)

ppn“A Processes Pipelinesin 00
Architactures

An Integrated Systems and
Software Engineering

!'_ Process (ISE&PPOOA)

José Luis Fernandez Sanchez
Profesor titular ETSII-UPM
jifdez@etsii.upm.es

The facts

= Functions performed by software in a military
aircraft has increased from 8% for the F-4
Phantom II to 80% for the F-22 Raptor.

= Today it is estimated that a premium
automobile takes dozens of microprocessors
running 100 million SLOC. Software made up
more than 25% of a car's total value.

May 18, 2012 ©José L. Fernandez Sanchez

i Scope of the presentation

= To present an integrated systems and software
engineering process named ISE&PPOOA (Integrated
Systems Engineering and Pipelines of Processes in OO
Architectures).

= This process applies the functional paradigm all over
the systems development lifecycle, allowing the
combination of traditional SE, MBSE and software
component based development (CBD) using
standard notations such as SysML and UML with some
extensions and refinements for the software subsystems.

= Development of a system can be envisioned as an
amalgamation of three aspects: mission, system and
software.

May 18, 2012 ©José L. Fernandez Sanchez

Systems engineering in mechatronic
systems

Systems System Design & Subsystem
Engineering Breakdown

From ARC Advisory Group
May 18, 2012 ©José L. Fernandez Sanchez 4

A 4

System Validation

ISE&PPOOA in a nutshell

_ eOperational concept scenarios
Mission ~ «——— +QOperational needs
eCapabilities

eSystem requirements
System — eFunctional architecture
ePhysical architecture

|

eDomain model
Software <+« °*Structural view of the software architecture
eBehavioral view of the software architecture

v

May 18, 2012 ©José L. Fernandez Sanchez 5

Concepts used

= Operational concept: abstract model of the
operations of a specific system or group of
systems.

= Scenario: instance of how the system is
used in specific circumstances

= Operational need: a need that
complements the system usage but is not
contained in the scenarios

= Capability: the ability to perform an effect.

May 18, 2012 ©José L. Fernandez Sanchez 6

Some issues considered
i regarding requirements

= Functional requirements define specific behavior
or functions of the system.

= Non-Functional requirements, known as quality
requirements, specify criteria that can be used to
judge the development or usage of a system, rather
than specific behaviors. They act to constrain the
architecture of the solution.

= In contrast to functional requirements that are
allocated to system parts, non-functional
requirements allocation is essentially different.
Sometimes non-functional requirements are
budgeted to the whole system or one of its parts. In
other situations the non-functional requirement is
satisfied by a design heuristic or tactic.

May 18, 2012 ©José L. Fernandez Sanchez 7

Some issues considered
regarding interfaces

+

= Missing or incorrect interfaces are a major cause of
project costs overruns and system failures.

= ISE&PPOOA uses SysML diagrams, text and
tables (N2 charts) to describe system external and
internal interfaces.

= N2 charts are very compact, allowing the overview
of even the most complex systems.

= N2 chart is a very helpful tool to allocate functions to
subsystems or system parts such that there is
minimal interaction among the components

May 18, 2012 ©José L. Fernandez Sanchez 8

!'_ The ISE&PPOOA process

How to develop a software
intensive system from the system
to its components

The ISE subprocess

+

= The main goal is the creation of the
functional and physical architectures of

a system identifying the subsystems and their
interfaces.

= The system may have subsystems software
intensive and/or non software intensive
where Physics conservation laws of
mass, energy and momentum are an
important issue that should be considered
when representing the system views.

May 18, 2012 ©José L. Fernandez Sanchez 10

The ISE subprocess

May 18, 2012

Gldsnﬂly ooooooooooooo 5

Ga. Specify system capabilities and high level functional requiremenis)

Gb, Specify quality attributes and system NF@

6 Create system functional archihecturg

G. Create system physical arl:hi'lzecture)

©José L. Fernandez Sanchez

11

The ISE subprocess. Step 1.
Identify operational scenarios

+

= Identify the operational context of the
system and describe its operational
scenarios for different modes of operation

= The system intended behaviors are described
by the operational scenarios, where
additionally to the preconditions, post
conditions and steps of each scenario, the
operational needs are identified also

May 18, 2012 ©José L. Fernandez Sanchez 12

The ISE subprocess. Step 2a.
ntify system capabilities and HLR

= Transform scenarios and operational needs
into a set of system capabilities and high
level system requirements.

= The deliverable is the representation of
capabilities with a hierarchical
decomposition using the block definition
diagram of SysML. System functional
requirements are specified in natural
language.

May 18, 2012 ©José L. Fernandez Sanchez 13

The ISE subprocess. Step 2b. Specify
ality attributes and system NFRs

= Transform oFerationaI needs into a set of quality
attributes for example reliability, availability,
security and others including the associated non-
functional requirements.

= In decomposing a non-functional requirement, the
systems engineer can chose to decompose its type
(security, reliability, etc) based on a selected quality
model, or its topic considering if they apply to the
whole system or one of its parts.

= It is possible and should be taken into account, that
some non-functional requirements may be affected
either positively or negatively at the same time.

May 18, 2012 ©José L. Fernandez Sanchez 14

‘L Quality model- ISO/IEC 9126

Extermal
and
Internal Glual ity
. . ‘ \ \
‘ Functionality Reli ability U sahility ‘ Efficiency Maintainability Portabil ity
Subcharactensiics [
Suitability M aturity L nderstamdsbility Time: behanviour Analysality Adaptability
Accuracy Fault tolerance Leamability Resourss Changeability Iristal Lakility
Irteroperability Recoerability Cipsearability wutilisation Shahility Co-existence
Secunty Aftractivensss Testabliy Replaceability

May 18, 2012

©José L. Fernandez Sanchez

15

The ISE subprocess. Step 3. Create
system functional architecture

= Transform functional requirements into a functional
architecture identifying the functional hierarchy,
functional flows and functional interfaces.

= The deliverable is the functional architecture
representing the functional hierarchy using a SysML
block definition diagram. This diagram is
complemented with activity diagrams for the main
system functional flows. The N2 diagram is used as
an interface diagram where the main functional
interfaces are identified. A textual description of
the system functions is also provided. We use
structured natural language to describe textually
each of the system functions.

May 18, 2012 ©José L. Fernandez Sanchez 16

Functional architecture

Capability X

F1

Functional Hierarchy

F2

F3

Functional flow

Funcion F1->F2 F1->F3 F1->F4 F1->F5
(F1)

F2->F1 Funcién F2->F3 F2->F4 F2->F5 If ALTITUDE is greater than TRANSITION

(F2) ALTITUDE, then:
F3->F1 F3->F2 Funcion F3->F4 F3->F5 set SPEED to MACH,

(F3)]
otherwise
F4->F1 F4->F2 F4->F3 Funcién F4->F5 set SPEED to AIRSPEED.
(F4) {l ification
F5->F1 F5->F2 F5->F3 F5->F4 Funcién
(F5)
Functional interfaces ,) i
May 18, 2012 ©Jose L. Fernandez Sanchez 17

The ISE subprocess. Step 4. Create
system physical architecture

= Transform the functional architecture into the
architecture of the solution or physical architecture.

= The selection of the solution is based on functions
clustering and design heuristics or tactics.

= The deliverable is the physical architecture
representing the system decomposition into
subsystems and parts using a SysML block
definition diagram. This diagram is complemented
with SysML internal block diagrams for each
subsystem and activity and state diagrams as
needed. A textual description of the system blocks is
also provided. The tactics used for the particular
architecture solution are identified and documented.

May 18, 2012 ©José L. Fernandez Sanchez 18

Use of tactics

Functional Requirements

Embellish with Non-
functional
Requirements

Conflicts
Resolution

” -_- Quality Attribute

. . B
Quahty. Attribute A Reasoning
Reasoning
Framework
Framework
Tactics Related to
Tactics Related B

to A
Architecture

May 18, 2012 ©José L. Fernandez Sanchez 19

Catalogue of tactics

= The tactics catalogued are those related to:
= General systems architecting tactics
=« Maintainability tactics
» Efficiency tactics
= Safety tactics

= Tactics are not necessarily independent. The

application of a tactic may also require additional
tactics to be applied.

May 18, 2012 ©José L. Fernandez Sanchez

20

Physical architecture

bdEPB)

System

phrBrake
' P

‘ cable:Cable

PB activation command Electric motor data

Subsystemn A Subsystem B Subsystern C m % pheuECY B . L pb,mu’\tacer\gmr\c

'. Sensordatg EVectric molor command

Read coomand

Part x Part y

throttle sensor:Sensor

S‘y'StEm hierar(}hy SysML Internal Block Diagram

aTop aTop

aTop aTop a:Top
System:S System::B System:E System::E System::S
_Floor_Ar levator_G levator_St emaphore

omarpors| | | Fooie| | fmmr 5 Name Central fuel tank

Description Fuel tank which delivers the fuel to the propulsion
subsystem through the control valve of this tank. The

fuel pump propels the fuel to obtain the mix together
with the air coming from the environment. Finally the
mix flows to the propulsion subsystem

aaaaaaa

handle
flaor

arival

e =) Prov Interface sFuel (from the Control Valve of the Auxiliary Fuel Tank
located in the Wing to the Central Fuel Tank)

Floor arrival=
ok

Reg. sFuel (to the Fuel pump)
Interface eFuel Level (to the Central Fuel Tank Sensor)
¢ sWaste (to the Central Fuel Tank Drain Valve)

Activity diagram with swimlanes Part description

May 18, 2012 ©José L. Fernandez Sanchez

Experiences

Reengineering of the Air Traffic Management system named iTEC,
develodped by Indra for their customers in UK and Germany. Here we
applied steps 2 and 3 of the ISE subprocess to improve the systems
requirements and functional architecture of the main subsystems of
iTEC. The main achievements were a better structure and organization
of the requirements specification documents.

Reengineering of an Unmanned Aerial System developed by USol for
civilian uses. The aerial vehicle considered was the K2B6 version of the
UAVs K2 family. Main achievement is the improvement of product
family evolution.

Scenarios and Capabilities for the usage of UAVs for wildfires
prevention and surveillance. Main achievement is a better
understanding of the current situation and how UAVs can help.

Scenarios, capabilities, functional and physical architecture for a home
system for people with neurological disabilities (Alzheimer). Main
achievement is a better understanding of the current situation and how
home systems can help people with this kind of disabilities.

May 18, 2012 ©José L. Fernandez Sanchez 22

!'_ PPOOA

An architectural style and process
for architecting the software
intensive subsystems

+

= PPOOA, "Processes Pipelines in Object Oriented
Architectures” is an architectural style for

PPOOA (I)

concurrent object oriented architectures. It can be

used when individual paths of execution are
required to be concurrent and different processes
may be positioned along the path to control the

action;f ®

-

]

May 18, 2012

T _T T <$9°7
A\ 0o
’—
L

©José L. Fernandez Sanchez

24

PPOOA (II)

= A model based approach for architecting
software intensive real-time systems

= Based on UML notation

= Describes the system architecture using two views that
may be supported by several diagrams; one view is the
static or structural representation, and the other
view is the dynamic or behavioral view of the system.
The behavioral view is represented by modeling the
system responses to events.

= Supports a diversity of components and coordination
mechanisms (for synchronization and communication)
not found in UML.

= Provides a tool adgnostic architecting process
(PPOOA_AP), defining the steps to build the
architecture

= Implemented in a CASE tool (PPOOA- Microsoft Visio

2003)
May 18, 2012 ©José L. Fernandez Sanchez 25

+

W

hy a new software architecting

process?

= Traditional Component Based Development and

Object Oriented architecting approaches focus upon
producing encapsulations and abstractions for
system componentry.

= The effort of the resulting architecture on the ability

of a system to meet its timin? constraints requires
additional understanding well beyond functionalities
and their combined computational timing
requirements.

Concurrency Modeling and synchronization
behavior become a dominant concern early in the
?rchitecture development whenever time is a critical
actor

Ot#'ect definition and collaboration strategies should
reflect meaningful timing constraints.

May 18, 2012 ©José L. Fernandez Sanchez

26

PPOOA in the MDD (Model

i Driven Development) lifecycle

Modeling the System
(1SE and SysML)

é

May 18, 2012

Modeling
The software architecture
(PPOOA or AADL)

é

Software detailed design
(UML)

©José L. Fernandez Sanchez

27

The PPOOA subprocess

May 18, 2012

G. Create domain model of the software suhsyslnnD

f—

Gaﬂ Identify software componan@

G_h_ Madel subsystem functional behavinD

~
Ga.z. Specify software components interfaces 6‘: Salect coordina

tion mschanlsm9

—

°

©José L. Fernandez Sanchez

28

Domain model

+

= The integration between the systems engineering

modeling subprocess (SE) and the PPOOA software
engineering modeling subprocess is achieved by
using a responsibility driven software analysis
approach supported by CRC cards, a technique
proposed in the OOPSLA 89 by Beck and Cuningham

A domain model yields a more precise specification
of requirements than we have in the results from
earlier requirements specification. It is described
using more formalism than textual descriptions, for
example UML class diagrams, and can be used to
reason about the internal workings of the software
intensive subsystems.

May 18, 2012 ©José L. Fernandez Sanchez 29

PPOOA Subprocess

|. Identify
independent types IDENTIFY SW.
COMPONENTS
II. Assign
\ r esponsibilities to the
componentsidentified.

N

May 18, 2012

[11. Select the most suitable PPOOA vocabulary
element for the componentsidentified.

V. Assign real-time
attributesto components.
\ V. Deter mine composition relationships
between components.

©José L. Fernandez Sanchez

30

Select

¢ Controller :
Manages external
events

— Structure
— Malntains relations
= between objects

May 18, 2012

the most suitable
component

= Domain component/
|gorithmic component
Performs operations

il% Pr ocess:
; _7~Coordinates work
§Q@Ko others

©José L. Fernandez Sanchez

31

PPOOA Subprocess

SPECIFY
COMPONENT
| Identify component INTERFACES
oper ations.

N

May 18, 2012

|I. Group component operations
in interfacesto be provided by
the Component.

\ |11. Determine component required inter faces.

©José L. Fernandez Sanchez

32

PPOOA Subprocess

tify events and
their arrival patterns.

N

May 18, 2012

\ I1. Identify CFAs.

M odel functional
behavior

II1. Assign real-time attributes to resour ces and
activities participating in a CFA.

\ |V. Establish coordinating CFAs.
\ V. Allocate each activity to the
component that implementsiit.

VI. Build PPOOA Dynamic View of
the System.

©José L. Fernandez Sanchez

33

i CFA (Behavioral view)
DEFINITION

CFA means Causal Flow of Activities. Therefore, a CFA isa
chain of activitiesthat istriggered by an event.

May 18, 2012 ©José L. Fernandez Sanchez 34

CFA Building Elements

+

= Event: something that occurs in the system
or in the environment and something to
which the system must react to and handle.

= Action: Computation block where no decision
of assigning resources is taken. In PPOOA it
represents an operation, task to perform,
resource usage, etc.

= Operators that allow branching, parallel
execution, etc.

May 18, 2012 ©José L. Fernandez Sanchez 35

PPOOA Architecting Process

SELECT
COORDINATION
| . Discover the concurrency MECHANISMS
problem to solve.

1. Select the most suitable PPOOA
coor dination mechanism.

S

S

I11. Assign real-time attributes to the coordination

mechanism.
\ 1. Build the PPOOA Ar chitectur e Diagram of the
System.

May 18, 2012 ©José L. Fernandez Sanchez

36

Interaction between Components (I)

Synchronous
| nter action
ﬁ Asynchronous
Components

PPOOA 7 , Coordination

\ v Mechanisms
[

CFAs

May 18, 2012 ©José L. Fernandez Sanchez 37

Interaction between Components (1I)

<<Domain Component== <<Domain Companent=>
Domain Component A Domain Component B

May 18, 2012

Synchronous communication between passive components through operations

Bounded Buffer_Capacity=1

<<Process=>> =<Process=>>
Producer [~~~ [~ Consumer

Tightly coupled message communication between active components

without reply
<<Process>> Bounded Buffer <<Process>>
Producer Consumer
_____) o e

Loosely coupled or asynchronous communication between active
components

©José L. Fernandez Sanchez 38

B SCADA - Microsoft Visio

43 Ra

SCADA System
211 Sensors
23 Inputs_Handler =

vy D ata Conversic
Faw Data Conw——
Alarm_Transport
Raw_[Data Proce
Range_Checker
EL_Corwerter
Previous_aAlarms
Alarm_Checker -
Alarmz_Buffer
Raw_Data_Buffe
EU_Buffer Al

“IRaw_Data_Proocessor

PPOOA-Visio tool

X <<Pﬁsasur l_. T

ﬂﬁlmmm”
Rangae Checker

=<Aigormnm==
EU_Conwearter

“SITUCI'.U.
Previous_A

_Sensors subsystern

Process

Abstraction
supported

The process % isa

building elerment of the
architecture that
implements an activity or
group of activities tha can
be executed at the same
time as other processes. Its
execution can be
scheduled.

Attributes

= Execution time of
each activity.

= Priority.

= Shared resources

bBlocking tirme

[optional).

Offset(optional).

T TR A oo o

- Painkt

©José L. Fernand

ez Sanchez

39

Architecture assessment:
Cheddar

Cheddar is a framework implemented in Ada by the University
of Brest. It provides tools to check if a real-time system meets
its temporal requirements.

Cheddar provides real-time feasibility tests in the case of
monoprocessor, multiprocessor and distributed systems.

= The first feasibility test consists in comparing the processor
utilization factor to a given bound.

= The second feasibility test consists in comparing the worst
response time of each system task with its deadline.
Cheddar provides a simulation engine which allows the

performance engineer to describe and run simulations of
specific real-time systems

May 18, 2012 ©José L. Fernandez Sanchez

40

PPOOA-Cheddar
implementation. Transforming
architecture models

] [1
rofile>> il <<profile> Metamodel
?mm e . Chedda
T h
| |
| |
_______ ﬂ_________________________T_______________
|
r . |
XML-File |
] | 1
Architecture PPOOA-Visio Cheddar Model
e :
PPODAUML Add-on Model

May 18, 2012 ©José L. Fernandez Sanchez 41

Working with PPOOA-Cheddar
tools

1, Create architecture models with PPOOA-Visio tool
2. Execute the PPOOA-XML add-on

3. The add-on automatically identifies the architecture
building elements and their relations and generates an
XML file of the architecture

2. The XML file is used as input to Cheddar

5. The engineer has to assign time parameters to the
architecture elements

6. Cheddar runs the simulation and schedulability
feasibility tests

May 18, 2012 ©José L. Fernandez Sanchez 42

Performance evaluation results

= Cheddar offers a simulation engine which allows the
performance engineer to describe and run simulations of
the architected system. When the simulation is executed,
Cheddar determines for each system task and during the
simulation time:
= The number of task preemptions
= The number of context switches
= The blocking times
= The missed deadlines.
= The Cheddar tool offers real-time feasibility checks
based on scheduling theory for example “"Rate Monotonic
Analysis” (RMA), without the need of running the system.
Cheddar indicates if the task set is schedulable.

May 18, 2012 ©José L. Fernandez Sanchez

!'_ Deadlock risk assessment

A method and a tool for
evaluating the deadlock risk of an
architecture

Deadlock

Deadlock is an execution-time problem potentially
catastrophic in safety- and mission-critical systems

It is difficult to detect in design-time and most of the times
transparent to traditional testing procedures because it is
very unlikely

Its correction may be complex and costly at late
development phases

It can be treated with very few temporal information at
early stages of conceptual design of software
architecture

It is possible to identify the intrinsic deadlock risk of a
model before the corresponding model is created

May 18, 2012 ©José L. Fernandez Sanchez 45

Deadlock assessment (A.
Monzon thesis 2010)

?

@etect task dependency cycles)

@n alyze cycle

Cycle contains % No

structural pattern?
Yes

Next cycle

@egister cycle and risky building elements)

@btain static results tableD

@ammate Static Deadlock Ris@—

May 18, 2012

}@nalyze CF@%

Is there risky element
in CFA?

Next CFA

G{egister CFA as risk;D

@nalyze CFA activities
CFA contains
Yes

dynamic pattern?

@btaln dynamlc results table

(Calculate Dynamic Deadlock Risk)

@brain aggregated results table)

o

©José L. Fernandez Sanchez

46

Deadlock assessment report

| Section

Table

=

g Deadlock
m Building Flements Deadlock Patteims Risk?
B _IMew Condiions -= B_IMNMew Conditions,
. - 1 | PP_Update A/C_Position -= Semaphore 3 - | PP_Update_ ASC Position, Semaphore 3, Tes
ic Deadlock Patterns (Initial Model) 2 TP Muag botonming Dlen > 22 Mumngps vovsivg o
AP_Tngd;;e_\ngp;?t_Pasjed - AP_TUpdate Waypoint_Passed,
2 L EW_ Snciions - B_IMew Conditions, Yes

FP_Update_AIC_Fosition -= Semaphore 3 - PP_Tpdate_ASC Position, Semaphore 3,

Task-
Task- g hor
ID Name Buffer Task-Semaphore-Buffer Patterns emaphore- NFE
Patterns Bl
. ag = ; Patteins
Dyna I I l IC Dead IOCk Patte rns (In Itla I MOd eI) Analyse waypoint(AP_Update_Waypoint_Passed) -
1 lcFanl Wone = Acquire(Semaphore 3) -> Send new condition Wone 0
(B_MNew_Conditions)
. Deadlock
jubj Building Flements Deadlock Patteims Risk?
B_IMew Condiions -= B_IMNew Conditions,
- . 1 PP_Update_4/C Fosifion -= Semaphore 3 - | FP_TUpdate_ A/C Fosition, Semaphore 3, Yes
Static Deadlock Patterns (Alternative Model) = PP_Managor_Auioning Plan -= PP_Manager_Auwoncing Plen.
APiUpdatei\N'aypo.ir.ltiPassed -z AT Update Waypomt Fassed,
B_MNew Conditions -= .
2 PP_Update_A/C_TFosition -> Semaphore 3 - B_Mew_Conditions, Tes
—-F — - . i3 PP_Update_ AT Position, Semaphore 3,
Task- g Tas}{—)
ID Name Buffer Task-Semaphore-Buffer Patterns emaphore- NFE
P Resource
atterns
. - Patterns
Dynamic Deadlock Patterns (Alternative Model) Avalsse wapoim(AP_Dpeate_Waspoit_Passed) -
= Acquire(Semaphore 3) -> Send new condition Tone 0

1 |CFAD1 Mone (B_Mew_ Conditions)

Design Trade-off

Number of Elements
Number of Arcs
Numnber of Cycles
SDR
Number of Risky Elements
Number of Static Patterns
Number of Dynamic Patterns
Number of Parallel Flows of Activities
Number of Activities and Decision Points

Number of Risky Activities and Decision Pomnts

Initial Model

Model Alternative 1
35(2.9%)
34 (-5.6%)
1 (-85.7%)
0 (-100.0%5)
0 (-100.0%)
0 (-100.0%5)
0 (-100.0%5)
0 (-100.0%5)
36 (-18.2%0)
0 (-100.0%)

May 18, 2012 ©José L. Fernandez Sanchez

47

!'_ Example

Elevator Control System

Elevator Control System (ECS)

he system controls a single elevator which responds to requests from
elevator passengers and users at various floors. Based on these requests
and the information received from floor arrival sensors, the system builds a
plan to control the motion and stops of the elevator.

= We consider a ten floor building, so for the house elevator, there are:

= 10 arrival sensors, one at each floor in the elevator shaft to detect the arrival of
the elevator at the corresponding floor.

= 10 elevator buttons. An elevator passenger presses a button to select a
destination.

= The elevator motor controlled by commands to move up, move down and stop.
= The elevator door controlled by commands to open and close it.

= Up and down floor buttons. A user in a floor of the house presses a floor button
to request the elevator.

= A correspondindg pair of floor lamps which indicate the directions which have
been requested.

May 18, 2012 ©José L. Fernandez Sanchez 49

ECS use cases

C 2 Selec DCoor
destination ~
SN Q
\
,
A
“3, /
Passenger (:’%EEK
% 4
ﬁ % or
&
I
’ Q
£
/, PR
1 : Reguest md“"ﬁﬁ ol
elevator L
Us=ar
Sensor
UC 4.1, Floar
detection emar
Lamp

May 18, 2012 ©José L. Fernandez Sanchez 50

ECS Domain Model

|_Floor_Button |_Floor_Lamp
1.2 1;2
1 1
[2K) 1.7

|_Elevator_Button

|_Elevator_Lamp

1.7

|_Motor

|_Door

i

1 1;2

I_Direction_Lamp

|_Sensor

May 18, 2012

+iravel direction

[L]
|_ Elevator
1
Elevator_Status Flan
+cument floor

1
0.

1
Floor_Arrival_Event

Destination_Floor

©José L. Fernandez Sanchez

51

al

ECS Architecture Diagram
(Structural view

B_Floor_Arrival

i

<<Process>>
lonitor_Floor_Arrival_Sensor]

<<Process>>
Monitor_Elevator_Buttons

B Service Request

|

|

|

1
=<Process>=

Maonitor_Floor_Buttons

May 18, 2012

Y e e

<<Damain Compangnt>>
|_Door

<<Confroller>>
Elevator_Manager

=<Controller==
Elevator_Controller

<<Domain Component==
|_Motor

<=Domain Component>=
Elevator Status

Semaphore_2

<=Structure==
Elevator_Plan

mps_Messa

<<Process>>
Manitor_Floor_Lamps

K———

B_Directionl Lamps_Messages

6____

==Frocess>>
Monitor_Direction_Lamps

©José L. Fernandez Sanchez

i System responses of the ECS

For the elevator control system we identified
the following system responses and
represented them as CFAs:

s CFA 1: RecC
s CFA 2: Reg

uest floor from elevator
uest elevator from floor

= CFA 3: Update current floor

= CFA 4: Sto

0 elevator at floor

= CFA 5: Dispatch elevator to next destination
= CFA 6: Bad floor arrival sensor event

May 18, 2012

©José L. Fernandez Sanchez 53

CFA 3: Update Current Floor

®

Floor
arrival

a:Top
System::
Monitor_F
loor_Arriv
al_Sensor
S

handle
floor

May 18, 2012

arrival
event

a:Top a:Top a:Top a:Top
System::S System::B System:E System::E
emaphore _Floor_Ar levator C levator_St
_4 rival ontroller atus
. send floor
acquire arrival
receive
floor
arrival
release
Floor arrival= [true]

Ok

a:Top
System::S
emaphore
1

’kJ acquire |

release

©José L. Fernandez Sanchez

54

CFA 6: Bad floor arrival sensor event

aTop

Er aTop aTop aTogp aTop
\Sr;;i.lrem C:E: System:.Ele System:_M System:_D System:Se
oller vator_Plan otor oor maphore_2

l
safety mode
acguire

clear plan | release
acguire

update plan |
start down
| yes

May 18, 2012 ©José L. Fernandez Sanchez 55

Numeric inputs to Cheddar

= The software engineer had to estimate the execution period
and capacity of the system tasks, see table below.

= Also he or she had to estimate the time instant each task begins
using each buffer and resource. The CFAs or system responses
are the inputs used for this usage estimation.

Task name Type Capacity Period Deadline
Elevator_Controller periodic 20 50 50
Elevator_Manager periodic 50 100 100
Monitor_Floor_Lamps periodic 5 1000 1000
Monitor_Elevator_Buttons periodic 2 500 500
Monitor_Direction_Lamps periodic 5 500 500
Monitor_Floor_Arr_Sensors periodic 2 1000 1000
Monitor_Floor_Buttons periodic 4 200 200

May 18, 2012 ©José L. Fernandez Sanchez

ECS Performance Evaluation

“F Cheddar ; a free real time scheduling simulator

File Edit “iew Tools Helmp

olelolalal @l e=)

Task narme=Elevator Contraller Period= 50, Capaciy= 20; Deadiine= 50; Start time= 0; Priority= 7, Cha=rmy_ processor

Task name=Elevator Manager Perlod= 100, Capacite= 50, Deadiine= 100, Staxt time= 0; Priority= 6, Cpu=my processor

Task pame=Manitor Divection Lamps Period= 500; Capacity= 5, Degdline= 500, Start time= O Priotity= & Cpu=imy_processor

L]

Scheduling feasibility., Processor my_ processor
1) Feasibility test based on the processor utilization factor

- The base periocd is 1000 (see [1]. page B).

- 59 units of time are unused in the base period.

- Processor utilization factor with deadline is 0.94100 (see [1]., page B).

- Processor utilization factor with period is 0.94100 (see [1]. page 6).

- In the preemptive case, with FM, we can not prove that the task set is schedulable because the processor
utilization factor 0.94100 is more than 0.72863 (see [1]., page 16, theorem §).

2] Feasibility test hased on worst case task response time

- Bound on task response time @ (ses [Z],. page 3, equation 4).
Monitor Floor Arrival_Sensors =»> 198
Monitor Floor Lamps => 196
Monitor Direction_Lamps => 191
Monitor Elevator Buttons => 96
Monitor Floor Buttons =» 94
Elevator_Manager =»r 90
Elevator Controller =» 20
- A1l task deadlines will be met : the task set is schedulable.

[P ———
‘4 Inicio

May 18, 2012 ©José L. Fernandez Sanchez

57

i Experiences

= Unmanned underwater vehicle
developed by Qinetic (UK)

= Autotunning function of the Airbus

A400M

= Space systems deve
(France) and TCP (S

oped by Artal
Dain)

= Student projects at t
(Madrid)

ne ETSII-UPM

May 18, 2012 ©José L. Fernandez Sanchez

58

Users and some links

PPOOA free Visio add on and stencils have been requested by software
architects from USA, Spain, Germany, France, Finland and other
countries

During 2011, PPOOA web site had 19863 sessions and 43149
publications downloads.

Tutorials and/or mentoring has been given to engineers from Airbus
Military, Audi, Indra, Eurocopter, Isdefe, Optimitive and Polar.

Additional information and publications can be found at
WWW.ppooa.com.es

ISE&PPOOA is included in the OMG wiki of MBSE methodologies:

http:/ /www.omgwiki.org/MBSE /doku.php?id=mbse:methodol

ogy

Cheddar tool: http://beru.univ-

gresthfr/ rlvsinghoff/ cheddar/contribs/examples_of use/00rea
me.htm

May 18, 2012 ©José L. Fernandez Sanchez 59

To Conclude

= Development of a system can be envisioned as an amalgation of three
dimensions operational, system and software.

= The operational dimension is concerned about the operational issues
and the overall system structure.

= The system dimension is concerned about the overall functional and
technical dimensions of the system,

= and the software dimension is concerned about the software items
contained in the system.

= The ISERPPOOA process integrates the system and software
engineering dimensions using a common behavioural representation
based mainly on SysML/UML activity diagrams and using the
responsibilities concept and the domain model for bridging the gap
between the system and software dimensions.

= The process combines the model based systems engineering
paradigm with some classical systems engineering best practices such
as the N2 charts for the interfaces, and textual descriptions in tabular
form that complement the information presented in the SysML models

May 18, 2012 ©José L. Fernandez Sanchez 60

