
An Integrated Systems and
Software Engineering
Process (ISE&PPOOA)

José Luis Fernández Sánchez
Profesor titular ETSII-UPM

jlfdez@etsii.upm.es

May 18, 2012 ©José L. Fernández Sánchez 2

The facts

� Functions performed by software in a military
aircraft has increased from 8% for the F-4
Phantom II to 80% for the F-22 Raptor.

� Today it is estimated that a premium
automobile takes dozens of microprocessors
running 100 million SLOC. Software made up
more than 25% of a car's total value.

May 18, 2012 ©José L. Fernández Sánchez 3

Scope of the presentation

� To present an integrated systems and software
engineering process named ISE&PPOOA (Integrated
Systems Engineering and Pipelines of Processes in OO
Architectures).

� This process applies the functional paradigm all over
the systems development lifecycle, allowing the
combination of traditional SE, MBSE and software
component based development (CBD) using
standard notations such as SysML and UML with some
extensions and refinements for the software subsystems.

� Development of a system can be envisioned as an
amalgamation of three aspects: mission, system and
software.

May 18, 2012 ©José L. Fernández Sánchez 4

Systems engineering in mechatronic
systems

Requirements Concept Design Validate Build

Systems
Engineering

System Design & Subsystem
Breakdown

System Validation

Mechanical
Design

Electrical
Design

Software
Design

Functional Model Machine Design
Model

Mechanical Design
Constraints

Mechanical
Validation

Functional Model

Functional Model

Circuit & Schematics
Design

Physical Design Electrical
Validation

Software Design Software Validation

From ARC Advisory Group

May 18, 2012 ©José L. Fernández Sánchez 5

ISE&PPOOA in a nutshell

Mission

System

Software

•Operational concept scenarios
•Operational needs
•Capabilities

•System requirements
•Functional architecture
•Physical architecture

•Domain model
•Structural view of the software architecture
•Behavioral view of the software architecture

May 18, 2012 ©José L. Fernández Sánchez 6

Concepts used

� Operational concept: abstract model of the
operations of a specific system or group of
systems.

� Scenario: instance of how the system is
used in specific circumstances

� Operational need: a need that
complements the system usage but is not
contained in the scenarios

� Capability: the ability to perform an effect.

May 18, 2012 ©José L. Fernández Sánchez 7

Some issues considered
regarding requirements

� Functional requirements define specific behavior
or functions of the system.

� Non-Functional requirements, known as quality
requirements, specify criteria that can be used to
judge the development or usage of a system, rather
than specific behaviors. They act to constrain the
architecture of the solution.

� In contrast to functional requirements that are
allocated to system parts, non-functional
requirements allocation is essentially different.
Sometimes non-functional requirements are
budgeted to the whole system or one of its parts. In
other situations the non-functional requirement is
satisfied by a design heuristic or tactic.

May 18, 2012 ©José L. Fernández Sánchez 8

Some issues considered
regarding interfaces

� Missing or incorrect interfaces are a major cause of
project costs overruns and system failures.

� ISE&PPOOA uses SysML diagrams, text and
tables (N2 charts) to describe system external and
internal interfaces.

� N2 charts are very compact, allowing the overview
of even the most complex systems.

� N2 chart is a very helpful tool to allocate functions to
subsystems or system parts such that there is
minimal interaction among the components

The ISE&PPOOA process

How to develop a software
intensive system from the system

to its components

May 18, 2012 ©José L. Fernández Sánchez 10

The ISE subprocess

� The main goal is the creation of the
functional and physical architectures of
a system identifying the subsystems and their
interfaces.

� The system may have subsystems software
intensive and/or non software intensive
where Physics conservation laws of
mass, energy and momentum are an
important issue that should be considered
when representing the system views.

May 18, 2012 ©José L. Fernández Sánchez 11

The ISE subprocess

May 18, 2012 ©José L. Fernández Sánchez 12

The ISE subprocess. Step 1.
Identify operational scenarios

� Identify the operational context of the
system and describe its operational
scenarios for different modes of operation

� The system intended behaviors are described
by the operational scenarios, where
additionally to the preconditions, post
conditions and steps of each scenario, the
operational needs are identified also

May 18, 2012 ©José L. Fernández Sánchez 13

The ISE subprocess. Step 2a.
Identify system capabilities and HLR

� Transform scenarios and operational needs
into a set of system capabilities and high
level system requirements.

� The deliverable is the representation of
capabilities with a hierarchical
decomposition using the block definition
diagram of SysML. System functional
requirements are specified in natural
language.

May 18, 2012 ©José L. Fernández Sánchez 14

The ISE subprocess. Step 2b. Specify
quality attributes and system NFRs

� Transform operational needs into a set of quality
attributes for example reliability, availability,
security and others including the associated non-
functional requirements.

� In decomposing a non-functional requirement, the
systems engineer can chose to decompose its type
(security, reliability, etc) based on a selected quality
model, or its topic considering if they apply to the
whole system or one of its parts.

� It is possible and should be taken into account, that
some non-functional requirements may be affected
either positively or negatively at the same time.

May 18, 2012 ©José L. Fernández Sánchez 15

Quality model- ISO/IEC 9126

May 18, 2012 ©José L. Fernández Sánchez 16

The ISE subprocess. Step 3. Create
system functional architecture

� Transform functional requirements into a functional
architecture identifying the functional hierarchy,
functional flows and functional interfaces.

� The deliverable is the functional architecture
representing the functional hierarchy using a SysML
block definition diagram. This diagram is
complemented with activity diagrams for the main
system functional flows. The N2 diagram is used as
an interface diagram where the main functional
interfaces are identified. A textual description of
the system functions is also provided. We use
structured natural language to describe textually
each of the system functions.

May 18, 2012 ©José L. Fernández Sánchez 17

Functional architecture

Función

(F5)

F5->F4F5->F3F5->F2F5->F1

F4->F5Función

(F4)

F4->F3F4->F2F4->F1

F3->F5F3->F4Función

(F3)

F3->F2F3->F1

F2->F5F2->F4F2->F3Función

(F2)

F2->F1

F1->F5F1->F4F1->F3F1->F2Función

(F1)

Functional interfaces

May 18, 2012 ©José L. Fernández Sánchez 18

The ISE subprocess. Step 4. Create
system physical architecture

� Transform the functional architecture into the
architecture of the solution or physical architecture.

� The selection of the solution is based on functions
clustering and design heuristics or tactics.

� The deliverable is the physical architecture
representing the system decomposition into
subsystems and parts using a SysML block
definition diagram. This diagram is complemented
with SysML internal block diagrams for each
subsystem and activity and state diagrams as
needed. A textual description of the system blocks is
also provided. The tactics used for the particular
architecture solution are identified and documented.

May 18, 2012 ©José L. Fernández Sánchez 19

Use of tactics

Functional Requirements

Design

Embellish with Non-
functional
Requirements

Quality Attribute A
Reasoning
Framework

Quality Attribute
B
Reasoning
Framework

Tactics Related
to A

Tactics Related to
B

Conflicts
Resolution

Architecture

May 18, 2012 ©José L. Fernández Sánchez 20

Catalogue of tactics

� The tactics catalogued are those related to:
� General systems architecting tactics

� Maintainability tactics

� Efficiency tactics

� Safety tactics

� Tactics are not necessarily independent. The
application of a tactic may also require additional
tactics to be applied.

May 18, 2012 ©José L. Fernández Sánchez 21

Physical architecture

Activity diagram with swimlanes

•Fuel (to the Fuel pump)

•Fuel Level (to the Central Fuel Tank Sensor)

•Waste (to the Central Fuel Tank Drain Valve)

Req.

Interface

�Fuel (from the Control Valve of the Auxiliary Fuel Tank
located in the Wing to the Central Fuel Tank)

Prov Interface

Fuel tank which delivers the fuel to the propulsion
subsystem through the control valve of this tank. The
fuel pump propels the fuel to obtain the mix together
with the air coming from the environment. Finally the
mix flows to the propulsion subsystem

Description

Central fuel tank Name

Part description

May 18, 2012 ©José L. Fernández Sánchez 22

Experiences

� Reengineering of the Air Traffic Management system named iTEC,
developed by Indra for their customers in UK and Germany. Here we
applied steps 2 and 3 of the ISE subprocess to improve the systems
requirements and functional architecture of the main subsystems of
iTEC. The main achievements were a better structure and organization
of the requirements specification documents.

� Reengineering of an Unmanned Aerial System developed by USol for
civilian uses. The aerial vehicle considered was the K2B6 version of the
UAVs K2 family. Main achievement is the improvement of product
family evolution.

� Scenarios and Capabilities for the usage of UAVs for wildfires
prevention and surveillance. Main achievement is a better
understanding of the current situation and how UAVs can help.

� Scenarios, capabilities, functional and physical architecture for a home
system for people with neurological disabilities (Alzheimer). Main
achievement is a better understanding of the current situation and how
home systems can help people with this kind of disabilities.

PPOOA

An architectural style and process
for architecting the software

intensive subsystems

May 18, 2012 ©José L. Fernández Sánchez 24

PPOOA (I)

� PPOOA, “Processes Pipelines in Object Oriented
Architectures” is an architectural style for
concurrent object oriented architectures. It can be
used when individual paths of execution are
required to be concurrent and different processes
may be positioned along the path to control the

action.

May 18, 2012 ©José L. Fernández Sánchez 25

PPOOA (II)

� A model based approach for architecting
software intensive real-time systems
� Based on UML notation
� Describes the system architecture using two views that

may be supported by several diagrams; one view is the
static or structural representation, and the other
view is the dynamic or behavioral view of the system.
The behavioral view is represented by modeling the
system responses to events.

� Supports a diversity of components and coordination
mechanisms (for synchronization and communication)
not found in UML.

� Provides a tool agnostic architecting process
(PPOOA_AP), defining the steps to build the
architecture

� Implemented in a CASE tool (PPOOA- Microsoft Visio
2003)

May 18, 2012 ©José L. Fernández Sánchez 26

Why a new software architecting
process?

� Traditional Component Based Development and
Object Oriented architecting approaches focus upon
producing encapsulations and abstractions for
system componentry.

� The effort of the resulting architecture on the ability
of a system to meet its timing constraints requires
additional understanding well beyond functionalities
and their combined computational timing
requirements.

� Concurrency Modeling and synchronization
behavior become a dominant concern early in the
architecture development whenever time is a critical
factor

� Object definition and collaboration strategies should
reflect meaningful timing constraints.

May 18, 2012 ©José L. Fernández Sánchez 27

PPOOA in the MDD (Model
Driven Development) lifecycle

Modeling the System
(ISE and SysML)

Modeling
The software architecture

(PPOOA or AADL)

Software detailed design
(UML)

May 18, 2012 ©José L. Fernández Sánchez 28

The PPOOA subprocess

May 18, 2012 ©José L. Fernández Sánchez 29

Domain model

� The integration between the systems engineering
modeling subprocess (SE) and the PPOOA software
engineering modeling subprocess is achieved by
using a responsibility driven software analysis
approach supported by CRC cards, a technique
proposed in the OOPSLA´89 by Beck and Cuningham

� A domain model yields a more precise specification
of requirements than we have in the results from
earlier requirements specification. It is described
using more formalism than textual descriptions, for
example UML class diagrams, and can be used to
reason about the internal workings of the software
intensive subsystems.

May 18, 2012 ©José L. Fernández Sánchez 30

I. Identify
independent types.

II. Assign
responsibilities to the
components identified.

III. Select the most suitable PPOOA vocabulary
element for the components identified.

IV. Assign real-time
attributes to components.

V. Determine composition relationships
between components.

IDENTIFY SW.
COMPONENTS

PPOOA Subprocess

May 18, 2012 ©José L. Fernández Sánchez 31

Select the most suitable
component

Controller :
Manages external
events

Domain component/
Algorithmic component:
Performs operations

Structure:
Maintains relations
between objects

Process:
Coordinates work
to others

May 18, 2012 ©José L. Fernández Sánchez 32

I. Identify component
operations.

II. Group component operations
in interfaces to be provided by
the Component.

III. Determine component required interfaces.

SPECIFY
COMPONENT
INTERFACES

PPOOA Subprocess

May 18, 2012 ©José L. Fernández Sánchez 33

VI. Build PPOOA Dynamic View of
the System.

I. Identify events and
their arrival patterns.

II. Identify CFAs.

III. Assign real-time attributes to resources and
activities participating in a CFA.

IV. Establish coordinating CFAs.

V. Allocate each activity to the
component that implements it.

Model functional
behavior

PPOOA Subprocess

May 18, 2012 ©José L. Fernández Sánchez 34

CFA means Causal Flow of Activities. Therefore, a CFA is a
chain of activities that is triggered by an event.

DEFINITION

CFA (Behavioral view)

A1 A2

A3

A4

A5

A6

A7

scheduling points

and/or continuation elementtriggering event

May 18, 2012 ©José L. Fernández Sánchez 35

CFA Building Elements

� Event: something that occurs in the system
or in the environment and something to
which the system must react to and handle.

� Action: Computation block where no decision
of assigning resources is taken. In PPOOA it
represents an operation, task to perform,
resource usage, etc.

� Operators that allow branching, parallel
execution, etc.

May 18, 2012 ©José L. Fernández Sánchez 36

I. Discover the concurrency
problem to solve.

II. Select the most suitable PPOOA
coordination mechanism.

III. Assign real-time attributes to the coordination
mechanism.

IV. Build the PPOOA Architecture Diagram of the
System.

SELECT
COORDINATION

MECHANISMS

PPOOA Architecting Process

May 18, 2012 ©José L. Fernández Sánchez 37

PPOOA

Components

CFAs

Coordination
Mechanisms

Interaction

Synchronous

Asynchronous

Interaction between Components (I)

May 18, 2012 ©José L. Fernández Sánchez 38

Interaction between Components (II)

May 18, 2012 ©José L. Fernández Sánchez 39

PPOOA-Visio tool

May 18, 2012 ©José L. Fernández Sánchez 40

Architecture assessment:
Cheddar

� Cheddar is a framework implemented in Ada by the University
of Brest. It provides tools to check if a real-time system meets
its temporal requirements.

� Cheddar provides real-time feasibility tests in the case of
monoprocessor, multiprocessor and distributed systems.
� The first feasibility test consists in comparing the processor

utilization factor to a given bound.

� The second feasibility test consists in comparing the worst
response time of each system task with its deadline.

� Cheddar provides a simulation engine which allows the
performance engineer to describe and run simulations of
specific real-time systems

May 18, 2012 ©José L. Fernández Sánchez 41

PPOOA-Cheddar
implementation. Transforming

architecture models

May 18, 2012 ©José L. Fernández Sánchez 42

Working with PPOOA-Cheddar
tools

1. Create architecture models with PPOOA-Visio tool

2. Execute the PPOOA-XML add-on

3. The add-on automatically identifies the architecture
building elements and their relations and generates an
XML file of the architecture

4. The XML file is used as input to Cheddar

5. The engineer has to assign time parameters to the
architecture elements

6. Cheddar runs the simulation and schedulability
feasibility tests

May 18, 2012 ©José L. Fernández Sánchez 43

Performance evaluation results

� Cheddar offers a simulation engine which allows the
performance engineer to describe and run simulations of
the architected system. When the simulation is executed,
Cheddar determines for each system task and during the
simulation time:
� The number of task preemptions

� The number of context switches

� The blocking times

� The missed deadlines.

� The Cheddar tool offers real-time feasibility checks
based on scheduling theory for example “Rate Monotonic
Analysis” (RMA), without the need of running the system.
Cheddar indicates if the task set is schedulable.

Deadlock risk assessment

A method and a tool for
evaluating the deadlock risk of an

architecture

May 18, 2012 ©José L. Fernández Sánchez 45

Deadlock

� Deadlock is an execution-time problem potentially
catastrophic in safety- and mission-critical systems

� It is difficult to detect in design-time and most of the times
transparent to traditional testing procedures because it is
very unlikely

� Its correction may be complex and costly at late
development phases

� It can be treated with very few temporal information at
early stages of conceptual design of software
architecture

� It is possible to identify the intrinsic deadlock risk of a
model before the corresponding model is created

May 18, 2012 ©José L. Fernández Sánchez 46

Deadlock assessment (A.
Monzón thesis 2010)

May 18, 2012 ©José L. Fernández Sánchez 47

Deadlock assessment report
Section Table

Static Deadlock Patterns (Initial Model)

Dynamic Deadlock Patterns (Initial Model)

Static Deadlock Patterns (Alternative Model)

Dynamic Deadlock Patterns (Alternative Model)

Design Trade-off

Example

Elevator Control System

May 18, 2012 ©José L. Fernández Sánchez 49

Elevator Control System (ECS)

� The system controls a single elevator which responds to requests from
elevator passengers and users at various floors. Based on these requests
and the information received from floor arrival sensors, the system builds a
plan to control the motion and stops of the elevator.

� We consider a ten floor building, so for the house elevator, there are:
� 10 arrival sensors, one at each floor in the elevator shaft to detect the arrival of

the elevator at the corresponding floor.
� 10 elevator buttons. An elevator passenger presses a button to select a

destination.
� The elevator motor controlled by commands to move up, move down and stop.
� The elevator door controlled by commands to open and close it.
� Up and down floor buttons. A user in a floor of the house presses a floor button

to request the elevator.
� A corresponding pair of floor lamps which indicate the directions which have

been requested.

May 18, 2012 ©José L. Fernández Sánchez 50

ECS use cases

May 18, 2012 ©José L. Fernández Sánchez 51

ECS Domain Model

May 18, 2012 ©José L. Fernández Sánchez 52

ECS Architecture Diagram
(Structural view)

May 18, 2012 ©José L. Fernández Sánchez 53

System responses of the ECS

For the elevator control system we identified
the following system responses and
represented them as CFAs:

� CFA 1: Request floor from elevator

� CFA 2: Request elevator from floor

� CFA 3: Update current floor

� CFA 4: Stop elevator at floor

� CFA 5: Dispatch elevator to next destination

� CFA 6: Bad floor arrival sensor event

May 18, 2012 ©José L. Fernández Sánchez 54

CFA 3: Update Current Floor

May 18, 2012 ©José L. Fernández Sánchez 55

CFA 6: Bad floor arrival sensor event

May 18, 2012 ©José L. Fernández Sánchez 56

Numeric inputs to Cheddar

2002004periodicMonitor_Floor_Buttons

100010002periodicMonitor_Floor_Arr_Sensors

5005005periodicMonitor_Direction_Lamps

5005002periodicMonitor_Elevator_Buttons

100010005periodicMonitor_Floor_Lamps

10010050periodicElevator_Manager

505020periodicElevator_Controller

DeadlinePeriodCapacityTypeTask name

� The software engineer had to estimate the execution period
and capacity of the system tasks, see table below.

� Also he or she had to estimate the time instant each task begins
using each buffer and resource. The CFAs or system responses
are the inputs used for this usage estimation.

May 18, 2012 ©José L. Fernández Sánchez 57

ECS Performance Evaluation

May 18, 2012 ©José L. Fernández Sánchez 58

Experiences

� Unmanned underwater vehicle
developed by Qinetic (UK)

� Autotunning function of the Airbus
A400M

� Space systems developed by Artal
(France) and TCP (Spain)

� Student projects at the ETSII-UPM
(Madrid)

May 18, 2012 ©José L. Fernández Sánchez 59

Users and some links

� PPOOA free Visio add on and stencils have been requested by software
architects from USA, Spain, Germany, France, Finland and other
countries

� During 2011, PPOOA web site had 19863 sessions and 43149
publications downloads.

� Tutorials and/or mentoring has been given to engineers from Airbus
Military, Audi, Indra, Eurocopter, Isdefe, Optimitive and Polar.

� Additional information and publications can be found at
www.ppooa.com.es

� ISE&PPOOA is included in the OMG wiki of MBSE methodologies:
http://www.omgwiki.org/MBSE/doku.php?id=mbse:methodol
ogy

� Cheddar tool: http://beru.univ-
brest.fr/~singhoff/cheddar/contribs/examples_of_use/00rea
dme.html

May 18, 2012 ©José L. Fernández Sánchez 60

To Conclude

� Development of a system can be envisioned as an amalgation of three
dimensions operational, system and software.
� The operational dimension is concerned about the operational issues

and the overall system structure.
� The system dimension is concerned about the overall functional and

technical dimensions of the system,
� and the software dimension is concerned about the software items

contained in the system.

� The ISE&PPOOA process integrates the system and software
engineering dimensions using a common behavioural representation
based mainly on SysML/UML activity diagrams and using the
responsibilities concept and the domain model for bridging the gap
between the system and software dimensions.

� The process combines the model based systems engineering
paradigm with some classical systems engineering best practices such
as the N2 charts for the interfaces, and textual descriptions in tabular
form that complement the information presented in the SysML models

