

In theory a developer using a DSSA and a component base will not wait until
detailed design or implementation to search for reuse opportunities; instead,
he will be driven by the architecture throughout. Design will use the architec-
ture as a starting point. Contruction will use the architecture as scaffolding.
Maintenance will use the architecture as the way into the understanding of
the legacy. The domain architecture and the asset base reify the bunch of re-
quirements and allow design and construction of rapid prototypes or final
applications.

The ASys project has as domain the domain of autonomous systems; ill de-
fined and too broad. However, there are technologies trying to address the
general issues and are open to embrace new requirements from particular do-
mains. IN the past, starting from the DIXT Project® we focused ourselves on
the technology around OMG’s Common Object Request Broker Architecture.
A DSSA for the domain of distributed, object-based systems extended with
some basic capabilities for real-time embedded systems.

As a result of this and following work one of our core assets —the ICA
Broker— was produced.

2.5 Architectural Patterns

Patterns are the way for capturing the concrete organisations that offer the
system-level functionality.

2.6 Dimensions in Any-X

We intend an architecture, an engineering process, a toolset and an asset base
that let us build systems that show the Any-X property.

Any-X means that whatever the positioning in the design space the architec-
ture/process/toolset/assets are stil valid. Pure hubrys.

Engineers like to use a sigle technology for everything (hammer-
nailing).

A description of some of the possible dimensions for engineering design fol-
low.

2.6.1 Domain

Universal techlogies are domain-neutral. In ASys we intend at least the fol-
lowing domains:

*http./ /www.aslab.org/public/projects / DIXIT

20 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

—_— 4
Strategic control

N
~

_—a
Process control

N
~

—_—LA
Local control

N
~

— 4

Sensors & Actuators
e~

Figure 2.1: A hierarchical distributed control system (DCS) of an industrial
plant is structured in many different control layers. Control objectives gain
in abstraction level when going upwards. Temporal criticality and precision
grow when going downwards toward the plant.

Process control : The plant is a continuous process plant: a refinery, a power
plant, etc.

Robotics : The plant is a mobile robot.
Vetronics : The plant is a transportation vehicle.

Networked apps : The plant is a networked computing infrastructure.

For some of them we will synthetise tangible systems. For ohters we may
keep ourselves in the world of analysis.

2.6.2 Size

From the process plant control (see Figure 2.1) to the embedded devices of
modern cars (see Figure 2.2).

A hierarchical distributed control system (DCS) of an industrial plant is of
enormous technical complexity. The number of elements involved —its size—
is so high the thay must be structured in clusters organised in many different
control layers. (32) describes size as the primary form of complexity.

In these hierarchies, ontrol objectives gain in abstraction level when going up-
wards and temporal criticality and precision grow when going downwards
toward the plant. This was described by (36) as the principle of increasing
precission with decreasing intelligence.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 21 of 53

The size problem that is so obvious in the large plant controller is also becom-
ing a major issue in the field of deepley embedded devices. As a paradig-
matical example, modern vetronics (see Figure 2.2). Vehicle electronics has
been playing a vital role since its introduction in the late 70’s for the engine
control but during the last decade most of the automobile innovations have
been made possible by means of a massive use of electronics and embedded
systems —nowadays it is largely agreed that around 90% of the vehicle inno-
vation is enabled by this.

1,000,000
W e Moore’s Law
Complete Powertrain System .
== == Main uC in 126 Gips
100,000 - Powertrain
‘0 15 Gips
= 10,000 -
&
© highest
o)) = end
g 1000 _ - =~ " 2Gips
= 300 Mi _—— 1 Gios
ot — ‘SO—M' P low end
S 100 - s
©
<
S
E% 10 -
o
~2x every 2.. ~2x every 3.4
4. Yyears \ \ years |
First
1995 2000 2005 2010 2015 2020g;jicon
; ; ; + ; OEM
2000 2005 2010 2015 2020 jodel

year

Figure 2.2: Estiated evolution of computing performance requirements for em-
bedded powertrain control. This is just a piece in integrated vetronics.

The typical low-mid end modern vehicles are equipped with 25-30 electronic
control units (ECUs) while the high-end cars could reach up to 70-100 control
units, each one hosting circa 180-600 components, according to the different
level of complexity (not only IP cores but discrete electronics).

The most demanding applications, mainly dealing with powertarin control,
body control and safety issues, are currently using software-intensive mi-
crocontroller and a more complicated architectures are in the process of be-
ing introduced®. More information on these topics can be found in the IST
GENESYS project we are partners of (www.genesys-platform.eu).

2.6.3 Time

The time scales for autonomous operation will range from the lifelong cycles
of long-term strategies to the minimal reaction times of safety measures in

*Examples of extant systems are diesel Common Rail injection systems, innovative diesel
technologies for the NOxreduction, valve electronic control systems, injection and after treat-
ment systems for CNG engines, dual dry clutch transmissions, hybrid and alternative propul-
sion systems, etc. not to talk about onboard infotaiment.

22 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

the pressence of fast dynamics (see Figure 2.3).

Metacognitive Management

Management Information System

Informational ~ TF% Percepton . Action
! Optimization .
i P Strategical Layer i
: hours-days I
] | | '
. Plan Execution .
: Tactical Layer .
mins-hours I
| |
. Reactiveness i

Operational Layer

secs-mins I
| | | |

Advanced Control

1 sec

Operator Interface

Complex Loops

. Conventional 100 msec
Control ! !
: Single Loops
10 msec
| | | |
Sensors & Actuators
Physical Perception Action

Figure 2.3: The temporal landscape in a whole-plant integrated hierarchical indus-
trial control system ranges from the homeostatic and fast responses to local goal set-
tings and conditiosn in the temporal range of milliseconds to the days-weeks-months
strategic control horizon of the upper layers.

2.6.4 Intelligence

The general principle mentioned before of increasing precission with decreasing
intelligence (36) mentioned before can be read also in the intelligence dimen-
sion.

Here we enter cloudy waters as the issue of what is intelligence is still unre-
solved. However, in the naivest sense of it we understand that the informa-
tion and knowledge processing capabilitites needed for performing different
tasks will range enormously.

From the elementary regulatory loops dealing with a single, 12 bit-discretised,
analogical magnitude measure to the multiobjective —production, quality,
safety, maintainnability, efc. — strategic control of process plants (see Figure
2.3).

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 23 of 53

In a sense, the very nature of the knowledge and knowledge processing ca-
pabilitites needed to perform these function sits at the core of ASys; for if we
are able to cleary set the requirements and technology for this, most of the
general objectives would in some sense derive from it. This vision is what
led the knowledge-based control of the not so recent past (35).

2.6.5 Robustness

Something that makes a big difference between a laboratory experiment and
a real-wold deployed system is it robustness. Strongly related with issues
of reliability of systems, the massive incorporation of high doses of software
into the technical systems has rendered systems somewhat more fragile.

In other order of things, the assumptions and necessary abstractions done
when appliying an infromation system to the real world —e.g. when assum-
ing that we can represent an acceleration with 8 bit for firing an airbag—
are sometimes worse than misguided. Extreme examples can be found in
all extremes of the abstraction specturm; from space missions that fail due
to a units mismatch to the well known cliff effect of expert systems —a phe-
nomenon of highly non-linear unfitness of domain knowledge.

At the end of the day, achieving robustness is not only a question of just
doing things properly, but a continuous engineering trade-off between what
we know how to do, what we can do on time and technological capabilities
and what we want to do in terms of economics and policy.

2.6.6 Cost

This takes us to the question of costs. Robust systems are expensive as quality
is. The trade-offs mentioned before may imply that we can trade autonomy
or robustness —or whatever— for money; but this must be done in a sensible
way.

2.6.7 Platform

Last —many other dimensions will ever remain— is the question of platform.
The technology for autonomoy must be deployable on any platform that ful-
fils the requirements. This is the dream of MDA and we wan this here mainly
due to the platform impossitions from different domains.

24 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

Chapter 3

The Seamless Life-Cycle

3.1 The Process-Product Gap

In all the text before, we have been talking from two viewpoints: engineering
—mainly design— and runtime. We want to highlight a simple fact: Due
to the gap between engineenring and operationa phases, technical systems
operate at runtime with their traits and capabilities set and frozen at design
time.

A major characteristic of the engineering life-cycle is that we cannot but recog-
nise the impossibility in separating the system as it is from the engineering
process used to make it.

Why all this makes a problem? Because as was said before, systems will have
frozen traits that do not respond well to change and uncertainty.

@ Break the design/runtime dichotomy.

The problem is not just a problem of frozen capabilities but indeed of lost ca-
pabilities. Capabilities that available during the implementation process are
no longer available in the final product, in particular, regarding reconfigura-
tion.

Consider the classical phasing of a well-engineered-project:

inception — analysis — design — construction —

— deployment — maintenance — decomission

The product, tangible or not, is usually not fully coupled with the (produc-
tion) process. The whole process, from the user needs to the delivered prod-
uct should be treated as a unique, tightly coupled (or at least related), process
to maximise efficacy and fitness.

What we need is an intrinsic, runtime capability, for continuously updating
the system by the system. We need the system to be a product of its very own

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 25 of 53

process.

® Break the process/product gap.

This is obviously the case of autopoiesis (22) but with a teleological limitation:
system’s autopoietic processes must converge into required function.

When talking about system we usually mean the physical system (set of
equipment) that we are interested in. But, in a sense, what we are really
interested in is not the system bu the product that the system produces. For
example the electrical network would be the system (and the electricity the
product), the chemical plant (just the unit operations equipment) would be
the system and the produce chemical, the product, the car (without any con-
trol system) would be the system and its features (the car as well) would be
the product, etc.

3.2 A Seamless Engineering Life-cycle for Systems

There are two main scenarios for system engineering: i) the system does not
exist and has to be designed from scratch and ii) the system already exists
(but does not comply with the user requirements).

The first engineering scenario is stated as systems engineering: given the user
product-level needs (electricity available....) design the overall system (phys-
ical system plus control) that produces the product.

The second engineering scenario is stated as control engineering: given an al-
ready designed/extant system (the electric network) and some user product
needs (electricity available at any time without interrumptions,....) design the
control system that make the system fulfill the needs.

The engineering scenario we are interested in ASys is stated as autonomy engi-
neering and can be stated in crosscutting terms: given the user product-level
needs (electricity availability ...) design the overall system (physical system
plus control) that keeps producing the product embracing unexpected change.

What this necessarily imply is that what is kept as target setpoint for the au-
tonomy loop is not the system as structure but the system as set of processes that
produce the product. So the objective of autonomy is not self-sustainment of
systems but self-sustainment if functions.

The vision of a seamless engineering process for autonomous systems captures this
capability by embedding into the system the very engineering mechanisms
used in its construction. There are no seams between design and runtime.

@ Artificial autonomous systems are self-engineered systems.

Self-engineered systems are a subclass of autopoietic systems that realise a
teleological process towards a specified function (so, in a sense, function is the

26 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

setpoint injected in an autonomous controller). These systems will embed the
capabilities of design-time engineers for their runtime operation. Obviosuly
the engineering competence requires high-level cognitive performance but
there are lots of efforts done into the automation of systems analysys and
design tasks!

The question of the seamless system life-cycle and the breaking of the gap be-
tween engneering and exploitation requires the construction of technological
assets to implement the automated self-engineering processes. These assets
can be divided in three broad classes:

Models: That capture the information regarding the system (i.e. are systems
representations)

Engines: That exploit the models to produce new information.

Infrastructures: The provide the adequate scaffolding for models and en-
gines. This, in principle, should be the very cognitive architecture.

@ Self-engineered systems leverage models and engines.

Another interesting source of information regarding cognitive tasks in sys-
tems engineering comes from the so-called field of cognitive engineering. Cog-
nitive engineering is an interdisciplinary approach to designing computer-
ized systems intended to support human performance of complex, systems-
oriented tasks (30). Figure 3.1 show a potential life-cycle for engineering
problem solving depicting various phases of the system engineering life-
cycle where cognitive engineering methods may have a substantial impact.

3.3 Product, system and process characterisations

In order to implement this engineering activity several characterizations have
to be made in advance or as a result of the activity: product characterization,
system characterization and process characterization. Characterisation im-
plies the precise bounding of operational quantities of the system concerning
both sturcutural and behavioral aspects (incluing the I/O aspects that deter-
mine the system utility).

Product characterization: This is the set of goals to be pursued concerning
the material, energy or information output flows of the system. This
is always imposed externally by the users or designers in an artificial
system (40).

System characterization: A proper system characterization will guide the
production process design. If the system is hardly observable or fully

Klir and Elias (18) identifies three big classes of systems problems: systems analysis, sys-
tems inference and systems design.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 27 of 53

Concept

Definition

Problem
Investigation

Requirements
Analysis

Performance
Assurance

Function
Analysis

Training
Development

Cognitive Engineering
Life_Cycle Function

Allocation

Personnel
Selection

Task Design

Requirements

Review Interface and

Team
Development

Performance,
Workload and
Training
Estimation

Figure 3.1: A potential life-cycle for systems engineering problem solving depict-
ing various phases of the system engineering life-cycle where cognitive engineering
methods may have a substantial impact.

observable will mean different processes and control The architecture
(cognitive, RCS-like, SOUL or other) will be different (although the ar-
chitecture basic elements will be always the same, what changes is the
node interconnection and the nodes internal elements implementation).
If there is a lot of knowledge of the system and it can be solved (it is not
so large or not so non linear that conventional numerical algorithms
cannot solve it) will mean one type of element in the node, if the knowl-
edge is scarce will mean another implementation in the node (neural
networks, FSM,...) And so on with all the properties of the system.

Process characterization: The properties of the production process (control
system or system plus control) will come partly determined by the sys-
tem characterization and partly by the product characterization. It is
clearly different the security of a nuclear plant that the security of a
chupa-chups factory.

The conclusion is that the reification of the design of a well characterized
system (including product and process) can be the guide for engineering au-
tonomy into the system.

28 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

Case B
Given the product characterization
and the system

Case A
Given the product characterization

Design the system + control Design the control

Case C
Given the function characterization

Design the system
Design self-engineering control

s N

| \
| | | ‘
! : [Product characterization] :
I
! users | i
] 1
@ Q : () l
I W i « «:
| n i Goals »: _
! L » Subgoals) engineer
] : Constraints !
! i Quality of Service / !
: : Performance)
I
I :]
N = 4]
L) N
& | r_
]
: :
1 1
| 1
! :
f ' system .)

i e engineer
[System characterization] (eng) [Process characterization]

L —

' Y

Observability Performance

Controllability T
Reliabilit
Autonomy (how much) Depen dgbility

Knowledgeability »

Solvability g::;txty

Partitionability ili
artit « Constructability

Distributable Reconfigurability

kStablllty) Precision

Figure 3.2: Some of the aspects of product-system-process characterization.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 29 of 53

3.4 What's first, the process or the product?

Notice that the central problem now is how to design a system as a set of
coupled processes in such a way that it produces two things: the system itself
and the product.

Now we are close to the realm of biology. In a sense, the focus of life studies is
the first one —the system— and the focus of engineering is the second —the
product. In fact the world of bioengineering is the other side of the coin from
us. We start from technical systems that have productive capabilities trying
to add self-sustaining capabilities. They start from biological systems trying
to add productive capabilities.

If we observe with detail, the bioengineering movement is coming from life
studies and the dependability movement is coming from engineerig studies
into the common grounds of robust behavior?. What is crucially important
then is the maintenance of the organisation.

And we need more science for this that shall go beyond the wishy-washy
talk of present day post-modern robotics and cognitive science and produces
realible theories to base our engineering upon. We can quote Schrodinger
here:

How would we express in terms of the statistical theory the marvellous
faculty of a living organism, by which it delays the decay into thermo-
dynamical equilibrium (death)?

Schrodinger (37)

Obviously we are in the realm of artificial life, but with a tint. The ASys ap-
proach to autonomy somewhat unifies engineering and theoretical biology,
not just gives clues on life by building life simulations. The product require-
ment shall be always met in engineering.

3.5 Progressive Domain Focalisation

As was said before, the seamless system life-cycle requires the construction of
technological assets to implement the automated self-engineering processes
(models, engines, infrastructures). These assets will constitute the asset base
that constitutes the central resource for atacking the problem os autonomous
systems construction using a product line approach.

Product line engineering is the most sensible approach for the development
of a collection of systems that fit on a particular technological niche (driven
by user requirements). The produc line approach scales into what is called
domain engineering when the technoogical assets are built to cover the wide
spectrum of a domain (as the any-x vision claims).

“Note that biological metaorganisations — e.g. biofilms— are much more resilient than

30 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

Domain Management

Domain Engineering

REusable
) Sofware _
- [rl.m;h Architecture W Componerts

andio
Crisvitiopriint Generatrs

prm e

Application ™ Apglication Appiication I
Performance Sofware Somware Ille-G
Specific ation EIE T Cenelopmert =

Application Engineering

Figure 3.3: The process and products of the domain engineering activity organisation

(from (15)).

Figure 3.3 shows the process and products of the overall domain engineering
activity. The figure shows the products, tasks, relationships and interfaces
of domain engineering to the conventional system engineering process (for a
concrete system). This approach is the result of the DARPA-funded STARS
program on systematic reuse and is known as the double life-cycle model.

In (34) we proposed a variant of the double life-cycle to accomodate the pos-
sibility of cross-domain engineering processes. In this approach the reusable
assets can be of different levels of abstraction being of applicability to dif-
ferent domains. Domains are seen as progressively focused and assets can
be built for any one of them. Obviously the more abstract the placement of
a concrete component the more domain-wide but also less efficacious and
usually the more difficult to build. This approach is depicted in Figure 3.4.

@ Target assets to their maximum potential level of abstraction.

3.6 Research focused on models

Models permeate ASys and are the cornersone of development and system
operation.

Models are the engineering way to capture systemic visions —requirements,
designs, etc. . Models are used in all branches of engineering. Even in the
world of software-intensive systems, models are becoming the central drive
of the engineering process (3; 9).

isolated cell soups for the production of a ceratain service: synthesis, catalysis, bioletricity,
etc.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 31 of 53

Domain Domain Reusable

Analysis Architecture Component/
User Domain Development Generator

Requirements: Model

Reusable
Component
and/or
Generator
Assets

Domain

Software
Architecture

Development

SubDomain SubDomain Reusable
Analysis Architecture Component/
User based on SubDomain Development Generator
RequirementEl| Domain Model A

lodel

Reusable
Component
and/or

Assets

SubDomain
Software

SubDomain X
‘SubDomain Y

Application Application Spplulsaﬂon
Analysis Applicati — evelopment
pplication Application N
Requirement@iill| 2ased on Performance based on Software based on Application
jomain rman omain i Reusable Software
Model Assets

Application A
Application B
Application C

Figure 3.4: The progressive domain focalisation approach to product line engineering.

The ASys vision makes an step further using models as the very runtime
representations used by the systems themselves during their operation. The
age old issue of knowledge representation —frames, semantic nets, rules, efc.
— coalesces into an unifying view on models.

This is in line with a perspective in cognitive science that holds that mental
content has the form of models. Initiatied by Craik in the fourties (14), the
theory that minds are based on the construction and exploitation of mental
models — i.e. the mental model theory of mind— has had a long history that
somewhat surprinsignly hasn’t got enough hold. While it is clear that men-
tal representation of entities has had a long journey in philosophy and psy-
chology, the question of more complete, more ecompassing, more integrated
models has not attracted big attention. Representation and modelling seem
to imply similar cognitive structuring but, however, they have very differ-
ent implications. We are not going to enter in detail the theories regarding
representation and will focus specifcally on the issue if mental models.

The question of mental models is not restricted to theories of mind in but is
also a relevant topic in many other disciplines, e.g. human computer interac-
tion or in management. Let’s see a definition targeted to corporate manage-
ment:

deeply ingrained assumptions, generalizations, or even pictures or im-
ages that influence how we understand the world and how we take ac-
tion. Very often, we are not consciously aware of our mental models or
the effects they have on our behavior.

Senge (38)

32 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

Chapter 4

The Scaled Workplan

4.1 The Work to Do

ASys ’s main purpose is oriented towards the development of autonomous
systems (ASys), taking into account all the phases of the life-cycle. This is a
very ambitious goal and needs a lot of work regarding many different areas.
From conception and design to the final deployment and maintenance, all
phases are to be taken into account; but, obviously, design, construction and
operation will possibly preseny the mosta challenging aspects.

The whole ASys engineering process goes from the raw material (specifica-
tions and knowledge) to the final product (the physical autonomous system).
There are many things to do and many assets to build to achieve an effective
domain engineering process.

The scaled workplan identifies the set of core assets and establishes intial
criteria, scheduling and milestones that should be accomplished in the pro-
cess of developing the technology for ASys. A description of each of the
items/tasks follows. Finally, these tasks are sequenced in a tentative roadmap,
shown in figure 4.2.

4.2 The Too Many Threads of ASys

In the ASys long term project there are many aspects that are intertwined:
systems, engineering, control, intelligence, etc. The following ongoing topics
give a partial vision about some of those aspects:

ICa: An Integrated Control Architecture. The reference framework for mod-
ular construction of complex software-intensive controllers.

ICb : A broker for the Integrated Control Architecture. The core software
infrastructure-

OASys : An ontology that underlies all ASys efforts. To have in the mind of
the engineer; to have in the mind of the ASys; to be used in the synthesis

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 33 of 53

ICe

Specification

ICe Design m

Asset Base

e —

3
Domain
Ontology

ICe
Transformations

Integration
MDD/ODD

ICe
Deployment

ICe
Asset Manager

Figure 4.1: Some of the core tasks and products in the realisation of the ASys Vision.

34 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

of the ASys modules.

SOUL : An Universal Cognitive Architecture with Self-Awareness. A Metacog-
nitive real-time architecture that realises the model-based

ICm : An Integrated Control Methodology. The specficiation of an engineer-
ing process to build ASys.

RCT : A Robot Control Testbed. An application case-study in robot control.

PCT : A Process Control Testbed. An application case study in process con-
trol.

4.3 Ontologies

Ontologies are very important as they are intended to be a conceptualization
to describe the knowledge of an specific domain. This knowledge (ideally)
should be reusable and understandable by different people and communities.
Regarding the use of ontologies forASys we can distinguish between (mostly
existing) domain ontologies we can profit from and the (in development) on-
tology for ASys (or OASys or metaontology or transversal ontology).

4.3.1 Domain Ontologies

In this part, a survey of existing ontologies related with the area where the
applications are going to be developed should be performed. Initially, mainly
in the area of software, process control systems and robotics. Generic ontolo-
gies (as physys,...) should be explored as well. This work should also address
the issue of ontological formalisms.

— Task: Domain Ontologies / TBD
— Product: Domain Ontologies Technology Survey / Report

4.3.2 Autonomous Systems Ontology

The ASys ontology (OASys) captures the concepts of the ASys research pro-
gramme and reify them to provide software support for the process of ASys
engineering. Tt is necessary to have this ontology not only to describe the
ASys but to help and guide in their development as a provision of concep-
tual and software assets. The need of this ontology has been discussed and
justified by the arguments of the preceding sections.

— Task: Ontology for autonomous systems (OASys) / TBD
— Product: OASYS Concepts and methodology / Report
— Product: OASys / Software

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 35 of 53

4.4 Models

4.3.3 From ontologies to models (O2M)

Ontologies are to be used. An ontology has many uses (just to describe a
system or to have a common understanding). In this part the transition from
ontologies to models is studied. While ontologies can be considered as mod-
els, they appear as static captures of conceptual structuring. The differences
between ontologies and models will be clarified and the missing parts iden-
tified.

One of the central goals of this task is to produce a submethodology for ICm
to exploit the knowledge gathered in the ontologies and generate models
based on that knowledge. Models will have permanent links with the cor-
responding ontologies so they can be updated (or they can modify the ontol-
ogy)-

In a first impression ontologies are just partial models and the ontology-
model relation will be an instance of a more general model-uses-model relation.

— Task: Ontology language selection / TBD
— Task: How to link models and ontologies / TBD
— Task: O2M Translation tools / TBD

— Product: Specification of Ontology Languages / Report
— Product: Ontology Toolset / Software

— Product: O2M Methodology / Report

— Product: O2M Translation tools / Software

Models are critical for this research approach. Models are the core, around
them everything is developed. Models are important as they are the way
that everybody (human and systems) knows how to interact with the real
world. In this section three items related with models that deserve further
development are considered.

4.4.1 Model characterization

Model is a very generic word. In every domain everybody uses models. Ev-
erybody defines what a model is. There are many types of models, and even
different classifications of models. Thus, it is important to characterize them.
What is a model for us? How to define a model? What are the best models
for our applications? What is the best way to implement, code, these models?

Many modeling languages have been used in the different domain of ASys
and we strive to find a common unifying framework for getting the best from

36 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

them. A central issue is related with how the model is going to be used be-
cause this defines a big part of the modeling strategy.

The use of SysML to build this general framework for models has to be thor-
oughly explored. Model requirements is another point to take into account.
User requirements, designer requirements and requirements imposed by the
actual system should be clearly identified in order to guide the development
of the best (which means the simpler models that complies with all the re-
quirements) model.

— Task: Meaning and models / TBD

— Task: Model definition / TBD

— Task: Model requirements definition / TBD

— Task: Modeling language selection / and requirements

TBD — Product: Modeling for ASys: models and model uses / Report

— Product: Specification of ASys Modeling Framework / Report

— Product: Modeling Framework / Software

4.4.2 Model Development Methodology

A methodology to develop the models have to be established(19). Exist-
ing software development methodologies like MDD (Model Driven Devel-
opment) or the coming ODD (Ontology Driven Development) may be good
approaches to adapt to the development of more general models (not only
software). This can (is) related to the O2M issue.

— Task: Advantages and limitations of MDD, ODD and Other Approaches. / TBD
— Task: Define ASys Modeling Methodolgy / TBD

— Product: Model Development Methodologies Assessment / Report

— Product: ASys Model Development Methodology / Report

4.4.3 Model Integration

The most important aspect —from a practical point of view— is how to use
the built models. The best possible approach is to build models in such a way
as to allow the many possibilities they have. This is what guided the work in
HOMME Rodriguez and Sanz (29).

Obviously this is in strong relation with wat we called engines. Models that
can be easily embedded in commercial applications that provide the adequate
engines (generic like Matlab or domain specific like Aspen) or can be used by
their own by generating model+engine executable modules.

— Task: Model uses analysis / TBD
— Task: Model compilation / TBD

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 37 of 53

— Task: Commercial environments integration / TBD

— Product: Model and Engines Analysis / Report

— Product: Model Compilers and Engines / Software

— Product: Commercial environments integration tooling / Software

4.5 Beyond models

A model is a simplified representation of the reality. A model may have as
many views as reality has. The question is to define the more interesting
(useful) views to be included in a model. It seems that two phylosophically
fundamental views —functional and structural— are mostly important and
have to be considered.

4.5.1 Functional and structural views

The functional view ir related to the performance of the system modeled. It
may contain all (part of) the behaviour of the considered system, and distin-
guish between the intended behaviour (the one that is designed for) and the
not intended behaviour (collateral behaviour, many times denoting malfunc-
tioning). This view is very useful to perform different analysis on system,
like the risk assesment analysis. A follow up of the functions that fail as re-
sult of an initial failure as well as the possible causes of a function failure can
be obtained using this view.

The structural view is related with what the system is. The components that
compose the system. The hierarchical structure of components. Each com-
ponent may have one or more functions associated. A relationship between
views exist but a good methodology to pass from one to the other have to be
developed.

A model contains all the views considered in its design (or imposed by its re-
quirements). The problem now is how to extract from the model a particular
view (perhaps it is not interesting to extract it as separate entity but at least
to use it that way). Is it interesting to derive views in the format needed by
the algorithms that are going to exploit it.
— Task: Functional View Definitions / TBD
— Task: Structural View Definitions / TBD

— Task: Extracting functional and structural views from a generic SysML model /
TBD

— Product: SysML for functional view / Software
— Product: Structural Hierarchy with SysML / Software
— Product: Integration of other functional techniques / Software

38 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

4.5.2 Metamodels

A metamodel is a model of the model®. This is really a crucial part in the
ASys research program.

If the research is focused to the development of ASys that are able to imple-
ment the seamles process vision, it seems unavoidable to have metamodels
to enable the agent to think about its very own processes. It seems that this
is the way to provide the required level of self-awareness to the system. The
system has to know its own mental state and its current and actual possibil-
ities (to know it something is impossible for it the agent has to estimate it
using a model of itself, the metamodel).

A characterization of these models similar to the one commented for the mod-
els is needed. But, in a sense, the very core OASys and the associated mod-
eling methodology must necessarily address some of the issues of relevance
here. The procedure is alike and many things will be directly applicable (as
metamodels are nothing but models) but new, extra things may have to be
considered.

The integration between models and metamodels is an open issue due to the
different asbtaction leveles. This must be resolved at the level of modeling
techniocloy as this masut provide support for the progressive domain focal-
isation concept that will raise similar issues of interaction between different
levels of abstraction. There are may issues —coherence, scale, common rep-
resentation, efc. — to be studied. The same for rutime execution and engine
implementations that must address also a span of differen abtraction levels.
Here, the methods of general systems theory (17) may be of some utility.

— Task: Metamodeling analysis and definition / TBD
— Task: Metamodel - Model Integration / TDB

— Product: Metamodeling Methodology / Report

— Product: Metamodeling Engines / Software

— Product: Reusable Consciousness Models / Software

4.6 Architecture

The ASys focus on architecture seem to imply that it is necessary to have a
concrete architecture to implement all the items described. Obviously do-
main architectures will be useful for some kind of applications and in any
case, each application will have an architecture

Many different and types of architectures exist. The Integrated Control Ar-
chitecture (ICa) provides a model for application engineering much in the

Y Anything you can do, I can do meta!” was a pun that Samuel Hahn did in an humorous
response to some rather philosophical argument about programming higher-order functions
(functions that build other functions) in LISP or Scheme.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 39 of 53

line with distributed agents architectures. The RCS architecture offers a hier-
archical strategy to scale the control to levels of high intelligence.

4.6.1 Architecture suitability and requirements

The RCS architecture is a hierarchical and heterarchical architecture that de-
composes the system under study in small pieces as the best way to know
how it behaves and to establish and action plan. In this architecture every
node has all the elements (knowledge-ontology, world model, etc.). A thor-
ough study of this and other architectures, their suitability, lacks and exten-
sions are to be studied.

— Task: Extant Architecture Study. Components and performance / TBD

— Task: Matching architectural elements with ASys: models, algorithms, views,
ontologies / TBD

— Task: Reflexity Architecture Study. Architectures of self-awareness / TBD

4.6.2 Architecture. Putting all together

Two aspects shall be managed here. First is the desire to have a single uni-
versal architecture and second the degree to which such an abstract view can
render truly effective systems. The idea to explore is that of architectural pat-
terns that capture ways of organising components in functional subsystems.
This gives a way to immediate realisation without losing the abstraction ca-
pability. Patterns may go from low level, low scope patterns (e.g. a filtered
sensor pattern) to top level general system architecture.

Once the architecture is chosen, all the elements have to be implemented.
Patterns provide the scaffolding and components are used to fill the roles.
The quation of how to implement or integrate coded models is solved by
providing pattern-based transformations into code.

— Task: Architectural Patterns Capture / TBD

— Product: Implementation of Patterns and Components / Software

Although it may be considered when characterizing models, two aspects
have quite importance by themselves:

Distributed models The advantages of distributed (federated) models. Its
possibilities. Its limitations...

Real time models Mathematical problems. Accurate vs. not so accurate mod-
els. Execution time. Applications. ...

40 of 53 R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

4.7 Documentation

Documentation is usually not taken into account when talking about models,
but documentation is very important. It increases the usability of the models,
the interchangeability of the models, the study of the modelled system, eases
the update of the models, etc. A good, open format, documentation has to be
generated as requested for any model (or view) in any application.

Translating models into OpenDoc format could be an interesting thing to do.
Generation of documentation (reports) from questions to the model is also of
importance (and strongly related witl model exploitation engines).

— Task: Documentation format. Standards. / TBD

— Task: M2D: from model to documentation / TBD

— Task: Model Querying / TBD

— Product: Documentation Toolset / Software

4.8 Testbed Applications

A theoretical work is not useful if it is not applicable. It is important to have
final applications (of different nature) where the developed system (model,
architecture) can be used.

4.8.1 Test applications

Some benchmark problems have to be defined to test if the ongoing devel-
opment is correct. To show unidentified problems or requirements and as a
logical and interactive way to develop the final system.

Two systems are in this category: The Process Control Testbed (PCT) and
the Robot Control Testbed (RCT). A potential third system is the Network
Control Testbed (NCT).

— Task: Process Control Testbed (PCT) / TBD

— Task: Robot Control Testbed (RCT) / TBD

— Task: Network Control Testbed (NCT) / TBD

— Product: Process Control Testbed (PCT) Implementation / Software

— Product: Robot Control Testbed (RCT) Implementation / Software

4.8.2 Final applications

Final, actual applications where the system can be wholly tested. Some of
these applications may be: control reconfiguration, model based control, risk
assesment, autodiagnostic (model based thinking), ...

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 41 of 53

49 Roadmap

Next figure shows the roadmap of the activities to be performed.

1531
SINOITV I DY

. —-———

EERLIE
BINOIIVINAY

St I I

ugiceBUBD

mﬁa.ﬁh&nﬁﬁ SYHNLOALINDHY
'S0|APOLIEIAL 'S0{BRoW) UDISNEU! it
SVLSIA
SWLSIA O UCEEIOLOE W
mo.m_ono: SOTEa0N
uoioRiBeIUl & BIBOOPEY S
T300WZOLND
s SYIDOIOLNG

s ap ojeLEseq

B 50{BP0W URISRIBUBE)

dVINAVOA

Figure 4.2: ASys tentative roadmap

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

42 of 53

Chapter 5

The Thing Reconsidered

5.1 Reconsidering ASys

The ASys Vision describes an enormously ambitious research program that
at the same time is perceived as:

Impossible: As demonstrated by the (apparent) failures of Al and model-
based reasoning in dealing with high complexity problems.

Unavoidable: As inferred from the (apparent) identity between models and
knowledge.

Obviously the very execution of the activity will render clearer ideas on it
and a Reformulation of ASys may appear on demand in the vision becomes
obsolete.

The following section captures many of the questions to answer during this
work.

5.2 Questions for a research line

5.2.1 Architecture requirements

1. What aspects of a system does the architecture capture?

2. Has the architecture to be universal, i.e. fulfillng a wide set of require-
ments although depending on the system not all of the are used?

3. Is it better to have a kind of universal architecture template (an abstract
architecture) and to generate (derive) a specific architecture with just
the needed requirements for the system?

4. Is this architecture intended to be used in all the lifecycle of the system
(be it a plant or other system)?

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 43 of 53

Graphical
Modelling

Reuse of IP

Key issues in
Model-Driven
Cognitive Control
Engineering

Platform
Independence

Design for
Testability

100%
Application
Generation

Requirements
Capture and
Traceability

Figure 5.1: Some of the key issues tasks involved in the development of the
model-based engineering proposed in the ASys Vision.

5. The architecture should be embeddable and open, what’s the best way
to get this (adhere to the standards)?

6. Should the architecture provide open modules (being a module a com-
ponent of the basic node) besides the open node? This means that the
node itself can be used elsewhere but also some components as the
model, or the controlling algorithm or the perception system.

5.2.2 Epistemology

1. What is the best way to store the knowledge: ontologies?

2. How to use (take advantage of) existing knowledge (standards, ontolo-
gies...)

3. Should models be stored as world knowledge? What's the best “for-
mat” to store it?

5.2.3 Engineering Knowledge

1. Can we establish a methodology (or guide) to build the Best Available
Model (mathematical, empirical, deterministic, continuous,) for our
system?

2. Is there a way to automatically go from the knowledge repository to the
model?

44 of 53 R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

3. Real time models. Are they possible? Do real-timeliness depend on the
type of model or does it depend on the model use? Can this be bounded
to have a WCET (Worst case execution time)?

4. Can continuous models be federated (distributed)? What are the limi-
tations? What are the advantages and the drawbacks? Does again dis-
tributability depend on the type (and/or use) of model?

5. Should we have a complete model and derive views from it or is it
better to build the model views?

6. Awareness scope. The metamodel should be aware of the real world it
represents but also of the real implementation on which it is being used
(i.e. the model itself and the code that explicits it)

7. Is SysML (or UML) the best way to code (represent, show) the models?
Or again it depends on the model?

5.2.4 Operation

1. How many inputs and outputs to the architecture? (perhaps if the sys-
tem already exists one per sensor and one output per actuator,,,)

2. How must be selected the inputs and outputs to each node? Control
structure configuration, variables matching.

3. What are the criteria (if any) to interconnect nodes?
4. How can we make connections “weak” and change them dynamically?

5. How many nodes do we need? How do we partition our system? Can
it be done (semi or) automatically or do we need experts knowledge?

6. How information should flow between the different nodes?

7. Can (should) nodes be distributed?

5.2.5 Components

1. The controlling algorithm. What algorithm to employ? or have we a
pool of algorithms (from PID to Expert Systems) and a procedure to
choose?

2. Is the controlling module also responsible of generating actuation plans?
or only the next action?

3. What's the best way to implement the perception: is it only a filter (one
of the existing or a new one) of the sensory data received?

4. Thinking. What is needed to perform an update, to improve or change
the model used?

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 45 of 53

5. Evaluating. Wha'’s te function of this module? Just comparing the de-
sired state and the actual state?

6. Is intuition (premonition or the proper word) valuable? How to imple-
ment it (case based reasoning)?

7. Shouldn’t be treated the emotional sensor as any other sensor? How
emotional signals are detected ? How are they evaluated? Do emo-
tions (are usually understood) have to interfere with “objective” , neu-
tral (optimized -up to some point-) decisions? only under some (special,
social,....) circumstances?

8. Controlling is understood as restoring or maintaining a desired state,
but is this the module in charge of other uses of the model? If a control
reconfiguration is the best way to act, does this module the one to detect
and propose it? Is the thinking one? the evaluating one?

9. Perhaps other uses out of the control should be external modules, plugged
to the architecture? Other possible uses: risk analysis, alarm manage-
ment, auto diagnostic, reconfiguration assesment,

46 of 53 R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

Chapter 6

Glossary and Acronyms

6.1 Glossary

Action: Mapping mental state (model) into physical dynamics.
Agent: The realisation of the epistemic loop.
Goal: Portion of state space.

Meaning: State space partitioning for a value equivalence relation due to a
piece of information.

Mission: Reaching a goal keeping some constraints through.
Model: Information structure with a morphism to certain system.
Perception: The mapping from physics into mental state (model).
Process: Dynamical activity of a system.

State: State.

Thought: Ontologically comminted mental content.

6.2 Acronyms

API application programming interface BNF Backus Naur Form FOM Feder-
ation Object Model GALT Greatest Available Logical Time HLA High Level
Architecture MOM Management Object Model M&S modeling and simula-
tion N/A not applicable OO object oriented OOAD object-oriented analy-
sis and design RTI runtime infrastructure SCADA supervisory control and
data acquisition SOM Simulation Object Model XML eXtensible Markup Lan-

guage

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 47 of 53

Bibliography

[1] Anthony, R., Rettberg, A., Chen, D.-]., Jahnich, I., de Boer, G., and Ekelin,
C. (2007). Towards a dynamically reconfigurable automotive control sys-
tem architecture. In Rettberg, A., Zanella, M. C., Démer, R., Gerstlauer, A.,
and Rammig, F-]., editors, Embedded System Design: Topics, Techniques and
Trends, volume 231 of IFIP, pages 71-84. Springer.

[2] Aubin, J.-P. (1991). Viability Theory. Systems & Control: Foundations &
Applications. Birkhauser.

[3] Balmelli, L., Brown, D., Cantor, M., and Mott, M. (2006). Model-driven
systems development. IBM Systems journal, 45(3):569-585.

[4] Barandiaran, X. (2004). Adaptive behaviour, autonomy and value sys-
tems. normative function in dynamical adaptive systems. Master’s thesis,
COGS, University of Sussex.

[5] Barwise, J. and Etchemendy, J. (1998). A computational architecture for
heterogeneous reasoning. In Gilboa, 1., editor, Theoretical Aspects of Rea-
soning about Knowledge: Proceedings of the Seventh Conference (TARK 1998),
pages 1-14, San Francisco, California. Morgan Kaufmann.

[6] Bertschinger, N., Olbrich, E., Ay, N., and Jost, J. (2006). Autonomy: An
information-theoretic perspective. Working Paper 06 10 035, Santa Fe In-
stitute.

[7] Braun, C. (1993). Domain specific software architectures — command and
control.

[8] Calinescu, R. (2007). Model-driven autonomic architecture. In ICAC’07.
Fourth International Conference on Autonomic Computing, Jacksonville,
Florida, USA.

[9] Cleaveland, R. (2004). Model-based development for control software
development. In Wirsing, M. and Ronchaud, R., editors, Report on the
EU/NSF Strategic Workshop on Engineering Software-Intensive Systems, Ed-
inburgh, UK.

[10] Clements, P. C. (1996). Coming attraction in software architecture. Tech-
nical Report CMU/SEI-96-TR-008, Carnegie-Mellon Software Engineering
Institute.

48 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

[11] Collier, J. (2001). What is autonomy? In Proceedings of Computing Antici-
patory Systems, CASYS’2001.

[12] Collier, J. (2002). What is autonomy? International Journal of Computing
Anticipatory Systems, 12:212-221.

[13] COMPARE (2005). Embedded component framework architecture and
artefacts. Technical Report ASL-R-2005-1, Autonomous Systems Labora-
tory, Madrid, Spain.

[14] Craik, K. (1943). The Nature of Explanation. Cambridge University Press,
London.

[15] Foreman, J. (1996). Product line based software development- significant
results, future challenges. In Software Technology Conference, Salt Lake City.

[16] Gery, E., Harel, D., and Palachi, E. (2002). Rhapsody: A complete life-
cycle model-based development system. In Proc. 3rd Int. Conf. on Integrated
Formal Methods (IFM 2002), pages 1-10.

[INCOSE] INCOSE. Guide to the systems engineering body of knowl-
edge — g2sebok: A comprehensive guide and a singular resource for un-
derstanding the extent of the practice of systems engineering. Online:
http:/ /g2sebok.incose.org/.

[17] Klir, G. C. (1969). An approach to general systems Theory. Litton Educa-
tional Publishing, Inc.

[18] Klir, G. J. and Elias, D. (2003). Architecture of Systems Problem Solving,
volume 21 of IFSR International Series on Systems Science and Engineering.
Kluwer Academic Publishers, 2 edition.

[19] Kruchten, P, Selic, B., and Kozaczynski, W. (2001). Describing software
architecture with UML. In Proceedings of the 23rd International Conference on
Software Engineering, ICSE 2001, 12-19 May 2001, Toronto, Ontario, Canada,
page 0715, Los Alamitos, CA, USA. IEEE Computer Society.

[20] Kumar, V., Cooper, B. F,, Eisenhauer, G., and Schwan, K. (2007). Enabling
policy-driven self-management for enterprise-scale systems. In Proceedings
of Workshop on Hot Topics in Autonomic Computing, HotAC 1I, Jacksonville,
Florida, USA.

[21] Luo, X., Zhang, C., and Leung, H. (2001). Information sharing between
heterogeneous uncertain reasoning models in a multi-agent environment:
a case study.

[22] Maturana, H. and francisco Varela (1980). Autopoiesis and cognition: The
realization of the living. D. Reidel, Boston.

[23] Minsky, M. (1968a). Matter, mind and models. In Marvin Minsky (Ed.)
Semantic Information Processing. MIT Press.

[24] Minsky, M., editor (1968b). Semantic Information Processing. MIT Press.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 49 of 53

[25] Mittal, S., Zeigler, B. P., Martin, J. L. R., Sahin, F,, and Jamshidi, M. (2008).
Modeling and simulation for systems of systems engineering. In Jamshidi,
M., editor, System of Systems - Innovations for the 21st Century. Wiley.

[26] OMG (1998). A discussion of the object management architecture. Tech-
nical report, Object Management Group, Falls Church, USA.

[27] Petkos, G. and Vijayakumar, S. (2007). Context estimation and learn-
ing control through latent variable extraction: From discrete to continuous

contexts. In IEEE International Conference on Robotics and Automation (ICRA
07).

[28] Ray, A., Cleaveland, R., Jiang, S., and Fuhrman, T. (2006). Model based
verification and validation of distributed control architectures. In Pro-
ceedings of Convergence Convergence International Congress and Exposition on
Transportation Electronics, Detroit, USA.

[29] Rodriguez, M. and Sanz, R. (2001). HOMME: A modeling environment
to handle complexity. International Journal of Modeling and Simulation.

[30] Roth, E. M., Patterson, E. S., and Mumaw, R. J. (2001). Cognitive en-
gineering: Issues in user-centered system design. In Marciniak, J., editor,
Encylopedia of Software Engineering. John Wiley and Sons, New York, 2 edi-
tion.

[31] Russell, D. and Xu, J. (2007). Service oriented architecture in the delivery
of capability.

[32] Sanz, R. (1990). Arquitectura de Control Inteligente de Procesos. PhD thesis,
Universidad Politécnica de Madrid.

[33] Sanz, R. (2003). Against biologism. contribution to the panel on intelli-
gent control imitating biology: Promises, challenges and lessons. In I[EEE
International Conference on Intelligent Control, Houston, USA.

[34] Sanz, R., Alarcén, 1., Segarra, M. J., de Antonio, A., and Clavijo, J. A.
(1999). Progressive domain focalization in intelligent control systems. Con-
trol Engineering Practice, 7(5):665-671.

[35] Sanz, R., Jiménez, A., and Galan, R. (1991). CONEX: A distributed archi-
tecture for intelligent process control. In Proceedings of the World Congress
on Expert Systems, Orlando, FL.

[36] Saridis, G. G. and Valavanis, K. P. (1988). Analytical design of intelligent
machines. Automatica, 24(2):123-133.

[37] Schrodinger, E. (1944). What is life? Macmillan, New York.
[38] Senge, P. M. (1994). The Fifth Discipline. Currency/Doubleday.

[39] Shaw, M. and Garlan, D. (1996). Software Architecture. An Emerging Dis-
cipline. Prentice-Hall, Upper-Saddle River, USA.

[40] Simon, H. A. (1996). The Sciences of the Artificial. MIT Press, third edition.

50 of 53

R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

[41] Stewart,]. (2004). Autopoiesis and cognition. Artif. Life, 10(3):327-345.

[42] Thereska, E., Ailamaki, A., Ganger, G. R., and Narayanan, D. (2007).
Observer: keeping system models from becoming obsolete. In Proceedings
of Workshop on Hot Topics in Autonomic Computing, HotAC 1I, Jacksonville,
Florida, USA.

[43] Torngren, M., Henriksson, D., Redell, O., Kirsch, C., El-Khoury, J., Si-
mon, D., Sorel, Y., Zdenek, H., and Arzén, K.-E. (2006). Co-design of con-
trol systems and their real-time implementation — a tool survey. Technical
Report TRITA-MMK 2006:11, Royal Institute of Technology.

[44] Wirsing, M. and Ronchaud, R. (2004). Report on the EU/NSF Strategic
Workshop on Engineering Software-Intensive Systems. Edinburgh, UK.

ASLab.org / The ASys Vision / R-2007-001v 0.3 Draft 51 of 53

52 of 53 R-2007-001 v 0.3 Draft / The ASys Vision / ASLab.org

Title: The ASys Vision
Subtitle: Engineering Any-X autonomous systems
Author: Ricardo Sanz, Manuel Rodriguez

Date: February 11, 2008
Reference: R-2007-001 v 0.3 Draft

URL: http:/ /www.aslab.org/documents/R-2007-001.pdf

© 2007 ASLab

Autonomous Systems Laboratory

UNIVERSIDAD POLITECNICA DE MADRID
C/JOSE GUTIERREZ ABASCAL, 2
MADRID 28006 (SPAIN)

Document based on class aslreport.cls v 2.2

ASLab CVS Revision : 1.25

