Universidad Politécnica de Madrid

Autonomous Systems Laboratory

Specific Communication Service Mapping
Mapping to CORBA

Version 2.0

Ricardo Sanz

15th January 2002

Status: Final

61850 SCSM to CORBA UPM ASLab

Specific Communication Service Mapping
Mapping to CORBA

Abstract:

The mapping of ACSI to CORBA will define how the concepts, objects and services of ACSI
will be implemented using CORBA distributed objects technology, allowing interoperability
among substation functions and devices of different manufacturers.

This document has been issued in accordance with the document IST-1999-10258 Annex 1 — “Description of
Work”. The identification of this deliverable in the Periodic Progress Reports is DL 3.1.

CORBA ®, ORB™ 1IOP™ and OMG Interface Definition Language (IDL)™ are trademarks or registered
trademarks of Object Management Group, Inc. in the United States.

Copyright:

This is an unpublished document produced by the UPM ASLab team duing the execution of the IST DOTS project
funded by the European Comission. All rights reserved. The information contained herein is the property of UPM-ASLab,
and is supplied without liability for errors or omissions. No part may be reproduced, used or transmitted to third parties
in any form or by any means except as authorised by contract or other written permission (contact
Ricardo.Sanz@upm.es). The copyright and the foregoing restriction on reproduction, use and transmission extend to all
media in which this information may be embodied.

Public V2.0/ 2002-01-15/ Page 2 of 141

SCSM to CORBA 1ST10258/009

Table of Contents

PART 1 INTRODUCTORY MATERIAL ...ccuruieureurnssarassnssnssnsassassassssassnssnsanse 10
R 1120 TU o o 11
1.1 Purpose of this dOCUMENL e 11

1.2 SCOPE OF thE ACSI ...ttt 12

1.3 V=T o] o g e TN <= 11 ToT o =1 [P 13

1.3.1 What is IEC 618502 WHAL IS Tt fOT? ...vvveieieiiiiieisieeeee ettt 13

1.3.2 What is CORBA? What does it do? What is OMG?c.occoveeremeiiiineisenieisenieesienieesienieaea 14

1.3.3 WWHALE IS ACSI? oottt stttk sttt sttt sttt naeie s 14

1.3.4 What is the reason for trying to map IEC 61850 ACSI t0 CORBA ?ccccoovvivivnvveeeeecan, 14

1.3.5 Can CORBA be considered an Specific Communication Service ?ccwcveveerereeerererenenns 14

1.3.6 What is the CORBA commumnication SACk ProPer ?cccoevveeueeueeieeininirinsseeeeeeeenens 14

1.3.7 Is any standardization organization using OMG specifications ?ccocoecvvvvvvvnccenenas 15

1.4 Objectives Of the MaPPINGooeiiiiiiiiie e e e e e e e e e e e e e sarnee s 15

1.5 DOCUMENE STIUCIUIEot e e s aneeeeens 15

2. DEFINITIONS, ACRONYMS AND ABBREVIATIONS ..c..cceeuurremssrrenssrmmnssremsssrnnsssrnnssssnnssssnsssees 17
3. MANDATORY REFERENCES.....cctttttmemmmssssssssmsemmmmmmmmmmsssmmmsssssmmssssmsmmmssmsmsmssssmmmmmmsssssmmnnnnn 18
3.1 DOTS REFEIEBNCES ...ttt sttt e s bt s ne e e nens 18

3.2 [EC REFEIEINCES ... e e e s 19

3.3 OMG REFEBIENCES ...ttt ettt ettt e an e s nanas 20

4. ASSESSMENT OF 61850 & CORBA ...t 23
4.1 1] (oo [UT3 1o o B OO POUPRP PR 23

4.2 The IEC 61850-7 ObJeCt MOELccoiueieieeii e 25

427 TR DASIC TOAEL ...ttt ettt 25

4.3 Problems with the IEC 61850 MOAEIccooiiiiiiiiiii e 25

43T IHEFOAUCHON .ottt ettt ettt ekttt ettt ettt et et 25

4.3.2 The model is 110t fiNliSHEdcccoovviviiiiiiiiiiiiiicicicii s 26

4.3.3 IHCOMISISEEIICIES ...ttt ettt sttt ettt st 26

4.3.4 The partial-OO nature of the ACSIcocovvveveieeieieiciiiiriseeeeeeeeeeectt et 27

4.3.5 Violations of encapSuLAtioncceeueueueuiiiinirinisiseeie ettt 28

4.3.6 Evolution in the specification perspective...........ccccccciriiiiiiinininininiiiiisieieeeeeseeeena 28

4.3.7 Loose Typing and Unnecessary polymorphiSLc.cocovvvveiiriiiiiiiiiiiiceeeccccccs 29

4.4 CORBA BASICS ...ueiiiuiieiiiieiiee ettt ettt e et e e et e e et e e eae e e e neeeeaaeeeeeeeaaneeeateeeanneeeneeenneen 29

44T IIEFOAUCHION .ottt ettt st 29

4.4.2 Object Request FOIWATAINGc.covuiiiiiiiiiiiiiiiiiciciciiiiiet st 29

4.4.3 Objects, Interfaces, Servers, Servants, POAS And 1MOTe.............ccccccovvvvinivivivicccicciiiiia, 30

44 OMA SCIUICES...cuesiiaiiiiteieeiee ettt ettt ettt ettt ekt ht et e st et et e sttt bt eae et e 31

4.4.5 Object IDs, Object References and Object NAMESc.ccoveueueucueieiiiieinireeeeeeeeeeeeeeeens 32

4.4.6 The CORBASEIUICES INAME SETVICE ...vuveuesieieiisieieiisieieitsiesieit sttt sttt sttt 33

5. MAPPING DETAILS ..cooiiiiiiiiiiiiisiiisssssssssssssssssssssssssssss s s s s ssssssssssssssssssssssssssssssnsssssnnnnnnnnnns 34
5.1 INEFOTUCTION ... s e e e e e e e e e e e 34

5.2 L (011 o TN 3 =T o S 36

5.2.1 Coarse grained MAPPINIYccceueurururuiiiiiiiiiieieieieieieitttt sttt s 36

5.2.2 Medium grained MAPPINGcccouvvuriiiiiiiiiiiiieiieieectt s 37

5.2.3 Fine grained MAPPITLGcccovviiueiiiiiiiiiiiiiiiiiect ettt s 37

53 =T (o 4 =T o] o[Vo [37

54 Fundamental data types mapping ... 38

Public V2.0/2002-01-15/ Page 4 of 141

SCSM to CORBA 1ST10258/009

5.5 Mapping Of COMMON TYPES ...ciiiiieei et e e e e e e eeeeas 38

5.5.1 ObjectName and OUJeCtREfereriCe............oouvvviiiiiiiniiiiiiiiiiiieicicicciiis s 38

5.5.2 TIMESEAMIP ..ottt 39

5.5.3 REIAHUCTIMEC .ottt ettt ettt ettt e e s e et st eatt et eesaae e 39

S I O o] 1= ot NN =1 4 o[T T PRSPPSO 40

5.7 [=do][TaqTeTy o] gl oR] o =T = 11 Te] o < T 42

5.8 Pull Interfaces for ONG lIStS.........uiiiiiiii e 43

5.9 CORBA IAENLIEIS. .. .uviviiiiiiiiiit s s s nsnsnsnnnsnnnnnnnnnnnnnnnnnnnnres 44

5,10 Mapping Of ENUMETAted tYPESuviiiiiiei et e e e e e e e e aeeea s 44

511 Mapping of optional fieldsS 44

5.12 ACSI/CORBA communication Service MOAEl............ccccceuuuiiiiiiiiiriiiresaeneaaanennnenananes 44

513 Recommended readingcooiiiiiiiiiii e 46

5.13.1 DOTS RecOMMEnAed [ItTAIUTE.cocvveieeieeeeeereeieeiieeeeeteeeeeereesseeaeeeeeseeereeeseeseeaseerseeseens 47

5.13.2 IEC/ISO RecoOmmMENAed ITECTALUTEc..ooovveeeeeiieeeieeeeee et eee et ee e es e evseeee e 47

5.13.3 OMG RecOMMENACA LIECTAEUTE......cccuvveeeeeiieieeeeeeeee ettt e st eae e eaaeee s 47

PART 2 THE MAPPING....cuccuitrererermiesesssnsasasasasasassssssssasasasasessnsnsnsnsase 49
6. MAPPING OF SERVER IMODELcceuiimuiiiieniinesirreaserensssrnsssrnnsssrenssssenssssnnssssnsssssnssssnnsnns 50
6.1 Server Class defiNitiON...........uuuuiiiiii e —a—a———a—a————————————————————————. 50

6.1.1 SCIUICECACCESSPOINE ..ottt ettt e ettt e et e et s et e e et e e e saaes 50

6.1.2 LOGICAIDEUICESc.cviiiiiiiiiiiiciss 50

0.1.3 FUlBS.uviciieueeeeeeeeeee ettt ettt ettt ettt ettt ettt ettt ettt et et et eeta e te e reeteebeeaes 50

6.1.4 CHENEASSOCIALIONS ..ottt e et e ettt ettt et et e st e et e st e ettt e st s sateeettaesaeen 50

6.2 ST VLT R T=Y oV (o=t T 50

6.3 ACCESS CONIION ...ttt e e ettt e e e e e e e e e e s e e e e e e e e se b e e eeeseneeeees 51

6.4 DL e, 51

6.5 UM L oottt ———————————————————————————aaas 52

7. MAPPING OF ASSOCIATION IMODEL ...c.uciieuuiiiieiiieenerrmssrnmsssrnnsssrnnssssnsssssnssssnnssssnnssssnnnes 53
71 Concept of abstract assoCiations............cooiiiiiiiiiiiiiiee e 53

7.2 DL e, 53

7.3 UM L oottt ———————————————————————————aaas 55

8. MAPPING OF LOGICAL DEVICE IMODEL ...cuiiuieeiieuresresssmsresssessassssssassnssesssnssasssnssasssnssnssnns 56
8.1 Logical device class definition ... 56

8.1.1 logicalDeviceObJECINAINEcccuvuvieiiiiiiiiiiiciiiiieee ettt 56

8.1.2 LOGQICAINOGEScocoviiiiiiiiiiiciise 56

F I G T Vol ol2=1c1 @171 5 ¢ o) AR 56

8.2 Logical deViCe aCCESS SEIVICEScciiiuiiiiiiiiiee ettt ettt anre e e e 56

8.2.1 LogicalDeviceDireCtOTycccovviviiiiiiiiiiiiiiiiiiiiiiiitcisietee et 56

8.3 D e, 57

8.4 L0 1 Y/ oY =Y 57

9. MAPPING OF LOGICAL NODE MODEL.......ccttiiiiimimiimmimssmnssnssses 58
9.1 Logical node class defiNitioN...........ccuuiiiiiiii i 58

L O R I 7 7 R 58

9.1.2 LogicalNOAEODJECENAMIEcccovovreeeeieieieieieiiiiiieieise ettt 58

9.1.3 DAAODJECES ... 58

B B B 17§ 7] £ USSP 58

9.1.5 REPOTECOMETOIS ..ottt 58

9.1.6 LOGCONETOLS .ttt 59

9.1.7 LOZS ittt 59

9.1.8 QOOSECONIIOL ...ttt 59

9.1.9 SampledValUeCOMETOLSccoeueirieieirieieiieeiseeeetet ettt 59

Public V2.0/2002-01-15/ Page 5 of 141

SCSM to CORBA 1ST10258/009

9.1.10 ACCESSCONMETOL vttt ettt et e ettt e et e et s ete s etaeeenee s 59

9.2 (oTo|[or=] WaToTe [SI= Totod oY T =T =T oV ot S 59
9.2.1 LogicalNOAEDITECIO Yc.covvuiuiiiiiiiiiiciiiicii i 59

9.3 5 59
9.4 L1 T 60
10. MAPPING OF DATA OBUECT IMODEL ...cccuuiiieuiiieesiireesirensssremssssensssrsnssssnnssssnsssesnsssssnssssnns 61
10.1 Data object class definitionooi i 61
10.1.1 DataObJeCtNAINEccccvvviieieiiiiiiiiiicicicieie ettt 61

O O B 77 N 12 =S PR 61
O G T ol ar-3-1 @077 2o AR 61

10.2 Data ODJECE ClaSS SEIVICEScoiiiiiiiie ittt 61
10.2.1 GetDataObBect VAIUESc.c.cviiiiiiiiiiiiiiciciiiiiiciceeee et 61
10.2.2 SetDataODBect VALUESccoovvieeeieeeieieiciiiiieteiee ettt 62
10.2.3 GetDataObJectDefiNitiON.c.eveveueueucieiiiirieieee ettt 63
10.2.4 DataObjectDITeCtOTYcceueuiiiiiiiiiiiiiiisieieiicicttt st 63

(O TR T | P 63
0.4 UM et 64
11. MAPPING OF DATA ATTRIBUTE IMODEL......ccivuuiimuiieeiensrensrrnsressssnsssnsssssssnssensssnsssnnssnnns 66
11.1 Data attribute class definition ... 66
11.1.1 DatAQAHTIDULCINGINC ...ttt ettt e ettt e s ettt e et e e saaaes 66
11.1.2 DataAHTIDULCCONECHE c...vvvveeeeeee oottt ettt et e et e et e s ettt s e et e e eaaaes 66
11.1.3 DataAttriDUteCHATACLETISHIC ..vecueiiveeee e ettt et et ett ettt s eaeseae s st e eaee s 66

11.2 DataAttribute SErviCes ... 67
11.2.7 SetDataAIIDULEVALUES ...ttt ettt ettt ettt ettt eaae s 67
11.2.2 SetDatAAIIDULEVALUES ...ttt ettt ettt ettt e et eaie s 67

11.3 Attribute and parameter types ... 67
114 COMMON BYPES ..ttt ettt e e e bt e e e b b e e e e s bttt e e e anbe e e e s aabeeeeeaabeenaas 67
1D D e e 67
TG T 1V R 67
12. MAPPING OF DATA SET IMODEL ...cecuuiiteuiiieesiirenserensssrrnsssrensssrsnsssssnssssnsssssnsssssnsssssnssssnns 68
12.1 Data set class definitioN........cooooiiiiiiie e e 68
12.1.1 DataSetOUJECINAINEc.ccueuvuiuiiiiiiiiiiiiieieieiect sttt 68
12.1.2 DataObJeCtNAINEScccocveueieiiiiiiiiiiciciiieie ettt 68
B G T Vo or-3-1 @0y 2o AR 68

L A B T o= 1= 1= oY (oY T 68
122,17 GEEDALASCEVALUEC ...ttt et ettt et n 68
12.2.2 SEDALASEEVAIUC. ...ttt ettt ettt et ettt ettt 69
R I @ 7] B s 4 SRR 69
12.2.4 DeLeteDAEASEL ...ttt ettt ettt ettt ettt 69
12.2.5 DataSetDirectOry........coiviiviiiiiiiiiiiiiiieiiicictccie e s 69

722 T P 69
12.3.1 IDL S ACSI SPECIfI€S.....vvriririiieieieieieiciciiitetstese ettt 69
O A 2.3 o2 o |) TR 70

L2 U 1V | P 70
13. MAPPING OF PUBLISH AND SUBSCRIBE DATA TRANSFER ...cveureureeresrensrmsrnsrenssensnnsenssnnss 72
L B B O 1YY oV =1 72
13.2 Report control class definitioncoooiiiiiiiiiiiic e 72
13.3 REPOMING SEIVICES ...ciiiiiiiiiiieii ettt ettt e e b e e s sb bt e e e abee e e e abbeeeesaneeeeas 73
I3.3. 1 REPOT.uiiiiiiiiiiiiiiiiciicii s 73
13.3.2 MOTE OPEYAIONS ..ottt 74

L T | P 74
3.8 UM et 76

Public V2.0/2002-01-15/ Page 6 of 141

SCSM to CORBA 1ST10258/009

14. MAPPING OF GENERIC OBJECT ORIENTED SYSTEM-WIDE EVENT (GOOSE) 77
0 I 1o (o Yo [o o o [P 77
14.2 Generic object oriented system-wide event control Classccccveeeeeiiicciiieiee e, 77

T4.2. T GCONAME ..ottt ettt ettt e et e ettt e e et e e eate e e e aeeeeeareseeaaes 77
A €T =] =¥ 7T ST 78
14.2.3 SHAGLD ..ottt 78
T14.2.4 USCYDALINAI.......vvveeeeveeeeeeeeeeeeee ettt eete e ettt e e ettt e e e et e e ettt s e eaee e e etaeseennesseeaaes 78
14.3 Generic object oriented system-wide event (GOOSE) message.........cccccevveeeeeevicinvneeeeennnn. 78
14.4 Service SPeCIfiCation 78
14.4.1 GetGOOSECONLIOIVALUE ..ottt eeaes e 78
14.4.2 SetGOOSECONIIOIVAIUC......ccvveeceeeieieeiieeeeeeeie ettt ee et ete et eras e 79
A5 D e e 79
G T 1V | P 80

15. MAPPING OF CONTROL IVIODELceeuuiiresirenssrrnnsrensssrsnsssrensssrenssssnnssesnsssssnsssssnssssnnssssnns 81
ST I 7o a1 i foY I (9] 1o To [UTox 1[0} o TR 81
LIV 7o) o1 i (o] IE=T=] VA (o1 TR 81

S R o TR 81
15.2.2 SCLECHWIERVIALUEC ...ttt ettt ettt ettt ettt eat e se e e 81
T5.2.3 CANCEL oottt ettt ettt ettt ettt ettt ettt e ettt e saae s 82
15.2.:4 OPCHAL.....c.oceieiiiieiiieieeee e 82
15.2.5 CommanAdTerMINAEIONcueovveeeeeeiereeeeeeeeeeeeeeee et eeete et ete e et ete e eeetae et seettseeteseeaessereeeiaees 82
15.2.6 SYNCATOCHECK.c.ccviiiiiiiiiiiiiicii s 82
15.2.7 TimeActivatedOPErate.covvieueueueiiiiiiieieee ettt 82
5.3 D e e 83
ST U1V | 84

16. MAPPING OF SUBSTITUTION IMODELccuuiiieeiiieeiiireesirrmsssremsssrsnssssnnssssnnsssensssesnsssssnsssenns 86
16.1 SUDSHIULION OVEIVIBW ...t e et e e e e e e e e e e e e e e e e e naeeeeeaean 86
16.2 Service SPECIfiCAtIONuuiiiii i a e 86

TO0.2.1 SUDSHEULC....oeoeeeeeeeeeeeeeee ettt ettt e e et e e et e ettt e e ettt e e et eeeraes 86
N U Ly T LT a2 R 86
LT T 0 P 86

17. MAPPING OF TRANSMISSION OF SAMPLED MEASURED VALUES......cccccuireeiemrrmnrrnnsrenseenes 88
L T O LY/ oY/ 1= 88
17.2 Sampled Measured Value Control Class Definition ... 88

A B 1o A7 1 U 88
] =X 7T/ T 88
17.2.3 DAESCENGIIL ..ottt ettt e ettt ettt e et e e e et e e ettt e e ettt e s et eeeaaes 89
17.2:4 REfTRALE ... 89
17.2.5 INOOFSIP ottt 89
17.2.6 COMUPRALE ...t 89
17.2.7 SIIPRALE ...t 89
17.3 Sampled Measured Value Service Definitionsoocoeeiiiiiiiiii e 89
17.3.1 GEtSMVCONITOLVALUECS ..ottt ettt eae e eaea s 89
17.3.2 SetSMVCONIIOIVAIUES ...ttt ettt ettt ettt sat s 89
17.4 Sampled Measured Value Buffer Format ... 90
1741 BUffer defillitionc.ccvuiiiiiiiiiiiiiiicicicicci st 90
17.4.2 BUffer iHECTFACE.........cocooviieieiciiiiiiiiis 90
T8 D e e 90
S T 1Y | P 92

18. MAPPING OF TIME SYNCHRONISATION IMIODEL ...cuuveureeiresrmsrenssmssmssenssmssnssenssmssenssnssmssensen 93
< 20 B 1 (o Yo [o7 o o [P T 93
LRSI A S 1= V] o =Y T T 93

Public V2.0/2002-01-15/ Page 7 of 141

SCSM to CORBA 1ST10258/009

T8.2.1 PrOPATE ... s 93
T8.2.2 IMEASUTE .ottt e e ettt e et e et e e e e e e et e e et e e e e e e e eaes 93
18.2.3 SYNCATONISE. ...ttt 93
8.3 D e e 93
9. FILE TRANSFER. .. teuuttuuieetirmurensrenssrnssrasssensssnsssasssansssnsssasssessssnsssnsssnnssensssnsssnnssnnssensssnns 94
S I I o 1 1= =1 1o =T 1Yo L= 94
I R o 1.3 N7 7 TR 94
I O o ey BT 94
19.1.3 LASEMOGIIEA ...t 94
LS T o 1 LI T= Y oV Tt N 94
B R € o 1 el vy ol 94
T9.2.2 SCEFILE SETUVICE w.voovveeeee et ee ettt et ettt et e e e et s et s et e eate e eeraeeensen 94
19.2.3 DEICLEFILE SCTUICE woocuvveeveeeeee et ee ettt ettt e e et e ett e et e e eat s et seateeereeeeaee s 94
19.2.4 FileDirectOry SEIUICEc.cueuviuiiiiiiiiiiisicicieiciisttt et 95
1.3 D e e 95
(ST 1V | 96
PART 3 REFERENCE MATERIAL ..cucueieterssssssesererarassssssssnsasasasasssssssssnnse 97
20. ADDITIONAL BIBLIOGRAPHYccuiituieusirmusinssrensrenssrnsssasssenssmnssssssssnsssnssssssssnsssnsssnsssnnssen 98
g T 1 I 929
2 It I 1 O] = 7 NPT 99
2111 COS NAE SCIVICE oottt ettt et e e e et e s et s e sttt e s et e s ssareesssaeeeeas 99
21.1.2 COS EVCNE SCIUICE woveoveeeeeieeeeee ettt ettt ettt e et e et e e sttt e s s sares e e eaaaes 101
D I O3] IV =1 o] o] o [P URPR I 103
22. ACSI DOCUMENT QUICK REFERENCE-......cccutteuriensrrmsrrmnsrenssensssnsssnssssnssenssenssennssnnssensns 122
23.DOTS GENERAL MODEL UPDATE ...ccuuiieuiiiiieursnuressrresssssssnsssnsssasssnssssnssensssnsssnnssennns 128
P22 T T 11 (o Yo LU o 1o} o R 128
23.2 Common Data AHMDULE TYPESeeiiiiiiiie e 128
23.3 Common Data Class SpecCifiCationscccuuviiiiiiiiiiicieee e 128
23.3. 1 DAEA CIASSES..cc.uveeeeiieeeeeeeeeeeeee ettt ettt ettt ettt sttt st e sttt e ettt e eate s 129
SYSeM INFOIMEALION ...t 130
Measured values and analogue SetPOINtSoceiviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 130
Measurand IAentifiCAtiON................ccoveeveieueiiiiiinisieee ettt 130
MELCTOA VALUES ...ttt e ettt e ett e et e et s e et e e etsseeaaeeens 130
(070]a110]|F=1 o1 [SXo F=1 = 130
(070] 01170 [F=1 o1 (SN F= 1 ¢= TR 130
SEAtUS INfOTMALION ...t 130
Settings INFOTMALIONcccuviiiiiiiiiiiiiicicit s 130
23.3.2 Data ABTIDUEE CLASSvvveeeeeiieeeeeeeeeeeeee ettt ettt et e et e et e e e e te e e eaaees 130
23.3.3 L0QICAl NOAE CIASSES.......coveeeiriiiiiieisieteteeee ettt 130
P22 T S 070 o [o (V111 o R 131
24. COMPARISON BETWEEN IEC 61850 DRAFT STANDARD AND IEEE 1525 DRAFT STANDARD132
241 The IEEE 1525 SpecifiCation ... 132
242 TRE IBEE 1525 ... 132
24.3 Comparison With IEC 61850coiiiiiiiiiiieiee e e e e eanrnaee s 133
25. COMPARISON BETWEEN IEC 61850 DRAFT STANDARD AND OMG UMS-DAF............. 134
P T B 070 01 (=Y o | (=TT 134
25.2 UMS Introduction (from the referred document)..........ccceeevviiiiiiii e 134
25.3 Characteristics of UMS-Data Access FacCilityoocueviiiiiiiiii e 136
25.4 Comparison with IEC 61850 and DOTS........coiiiiiiiiiiiiie e e e 137

Public V2.0/2002-01-15/ Page 8 of 141

SCSM to CORBA 1ST10258/009

26.INDEX139

Public V2.0/2002-01-15/ Page 9 of 141

SCSM to CORBA IST10258/009

Part 1
Introductory material

Public V2.0/2002-01-15/ Page 10 of 141

SCSM to CORBA IST10258/009

Introduction

1.1

Purpose of this document

This document is the DOTS deliverable 3.1 Specific Communication Service Mapping
to CORBA.

The main content of this deliverable is a mapping from the draft standard IEC
61850 abstract specification of communication service to a concrete
communication infrastructure based on CORBA specifications.

V o\

(O
A 4.
CORBA

61850

Figure 1-1: Mappping between IEC 61850 and

This mapping will be submitted to the IEC Technical Committee in charge of the
specification of other mappings (TC57) accompanied by the General Model
Definition document, elaborated in the workpackage number 1.

This document will serve as a basic guideline to provide a real implementation of
IEC 61850 models over real platforms, using CORBA technology as support for

ACSI Service

No protocol
Specific Mapping
(SCSM) ACSIPD There is no ACSI PDU

Application Layer There is just an AL
PDU. ACSI services and
Protocol their parameters are
mapped to the AL PDU

PDU: Protocol Data Unit (encoded
Message containing the service
parameter, etc.)

Figure 1-2: ACSI mapping to an specific application
(communication) layer [From IEC 61850].

Public

V2.0/ 2002-01-15/ Page 11 of 141

SCSM to CORBA IST10258/009

1.2

distribution. The Abstract Communication Service Interface (ACSI) specified by
IEC 61850 needs to be mapped to a real (not abstract) Specific Communication
Service to be usable by application developers. This document provides an ACSI
mapping to CORBA [OMG 1999].

This means mainly that the communication services used to make a distributed
SAS application willl be those provided by CORBA.

SAS SAS

I
ACSI $ervice \ L
CORBA SCSM %

ACSI PD
v V4 |
CORBA CORBA
ORB Protocol ORB Protocol

Figure 1-3: Basic view of the ACSI mapping to CORBA (compare
with Figure 1-1).

It should be noted however that CORBA is not a communication service but a
middleware service, providing other types of functionality and methodology that
go beyond those of pure communication services (for example automatic
generation of skeletons and proxies, interface repositories, server object
management, etc).

Scope of the ACSI

The IEC 61850 ACSI applies —but is not restricted — to the communication
between devices in electrical substations. The ACSI provides services for device
interaction that are structured in a collection of interfaces. The following three top-
level basic abstract interfaces are considered!:

1. Services to be used by a remote client for:
e Real-time data access
e Device control
e Eventreporting and logging
e File transfer
o Self-description of devices
e Data typing and discovery of data types

1 All interfaces defined in the ACSI are abstract, so, no further consideration/mention of
abstractness will be done (this means that we will use the term “interface” where the IEC 61850
Part 7-2 uses “abstract interface”.

Public

V2.0/ 2002-01-15/ Page 12 of 141

SCSM to CORBA IST10258/009

1.3

2. System-wide event distribution between an application in one device and
many remote applications in different devices.
3. Transmission of sampled measured values.

IEC 61850 Part 7-2 defines the abstract communication service interface (ACSI) in
terms of:

® An abstract model of hierarchical data object classes of all data and control
information that can be accessed by the ACSI.

e An abstract model of the services that operate on the objects? (interaction
between a client application and the server application)

e The service procedures of the abstract services that has to be implemented in
the server

e The parameter associated with each service

This part of IEC 61850 does not specify individual implementations or products,
nor does it constrain the implementation of entities and concrete interfaces within
a substation device. This part does not specify the mapping of the abstract
functionality to standard application layers. These mappings are specified in the
specific communication service mappings (SCSM) part of this standard (Part IEC
61850-8-x or IEC 61850-9-x).

Mapping Rationale

This mapping will enable the development of applications that follow IEC 61850
specification over a CORBA compliant middleware.

1.3.1 Whatis IEC 618507 What is it for?

IEC 61850 is an IEC draft standard titled: Communication Networks and Systems
in Substations.

It focus on the recognized necessity of making easy the interoperation of systems,
networks and devices in industrial control installations and specifically in the
electric utilities sector. This necessity is targeted by two approaches (in draft

status) in the context of power substations: the north-american UCA 2.0
architecture, and the IEC 61850 standard.

The objective of IEC 61850 is to develop a communication standard that meets
performance and cost requirements, and which will support future technological
developments. The standard tries to use open protocols and provide support for
self descriptive objects to be possible to add new functionality.

2 Even when the modeling tries to be object-oriented it still has some procedural corruption, for
example when it says “services that operate on the objects” it is thinking in “procedures that operate on
the objects”. A true OO version of this should be “services that are requested from objects”.

Public

V2.0/2002-01-15/ Page 13 of 141

SCSM to CORBA IST10258/009

1.3.2 What is CORBA? What does it do? What is OMG?

CORBA is the acronym for Common Object Request Broker Architecture, OMG's
open, vendor-independent architecture and infrastructure that computer
applications use to work together over networks. Using standard protocols like
OMG’s IIOP, a CORBA-based program from any vendor, on almost any computer,
operating system, programming language, and network, can interoperate with a
CORBA-based program from the same or another vendor, on almost any other
computer, operating system, programming language, and network.

Some people think that CORBA is the only specification that OMG produces, or
that the term "CORBA" covers all of the OMG specifications. Neither is true. The
OMG specifies many other object-oriented topics, like UML, MOF or XMI.

1.3.3 What is ACSI?

The Abstract Communication Service Interface is a virtual interface to an IED
providing abstract communication services, e.g. connection, variable access,
unsolicited data transfer, device control and file transfer services, independent of
the actual communication stack and profiles used.

Being abstract, it is not usable to implement any application. To make possible the
construction of applications, it is necessary to map it to a specific communication
service. This is what this document is about: it contains a Specific Comunication
Service Mapping (SCSM) for the ACSI.

1.3.4 What is the reason for trying to map IEC 61850 ACSI to CORBA ?

CORBA is the de-facto standard for distributed object systems. While on Microsoft
Windows desktop machines the natural middleware is COM/DCOM/COM+ and
Java in Internet-oriented applications, CORBA goes beyond any limitation
providing a true open infrastructure for application freedom.

Any application that requires some form of heterogeneity, robustness,
transparency, scalability and/or evolvability will find in CORBA a suitable
platform. This is the reason why most industrial, object-oriented, critical
application are being deployed using CORBA technology [Sanz 2000].

1.3.5 Can CORBA be considered an Specific Communication Service ?

It is not very clear what is an SCS from the point of view of IEC 61850, but CORBA
(and more specifically the IIOP) can be considered a SCS. In fact, the ACSI looks
like it has been an evolution from the MMS specification.

1.3.6 What is the CORBA communication stack proper ?

CORBA systems can be deployed over any communication system. The most
common communication stack is TCP/IP because this is the protocol suite used by

Public

V2.0/ 2002-01-15/ Page 14 of 141

SCSM to CORBA IST10258/009

the basic interoperability protocol IIOP. IIOP stands for Internet Inter-ORB
Protocol, i.e. the IOP over the Internet protocols, i.e. TCP/IP.

But using ORB based interfaces makes possible the use of other specialized
protocols for any specific purpose without the need of modifying the objects that
implement the application functionality. You can find CORBA over ATM or
hardware bus protocols.

1.3.7 Is any standardization organization using OMG specifications ?

The following OMG specifications are ISO standards:

IDL ISO/IEC 14750

Trader ISO/IEC 13235

MOF 2nd CD ISO/IEC 14769
Interoperability ISO/IEC 19500-2

Other SDOs (Standards Development Organizations) and Consortia that are using
OMG specifications are:

Parley API v1.1 OMG IDL, used for API spec
IEEE 1226 OMG IDL, used for testing I/Fs
Davic 1.4.1 CORBA 2.2 is referenced
W3C OMG IDL, used in DOM
ANSI X12 UML, used for modeling EDI business
processes
Un/CEFACT UML, used for modeling EDI business
processes
ISO JTC1/SC24 OMG IDL, used for VRML work
1.4 Objectives of the mapping
Within this report, the objects and services of the ACSI will be mapped to CORBA.
Data
exchange information will consist of real-time monitoring and control data,
including measured
values, events and files
The mapping of ACSI to CORBA will define how the concepts, objects and
services of ACSI should
be implemented using CORBA distributed objects technology, allowing
interoperability among
substation functions and devices of different manufacturers.
1.5 Document Structure
This document is structured in three parts:
Public V2.0/2002-01-15/ Page 15 of 141

SCSM to CORBA IST10258/009

1. Introductory material
2. The mapping proper
3. Reference material

The introductory material goes from Chapter 1 (Introduction) to Chapter 5
(Mapping Details). This material includes the introduction (this chapter), glossary,
mandatory references and material necessary to interpret this mapping (Chapters
4, Assessment of 61850 & CORBA, and 5, Mapping Details). Please read these
chapters before going to part 2.

The second part contains the mapping specification part. We have tried to adopt
the same structure than the mapping documents published by the IEC, in order to
simplify the coordinated use of both documents and ease the process of
submission to the Technical Committee in charge of the specification of other
mappings (TC57).

Each chapter in this part, from chapter 6 to chapter 19, addresses the mapping of
the specific chapter of the ACSI specification.

For example, chapter 6 of this document addresses the Mapping of the Server
Model, that corresponds to chapter 6 of IEC 61850 Part7-2 Server Model. Chapter 7
of this document addresses the Mapping of the Application Association Model,
that corresponds to chapter 7 of IEC 61850 Part7-2 Application Association
Model.

The last part contains reference material like additional bibliographic references,
IDL files and UML models.

Public

V2.0/ 2002-01-15/ Page 16 of 141

SCSM to CORBA IST10258/009

2. Definitions, acronyms and
abbreviations

Read the separate document DOTS Project Glossary (DOTS Document No.
IST10258,/010).

Public V2.0/2002-01-15/ Page 17 of 141

SCSM to CORBA

IST10258/009

3.

Mandatory References

3.1

This section contains all mandatory references used in this document. References
are grouped by document origin: DOTS, IEC, OMG and Others. For this document
“mandatory” means that what these documents say is applicable to this mapping
except explicit negation of applicability.

DOTS References

Distribution of DOTS deliverables is specified in the DOTS Project Programme.
Other DOTS documents distribution policies are specified in the DOTS Project
Quality Plan. Contact DOTS Overall Project Manager to get further information
about any DOTS document.

We mention here references that are not publicly available, even if them are, in
principle, mandatory. We can do this because this is a DOTS project document
and not a plublicly available specification independent of DOTS. In the case of
submittal, we must modify this to refer only to available publications (available at
least for the intended audience of this document).

Title | DOTS Project Programme
Date | 18/10/1999
Release |1.0
Publisher | DOTS Consortium

Title | General Requirements Specification

Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

IST10258/001

17/2/2000

1.1

DOTS Consortium

Project Quality Plan

IST 10258 /002

2/6/2000

1.1

DOTS Consortium

Title | DOTS General Model Definition

Public

V2.0/ 2002-01-15/ Page 18 of 141

SCSM to CORBA

IST10258/009

Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

IST10258 /004

27/4/2000

1.0

DOTS Consortium

DOTS Report on IEC TC57 meeting at Orlando

IST10258/006

20/3,/2000

1.0

DOTS Consortium

DOTS Project Glossary

IST10258,/010

13,/4,/2000

0.2

DOTS Consortium

3.2 IEC References

IEC references can be obtained from IEC and in most cases also from ISO and
national standardization bodies. In the case of IEC 61850, it is in DRAFT status.
This means that the only way of obtaining it is getting in contact with the IEC
technical committee in charge of it (IEC TC 57).

Title

Number
Date
Publisher

Title

Number
Date
Publisher

Title

Number
Date
Publisher
Notes

Communications requirements for functions and device

models.

Draft IEC-61850 Part 5, 57/WG10/33 /WD

24/02/2000

IEC

Configuration language for electrical substation IEDs

(Intelligent Electronic Devices).

Draft IEC-61850 Part 6, 57/JTF2/2/WD

11/07/2000

IEC

Basic communication structure for substations and

feeder equipment

Draft IEC-61850 Part 7

8/11/1999

IEC

The versions of the different parts of this document used

for this mapping are:

Public

V2.0/2002-01-15/ Page 19 of 141

SCSM to CORBA IST10258/009

e Part 7-1 Principles and models. Version 2. CD 08th
November 1999

e Part 7-2 Abstract communication service interface
(ACSI). Ed 1.0, 57/481/CD, 30t June 2000.

e Part 7-3 Common data classes. Ed 1.0, 57/482/CD,
30th June 2000 .

e Part 7-4 Compatible logical node classes and data
classes. 57/WG10/38/WD Version 3.WD 7th

3.3

OMG specifications are public specifications. This means that you can get them

January 2000

OMG References

and use them for free from the OMG web site (www . omg . org).

Title

Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

The Common Object Request Broker: Architecture and

Specification

CORBA V2.3

October 1999

23.1

Object Management Group

Real-time CORBA 1.0 Adopted Specification

ptc/99-06-02

June 1999

1.0

Object Management Group

OMG Unified Modelling Language Specification

ad/99-01-02

January 1999

1.3

Object Management Group

C++ Language Mapping

ptc/2000-01-02

January 2000

Object Management Group

Public

V2.0/ 2002-01-15/ Page 20 of 141

SCSM to CORBA

IST10258/009

Title
Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

Title
Number
Date
Release
Publisher

Title

Number

Java ™ Language to IDL Mapping

ptc/2000-01-06

January 2000

Object Management Group

OMG IDL to Java ™ Language Mapping

ptc/2000-01-08

January 2000

Object Management Group

Fault Tolerant CORBA Joint Revised Submission

orbos/99-10-05

October 25, 1999

Object Management Group

CORBA Messaging Joint Revised Submission

orbos/98-05-05

May 18, 1998

Object Management Group

Persistent State Service 2.0 Joint Revised Submission

orbos/99-07-07

August 2, 1999

2.0

Object Management Group

Notification Service Joint Revised Submission

telecom/98-11-01

November 3, 1998

2.0

Object Management Group

Naming Service Specification

orbos/01-02-65

February 2001

Object Management Group

Response to the OMG RFP for Schedulability,
Performance and Time

Ad/2000-08-04

Public

V2.0/ 2002-01-15/ Page 21 of 141

SCSM to CORBA IST10258/009

Date | August 14, 2000
Release |1.0
Publisher | Object Management Group

Public V2.0/2002-01-15/ Page 22 of 141

SCSM to CORBA IST10258/009

Assessment of 61850 & CORBA

4.1

Introduction

This document contains a mapping between two somewhat different perspectives
of distributed systems. This chapter addresses some specific issues of the mapping
that were not covered in the DOTS General Model Definition Document.

This mapping is based mainly on Part 2 of the document Basic communication
structure for substations and feeder equipment (Draft IEC-61850 Part 7°).

From a basic and fundamental perspective, the mapping to CORBA should be
immediate because the IEC61850 claims to be object oriented. This is not as
straightforward, however, because the Draft IEC-61850 Part 7 is not as object-
oriented as it may look at the very beginning. Some quirks will be necessary to
provide a clean CORBA view of the SAS domain addressed by IEC 61850. These
quirks, however, will clarify some of the possible interpretations of the IEC 61850
Part 7 series, getting a clearer OO picture of it.

IEC 61850 Part 7 series is structured in four documents:

1. Part 7-1 Principles and models.

This section gives an overview on the architecture of the co-operation and
communication between substation devices like substation hosts, protection devices,
breakers, transformers etc. The architecture and part of the specifications are
applicable to many other applications outside the substations, but the main focus is to
meet the requirements for communication in substations as defined in part IEC 61850-
5.

2. Part 7-2 Abstract communication service interface (ACSI).

This part of the standard IEC 61850 defines the common service models (abstract
communication service interface, ACSI) for use in the utility substation and any other
real-time co-operation of any kind of field device. It provides the detailed specification of
what kind of objects are available and how to communicate with these objects. The
ACSI has been defined to be independent of the underlying protocol. Specific

3 The versions of the different parts of this document used for this mapping are also different
because the IEC 61850 Part 7 document is progressing in four parts. Specific numbering of the
versions used for this version of the mapping to CORBA can be found in section 3.2 of this
document (IEC References).

Public

V2.0/ 2002-01-15/ Page 23 of 141

SCSM to CORBA IST10258/009

communication service mappings (SCSM) are specified in part 8 (station bus) and part
9 (process bus) of this standard.

61850-8-x
61850-9-x

3. Part 7-3 Common data classes. Specific Communication
Service Mapping
This part of IEC 61850 defines attributes and attribute

class definitions for classes of data objects relating to (_51850'7f4
substation applications. The definitions are based on Compatible Logical Node
existing or emerging standards and applications. In Classes and Data Classes
particular the class definitions are based upon: 61850-7-3

= the specific data types defined in IEC 60870-

5.101 and IEC 60870-5-103. Common Data Classes and

Attribut
= the common class definitions from the Ultility ributes
Communication Architecture 2.0: Generic 61850-7-2
Object Models for Substation & Feeder Abstract Communication
Equipment (GOMSFE). Service Interface (ACSI)
.) 61850-7-1
4. Part 7-4 Compatible logical node classes and Communication Reference
data classes. Model
61850-5
This part of IEC 61850 defines logical node classes, Communication Requirements

data object classes and their relationship in the context
of substations and feeder equipment.

Figure 4-1: IEC 61850 Parts.

This document IST10258 /009 addresses specifically
the mapping of the ACSI (Part 7-2) to CORBA. This mapping is obviously based in
other parts of the IEC61850 Draft standard (See Figure 4.1).

Public V2.0/2002-01-15/ Page 24 of 141

SCSM to CORBA IST10258/009

4.2 The IEC 61850-7 Object Model
4.2.1 The basic model

The IEC 61850 Part 7-2 specifies a collection of abstract interfaces used to
interoperate with objects that constitute an application. These objects are
instantiated from classes that are specified in sections 7-3 and 7-4 of the

Object Dictionary of a device contains all accessable information

3 Logical Node Object

c

£ Objects - - @

g according to Data Objects | | Data Objects 3

< 7-4 and 7-3 . . o

Data Objects | | Data Objects o

A\ § ¢4 3

H Services by which the information can be accessed/manupulated

‘_E Communication Objects and Services according to

§ 7-2 mapped to a SCSM

g

=

3
S Network

Figure 4-2: Object Dictionary and Services of a device [From IEC 61850 Part

specification.
The software view of this model is the following;:

We have an application running in a computer that is composed by a
hierarchically-organized collection of objects and we have an external
interface that should provide the capability of access/manipulating those
objects.

The objects can be any object following 7-3 and 7-4 and the access services
are specified in 7-2.

4.3 Problems with the IEC 61850 Model

4.3.1 Introduction

Apart from minor -reparable by careful editing- errors and errata, there are some
more fundamental problems with the IEC 61850 draft standard that makes
difficult the construction of the mapping.

Public V2.0/2002-01-15/ Page 25 of 141

SCSM to CORBA IST10258/009

4.3.2 The model is not finished

As was said before (Section jError! No se encuentra el origen de la referencia.
jError! No se encuentra el origen de la referencia.) the model is not yet finished (at
least the documents are not finished) and there are some pending issues to be

/\ i o i . ' A H
i Cor:;rion : : 7-4 : 74
: Data Class | iDataClass {4 ,, 11iLNClassi

Application view
-

7-4 o 7-4
Data Object|; , ; |LN Object
v A
Ay L

7-2 5 7-2/8-1
Variable Class | — Variable Object | Gt Set -

I , l

Comm. view

! 7-2] 7-2 Set RC,
i Report Control i |::> Report Control Report,
I Class______ ; Object

Figure 4-3: Application and communication classes
and objects [IEC 61850-7-1 page 15].

addressed, mainly cleaning, consistence and completion. There are parts still
missing and others that need some rework.

4.3.3 Inconsistencies

Du to the draft status, the document set present some inconsistencies that make
difficult the integration of all ideas in a common model. As an example, the next
tigure (from Part 7-1) shows the global relations between what the different parts
specity. It uses the term variable object to refer to the collection of entities used in
the communication view, and derived from what is said in part 7-2. But this part

never uses this term to refer to anything, instead it proposes a model more related
with the CORBA view.

We expect that from the collaboration of the DOTS consortium in the IEC task

force most of these inconsistencies will dissapear through the real implementation
of the standard (this is the real test of any specification).

Public V2.0/2002-01-15/ Page 26 of 141

SCSM to CORBA

IST10258/009

Classes
7-4/17-3 1 I _
A LN magg,,f-': | Data Class | | Container
1 T eee—e— —_—
i 1 | Data Class | I
3 : | Data Class | 3 :
Il I :'_"_"'_| .I I
Data Class | !
2 : I |Data Class | § |
= ; T -
c 1 !
(=] [i
= : !
m 1 1
= H . 1 ;
= Data Object T Container
o + e ;
E- LN Object Data Object
Data Object .
Objects Data Object
Application

v (Instances)

k]
1
1
1
]
1
)
1
1}
1
1
1
r
1
’
]
1
3

A e

Variable Object

Variable Object
Variable Object]|

Variable Object
Variable Object

7-2 1 8-1

r
r
r
T
r
1
T
J
[
L
r

B

Application

<Communication view>

Figure 4-4: Application to communication mapping [IEC 61850-7-1 page 16].

4.3.4 The partial-OO nature of the ACSI
The model is not pure OO (and hence the need of a mapping to CORBA). One

question emerges all the time:

What is the reason for separating object definition (7-3, 7-4) from object interfacing
(7-2) ?
This separates in two different specifications what should be in a single one. This
is due perhaps to the procedural oriented perspective that has guided IEC 61850

formulation:

We have data structures (7-3 and 7-4) that can be referred-to using the word
class or object but that does not make them objects.

We have access methods (7-2) for these data

Public V2.0/2002-01-15/ Page 27 of 141

SCSM to CORBA IST10258/009

This is the classical separation done in procedural programming technology.
Sections 7-3 and 7-4 describe a database and section 7-2 an abstract API to access
it.

4.3.5 Violations of encapsulation

One of the ten commandments of object orientation and specially important in
CORBA is

encapsulation. This is violated sometimes when some objects can provide services
that refer to inner state of other objects.

Draft 61850-7-1 page 12

As depicted in Figure 4 all application-specific information of a device (information
according to 61850-7-4 and -7-3) that can be accessed using the services defined in
61850-7-2 build an object dictionary.

4.3.6 Evolution in the specification perspective

The draft standard has had a changing perspective that has been going
progressively towards object orientation and separation of different componential
specifications. This has been good for us but the process hasn’t concluded and
some oldies still remain in the text.

This evolution has had bad consequences for our mapping in some cases. For
example:

Draft 61850-7-1 page 14

[Editor's Note 1 — The main purpose of 7-3 and 7-4 are the class definitins while the 7-
2 services - when applied in an SCSM - deal with application objects. On the other
side 7-2 uses also an object oriented approach describing its own services. 7-2 has
also classes and objects. But the classes of 7-2 are mainly independent of the classes
of 7-3 and 7-4. One mistake in the past was, to combine these two worlds of classes.
Another was the mix of classes and objects that caused many disconnects in the

past. Hope that this draft reflects the many discussion we had so far.

| guess we have now a clear understanding that 7-4 and 7-3 define content while 7-2
provides in conjunction with a SCSM the tool. Both are important - but we must
clearly distinquish both.]

We cannot understand why combining data and access method is a mistake from
an object-oriented perspective. The main work of this mapping is to combine-back
these, now separated, parts of the standard.

In chapter 5 we will explain how the data expressed in 7-3 and 7-4 can be accessed
using 7-2 by means of the construction of a collection of CORBA compliant objects.

Public

V2.0/ 2002-01-15/ Page 28 of 141

SCSM to CORBA IST10258/009

44

4.3.7 Loose Typing and Unnecessary polymorphism

The ACSI is build without a strong typing policy, specifying polymorphic
interfaces that are difficult to map and unnecessarily complex if done with strict
adherence to the text of the specification.

Some operations (mainly directory operations like LogicalNodeDirectory in
page 35) are polymorphic in their specification in the ACSI. This approach is not
very sensible in most cases , because when a client requests one of these
operations, it expects a non polimorphic return result and it should be better to
specify a non-polimorphic operation for each return type.

CORBA Basics
4.4 1 Introduction

The best way to learn about CORBA technology and how to use it is to get a good
book. The OMG web site (www . omg . org) suggests a good collection of literature.

In this section we will assess the CORBA technology from the perspective of the
mapping, introducing some CORBA elements that will be used in the mapping.
Complete information about these elements can be found in the CORBA
specification.

The mapping will be based in the definition of CORBA objects and the
specification of architectures and deployment policies that will let developers
build IEC 61850 application over a CORBA middleware.

4.4.2 Object Request Forwarding

The central idea of CORBA is the transparent access to remote services provided
by objects.

This transparency is achieved by means of the use of:

* An Interface definition language that enables the clean coupling of clients
and servers.

* C(Client and server stubs that are generated automatically by the IDL
compiler.

* An interoperability protocol tan provides the necessary support for
communcation.

This makes possible the deployment of objects over heterogeneous platforms
(HW-OS) and using heterogeneous languages.

Public

V2.0/ 2002-01-15/ Page 29 of 141

SCSM to CORBA IST10258/009

Server

Skeleton

Figure 4-5: Object request forwarding process.

4.4.3 Objects, Interfaces, Servers, Servants, POAs and more

CORBA objects are incarnated by pieces of run-time code called servants. Servants
can be built in any programming language supported by the IDL compiler.

Object servants are controlled by POAs and POAs are managed by POA
Managers. They are the entities that control the flow of requests to servants.

Client application Server application
Request b ECtRETEIENCE . Loglcal """" ’ ObjeCt

Invocation Comrodtion D -

Actual :
0)5L5) Flow C)547)

1 I \ I

Figure 4-6: CORBA view of client server interaction.

Any POA manager can be in any of four possible processing states; active, inactive,
holding, and discarding. The processing state determines the capabilities of the
associated POAs and the disposition of requests received by those POAs. Figure 4-
7 illustrates the processing states and the transitions between them. A POA
manager is created in the holding state and only upon activation it can proceed
with request handling.

Public V2.0/2002-01-15/ Page 30 of 141

SCSM to CORBA IST10258/009

4.4.4 OMA Services

CORBA applications can be built from scratch or exploiting prebuilt entities. Some
of the most important ones are specified by the OMG and constitute what is called
the Common Object Services or CORBAservices.

Application Objects J

A

Common Facilities

Input Method Financial Repositories

Facilities
Meta-Object

v

Domain Technology

CORBAmed Manufacturing

Business Electronic Telecommunications
Object Commerce

Externalization

Relationships

Common Object Services

Collections Properties

Figure 4-8: The Object Management Architecture provides a structured approach to
component/interface organization.

Inactive

deactivate deactivate
deactivate
activate
\V activate . discard : \ :
hold hold
discard
create

Figure 4-7: A POA Manager can be in four states: holding,
active, discarding and inactive.

Examples of these services of special importance for the mapping are:

Public V2.0/2002-01-15/ Page 31 of 141

SCSM to CORBA

IST10258/009

* Naming service
* Time service
* Event service
* Security service

4.4.5 Obiject IDs, Object References and Object Names

CORBA uses several types of entities to refer to objects in CORBA applications.

We will consider three of these elements:

* Object References (also called Interoperable Object References or IORs):
are the equivalent to a pointer but with distributed scope. It is the resource
used to invoke a specific service of an object [See CORBA 2.3.1 Section 13.6].
Any object reference includes a field (the object ID) that is used by the POA
to locate the servant that incarnates an object. IORs are the cornerstone of

location transparency.

* Object Names: Are used to query a Name Service [See CORBAservices
Section 3] in order to get an IOR for a specific object*. Names are used to
give objects meaningful names that can be simpler to handle by humans

(for example, by programmers).

* Object IDs (OIDs): Are used by the POA to identify the object (among
those managed by that POA) that is addressed in a specific request. It is

extracted from the IOR.

* Object Keys (OKeys): Are the field of the IOR that contains the OID.

Object Key

Object ID

\Y

o)

L

T

A

G

E

3

3

Figure 4-9: Containment relation between the interoperable
Object Reference (IOR) the Object Key (OKey) and the Object

T /MTTN

The Object Reference (IOR) is the cornerstone of CORBA interoperability because
it contains all the information needed to locate an object and forward a request to
it. The Name is only used to query the Name Service to get the Object Reference.

4 The Name Service stores name-to-reference associations

Public

V2.0/ 2002-01-15/ Page 32 of 141

SCSM to CORBA IST10258/009

Server
Name V
IOR

Ol
OID
POA _—r Senvant

Client

o
IOR
IOR

IIOP (ORB)

Figure 4-10: Relations between different types of object references,
identifiers and names.

4.46 The CORBAservices Name Service

This service will be used by the mapping to handle DOTS object naming and
localization.

Public V2.0/2002-01-15/ Page 33 of 141

SCSM to CORBA

IST10258/009

Mapping Details

5.1 Introduction
This chapter addresses some issues relevant for the understanding of the
mapping. As is mentioned before the true nature of IEC 61850 is not pure OO, and
some deviation will appear (in fact this is the reason why the mapping is
necessary). The next section analyzes the different alternatives we have considered
for the mapping.
This mapping addresses the definition of the following ACSI services (defined in
Part 7-2) using CORBA technology.
Server model: GOOSE model:
ServerDirectory Activate
Deactivate
Logical device model: GetGOOSEControlValue
LogicalDeviceDirectory SetGOOSEControlValue
Logical node model: ControL model:
LogicalNodeDirectory Select
SelectWithValue
Data object model: Cancel
GetDataObjectValues Operate
SetDataObjectValues CommandTermination
GetDataObjectDefinition Synchrocheck
DataObjectDirectory TimeActivatedOperate
Data attribute model: Substitution model:
GetDataAttributeValues Substitute
SetDataAttributeValues UnSubstitute
Data set model: Transmission of sampled values model:
GetDataSetValue GetSampledMeasuredValuesControlValue
SetDataSetValue SetSampledMeasuredValuesControlValue
CreateDataSet
DeleteDataSet Time synchronisation model:
DataSetDirectory Prepare
Measure
Publish and subscribe data transfer model: Synchronise
Report
GetReportControlValue FILE transfer model:
SetReportControlValue GetFile
CreateReportControl SetFile
DeleteReportControl DeleteFile
GetLogControlValue FileDirectory
SetLogControlValue
GetLogStatusValue
QuerylLog
EmtyLog
Mapping the ACSI to CORBA means mapping this Abstract Communication
Interface to the interface specification provided by CORBA, i.e. CORBA IDL. This
Public V2.0/2002-01-15/ Page 34 of 141

SCSM to CORBA IST10258/009

mapping contains this specification and, beyond that, some rationales of the
decisions taken and some information relevant for the interpretation and
application of the mapping.

The basic idea is to provide an adapter to a CORBA infrastructure that can present
an ACSI-like interface for an application accessing remote IEDs (See figure 5-1).

g

=

> =
i F
752 I — | —

Figure 5-2: Providing ACSI over a CORBA

infrastrictire.
As we shall demonstrate in this mapping, CORBA fits so well with the ACSI
specification that it can be provided directly as a CORBA interface. ACSI objects
can be implemented as CORBA objects providing remote access interfaces that are

1

compliant with the ACSI (See Figure 5-2).

This means that a service invocation through the ACSI will be done as a CORBA
request forwarded through a local proxy of the the remote server. This is done
using a CORBA reference to the remote server:

| Result = Remote_server->service requested (input paramenters) ;

There is an intrinsic asymmetry between CORBA servers and clients, but this
asymmetry is only related with a specific request. In most real-time control

Public

V2.0/ 2002-01-15/ Page 35 of 141

SCSM to CORBA IST10258/009

5.2

applications objects tend to be both client and servers simultaneously (obviously
for different interactions). The CORBA stacks for clients and servers differ but they
are automatically generated by the IDL compiler and developers should be only
partially aware of these issues.

How to map

As was mentioned before, the ACSI (an the rest of the IEC 61850) is not fully OO.
This raises several questions about hot to map “non-pure-OO” to “O0”.

There are, from our point of view, three approaches to the mapping to CORBA:

e Consider that there is only one CORBA object per ACSI server (coarse grained
mapping)

e Consider that other lower-level entities (for example, logical nodes) should be
also built as CORBA objects (medium grained mapping)

e Consider that all encapsulable entities should be CORBA objects (fine grained

mapping)

All three approaches are analyzed in the following sections.

5.2.1 Coarse grained mapping

In this approach there are only one type of CORBA objects, namely what the ACSI
calls a server. Figure 5-2 shows the IEC 61850 view of the interaction between
client and server.

ACSI Client ACSI Server

Client Application Server Application

Server Object (e.g.,
Logical Node n or Data
Object)

Server
Object (e.g.,
Logical
Node 1

CommunicationEervices Communicatior;kServices

£

Request Confirm Response) Indication

SCSM SCSM

|Communication Stack/Profile |

Figure 5-3: ACSI view of client-server interaction.

The approach of the ACSI is that communication associations are done between a
client and a server, so any ACSI Based request is sent to the server even when it is
specified as interface to a lower level component of the server.

Public

V2.0/ 2002-01-15/ Page 36 of 141

SCSM to CORBA IST10258/009

5.3

In CORBA, associations operate the same way (even the name “server” is the
same) but logical associations are done object to object and server activity is
transparent®.

5.2.2 Medium grained mapping

In the medium grained mapping, CORBA objectification reach the level of entities
that appear in the ACSI specification (server, logical device, logical node, etc.).
Each one of these elements will be a CORBA object and interaction will be possible
between any pair of them.

5.2.3 Fine grained mapping

In fine grained mapping every entity based on IEC 61850 is defined as a CORBA
object. This means modeling more than six hundred classes as IDL interfaces
(being most of them pure data structures).

So the level selected for the mapping is the medium grained because:

= [t fits best the ACSI specification
* Jtis manageable

Basic mapping

The procedure of the basic mapping is the automatic translation of ACSI
specifications to CORBA IDL specifications. There will be, however, special
situations where this automatic translation will not be possible. In these cases
there will be two possibilities:

* A special mapping will be done.
* No mapping will be done (i.e. the feature will not be supported by the

mapping).
The ACSI uses ASN.1 syntax in the specification of class members:

Brief ASN.1 rules for interpreting the object formalism:

Each field has a field identifier possibly followed by a name. The field identifier begins
with an '&" and is followed by a reference name, beginning with either a lower case or
an upper case letter.

= [fthe field identifier begins with '&' Upper case letter:
= [fthere is no following name, the field identifies a type.

5 Obviously to the extent the programmer decides, because it is possible for a programmer to
modify policies that affect server behavior. This is done mainly through the PortableServer
interface (POA).

Public

V2.0/ 2002-01-15/ Page 37 of 141

SCSM to CORBA IST10258/009

= [f the following name is mixed case and begins with an upper case letter, or
if the following name is upper case and the name of a Universal type, the
field identifies a value set.

= [f the following name is upper case and the name of an Object Class, the
field identifies an Object Set.

= [fthe field identifier begins with '&' lower case letter:
= [f the following name is upper case and the name of an Object Class, the
field identifies an Object (instance).
= [f the following name is mixed case and begins with an upper case letter, or
if the following name is upper case and is the name of a Universal type, the
field identifies a value.

The basic mapping maps these entities to CORBA entities:

ACSI ASN.1 ' CORBA IDL

Type Type

Value set Sequence
Object Set Sequence
Object instance Interface
Value Attribute

5.4 Fundamental data types mapping

The mapping of fundamental types is done as the following table indicates:

ACSI Data Type \ CORBA Data Type

OCTET STRING sequence <octet>
VisibleString string

BIT STRING sequence <booleans>®
INTEGER long

REAL float

Sequence struct

Array Array

ENUMERATED enum

NULL Nil

5.5 Mapping of common types
5.5.1 ObjectName and ObjectReference
An ACSI ObjectName is an string. The easy way is to map it to string;:

| typedef string ObjectName;

6 Mapping a bit string to a sequence of boolean is not very effective, but it is necessary because
ACSI bit string specifications are open-ended and this makes impossible the determination of a
shrink-wrapped container for them.

Public V2.0/2002-01-15/ Page 38 of 141

SCSM to CORBA IST10258/009

But ObjectReference is confusing because is has a complete different meaning in
ACSI and in CORBA. In ACSI it is a complete hierarchical name (See 5.6 Object
Naming). In CORBA it is an Interoperable Object Reference.

In this mapping we will use both things: object names and object references. Both
ACSI entities are names that are mapped to a CosNaming: :name. If a user wants
the equivalent of the ACSI ObjectName (i.e. the name without the path) he can get
it from the last name component of the CosNaming: :name name of the object.
We will use the type ACSI: :ObjectName for it.

module ACSI({
typedef CosNaming::name ObjectName;

5.5.2 TimeStamp

CORBA does not support 6 octet integers so the mapping can be done to an array
of octects or to an integral type of size enough. We have selected here an octet
array but it could also be a long long (64 bit)”:

enum TimeClass {milliseconds,
hundred microseconds,
ten microseconds};
typedef sequence <Boolean> TimeQuality;

typedef long Nanosec;

struct TimeStamp({
octect timel[6];
TimeClass timeCl;
TimeQuality timQ;

};
5.5.3 RelativeTime

|typedef long long RelativeTime;

7Type long long appeared in CORBA 2.3.

Public V2.0/2002-01-15/ Page 39 of 141

SCSM to CORBA

IST10258/009

<<Interface>>

<<CORBATypedef>> <<CORBATypedef>>
BIT_STRING OCTET_STRING Class Type
+ text()
<<CORBATypedef>> <<CORBATypedef>> \
BOOLEAN REAL +ype \
\\‘
<<CORBATypedef>> <<CORBAStruct>> <<CORBAEnum>>
INTEGER ValWithTrans ClassTypeCode
+ val : float + SERVER
+ trans : long + LOGICAL_DEVICE
<<CORBATypedef>> + FILE
ENUMERATED + LOGICAL_NODE
+ CLIENT_ASSOCIATION
<<CORBATypedef>> + DATA OBJECT
VisibleString + DATA SET

+ REPORT_CONTROL
+ LOG_CONTROL
+LOG

5.6

<<CORBAStruct>> +imQ <<CORBATypedef>> + GOOSE_CONTROL
TimeStamp TimeQuality + SAMPLED_MEASURED_VALUE_CONTROL
+ DATA_ATTRIBUTE
T
o <<CORBATypedef>>
+t|meCI\\l/ RelativeTime <<CORBATypedef>>
ObjectName
<<CORBAEnum>>
TimeClass
+ milliseconds CORBATyoedet> N
i << ypedef>> 2
+ hundre.dimlcroseconds Nanosec <<CORBAModule>>
+ ten_microseconds !
CosNaming
(fom Logical View)

Figure 5-4: Some basic classes of the mapping.

Object Naming

In this mapping, the central mechanism for object interaction and hierarchy
construction is the CORBA Object Reference. To handle object names described by
IEC 61850 the CORBA Name Service will be used.

In this mapping we will use DOTS-specific object identifiers (ObjectId) by
means of the PortableServer: :IdAssignmentPolicy (with USER ID
value). This will enable us to generate OIDs strings using the object naming policy
expressed in IEC 61850 Part 7-2, section 11.4.2.1 (object naming). Each class in the
class model of IEC 61850-7 has its own class name that has server scope. These
class names are the basic building blocks when defining names of objects
(instances). The name structure for the whole path-name of an IEC 61850 object is
as follows 8:

<LD instance name> / <LN instance name>.<Data object instance name>.<Data attribute instance name>

8 LN = logical node, LD = logical device.

Public

V2.0/ 2002-01-15/ Page 40 of 141

SCSM to CORBA IST10258/009

These ACSI object path-name has server scope because the ACSI focuses in a one-
to-one association between server and client; so, the server name should be added
to DOTS naming to provide wider scope.

Naming schemas specified by the ACSI are:

Logical device specific scope is defined using the "/" by up to 32 characters.
Example: / myXCBR1 . Pos1. stVa
Server specific scope is defined as up to 32 characters, then "/" followed by up to
32 characters.
Example: my-feeder-XY-logical-device / myXCBR1 . Pos1 . stVal

Association specific scope is defined using “@” followed by up to 32 characters.
Example: @ myXCBR1 . Pos1 . stVal

This mapping forbids the use of shell metacharacters (In DOTS we are going to

use UNIX shells and MS Windows shells) in any of these names to avoid problems

in the use of command line tools for object name management or with

heterogeneous Name Service implementations.

These names will be used to register DOTS objects in a federated name service.
The name bindings will use IEC 61850 names as NameComponent . id fields and
IEC 61850 object class names as NameComponent .kind fields (See ACSIIDL).

struct NameComponent

{

Istring id; // The name
Istring kind; // More info

}i

For example the name my-feeder-XY/myXCBR1.Posl.stVal running on
server process-AX will be registered using the CosNaming: : name shown in the
following table:

CosNaming: :name

id field 'kind field
Process-AX SERVER
my-feeder-XY LOGICAL DEVICE
myXCBR1 LOGICAL NODE
Posl DATA OBJECT
Stval DATA ATTRIBUTE

Naming contexts can be run in the different servers. The root naming context
should be run on a high availability system. A reference to the root naming
context can be obtained using the resolve initial references ()
operation:

CORBA: :Object var obj;
Obj = orb-> resolve initial references (“NameService”) ;

CosNaming: :NamingContext var root context;
root context = CosNaming::NamingContext:: narrow (obj)

Public V2.0/2002-01-15/ Page 41 of 141

SCSM to CORBA

IST10258/009

| assert (ICORBA::is nil (root context)) ;

From the plaint interpretation of the ACSI this structure should implicate that only
two levels of naming contexts are possible:

* Root naming context
» Server level naming context

This is not true because using CORBA distributed model logical-nodes are no
longer physically but logically attached to servers (the same for the rest of the
CORBA objects). This means that server process-AX can be running in a
computer at the substation level and the logical device my-feeder-XY can be
running at a different RTU. ACSI servers can be mapped to CORBA servers but
this is not a one to one relation (we can have several ACSI servers running in a

VRN

my-feeder-XY context

N

AN

7

root context

Xt

myXCBR1 conte

stVal

Figure 5-5: Naming contexts trees.

yourXCBR2 context

CORBA server and CORBA servers that are not running any ACSI server).

5.7 Polimorphic operations
Consider for example the operation:
| ??? LogicalNode::LogicalNodeDirectory (in ObjectClass class)
That can provide seven types of results depending on the argument (See ACSI
page 37).
Public V2.0/2002-01-15/ Page 42 of 141

SCSM to CORBA IST10258/009

5.8

The mapping can be done to a non-polimorphic set of operations (clear), to a
polimorphic operation with increased complexity in types definition (strictly
compliant) and to a single operation based on CORBA: : Any (neat).

Polimorphic ‘ Non Polimorphic

ListOfObjectNames DataObjectList DataObjectDirectory () ;

LogicalNodeDirectory (ObjectClass DataSetList DataSetDirectory ();

class) ; ReportControlList ReportControlDirectory () ;
LogControlList LogControlDirectory () ;
LogList LogDirectory ();
GOOSEControlList GOOSEControlDirectory () ;

Ijﬁng CORBA: : Any
CORBA: :Any LogicalNodeDirectory (ObjectClass class) ;

In this last case, the client obtains a CORBA : : Any as result and extracts from it the
desired list because it knows the type of directory requested:

// Variables to receive the CORBA::Any
CORBA: :Any any;

// Variable to extract the List from the CORBA::Any
ACSI::DataSetList dsl;

// Request invocation
any = LN->LogicalNodeDirectory (DATA SET) ;

// Extraction and use
if (any »>>= dsl) {
// Use the list returned

}ox/

It is also possible to use the DynAny interface to determine in run time the type of
the contents.

Pull Interfaces for long lists

There are many operations of the ACSI that return lists of entities (open ended
sequences in IDL). If these lists are small, the classic interface definition will
suffice. For example in the definition of the logical device class, the following
LogicalDeviceDirectory () operation is used to request a list of logical nodes
in that logical device:

typedef sequence <LogicalNode> LogicalNodelList;
LogicalNodeList LogicalDeviceDirectory () ;

If the list of logical nodes to be returned is very long this operation can exhaust
systems resources. If it is the case for any operation, this effect can be
avoided/controlled by means of the use of iterator-based interfaces. For example,
using a pull iterator:

typedef sequence <LogicalNode> LogicalNodelList;

Public

V2.0/ 2002-01-15/ Page 43 of 141

SCSM to CORBA IST10258/009

5.9

5.10

5.1

5.12

interface LogicalNodeIterator{
LogicalNodeList next () ;
void destroy () ;

interface LogicalDevice({

LogicalNodelList LogicalDeviceDirectory(out LogicalNodelIterator it) ;

VA
i

The operation LogicalDeviceDirectory() returns the LogicalNodeList, but, if it is
going to be too big, the operation only returns part of the total list and an iterator
in the it variable to continue requesting the rest of the list in successive requests.

CORBA identifiers

CORBA identifiers cannot contain hyphens. When hyphens appear they have been
mapped to underscores.

Mapping of enumerated types

Enumerated types in the ACSI do not follow a common notation . There are
collection of identifiers in UPPERCASE, in lowercase and in mixed case. With or
without hyphens.

Mapping of optional fields

Strongly typed languages are not very good at managing optional fields. In the
ACSI specification there are lots of these optional fields. The common IDL
mapping of optional fields is done by means of unions. For example:

union QoS Control switch(boolean){
case TRUE:
unsigned long reservedBandwidth;

}

The union QoS _Control contains a field reservedBandwidth only if the
discriminator is TRUE.

This is mostly not done in this mapping to avoid cluttering the IDL and making it
incomprehensible.

ACSI/CORBA communication service model

CORBA based application will be deployed over computational equipment in the
same way as was specified by the ACSI. This can be done easily because CORBA

Public

V2.0/ 2002-01-15/ Page 44 of 141

SCSM to CORBA IST10258/009

object functionality exactly matches the server object model proposed by the

ACSP.
HMI IED
SCADA .
Engineering -

T rrrT

\l\l\lH\H

IED
CORBA Server
Gateway /Proxy
/

K2
I} J

&)

o)

S

S

CORBA Server Qo

1 P

CORBA Objects ol

[L]] oL

‘ Q0

= —

CORBA Server 8—

—

CORBA Objects Q.

ORBA Server

CORBA Objects

CORBA Servler J‘
;
Figure 5-6: ACSI/ CORBA Servers will reside where ACSI servers where

planned. The only difference is the change of point-to-point
interactions/associations to a multipartite relation provided by the broker.

There are four communication mechanisms used in the ACSI that can be mapped
easily to CORBA mechanisms:

ACSI 'CORBA |
Request/response Request

Request/no response Oneway request

GOOSE message Canonical push event channel
Sampled value Push/pull real-time event
transmission channel

Normal (two-way) requests and oneway requests are implemented by the
brokering mechanisms. Event channels are provided by event services and there
are three main alternatives:

* The CORBA Event Service provides event channels but not filtering and
real time performance

9 In fact, it is worth noting that both specifications use the name “server” to refer to very similar
entities.

Public V2.0/2002-01-15/ Page 45 of 141

SCSM to CORBA IST10258/009

* The CORBA Notification Service provides event channels with filtering
(and much more functionality) but not real-time performance

* Custom real-time event services have been demonstrated to provide good
enough performance for fast applications.

In relation with the oneway invocation semantics for CORBA requests it is worth
noting that what the CORBA specification says is that it does not mean non-
blocking in the client side but a best effort semantics in the transmission of the
message. This means that compliant brokers can block the client or even drop the
request without notification.

Depending on the tightness of the timing requirements it can be necessary to use
proprietary transports different from the standardized interoperable protocol
(IIOP).

5.13 Recommended reading

This mapping is based on a large collection of document and its understanding

presupposes deep knowledge about the two specifications involved: IEC 61850

and CORBA. This knowledge can be gained reading all the specifications used,

but gathering this information is not an easy task because of two different reasons:

= JEC 61850 is evolving because it is a draft (in some aspects it is a very early

draft). It is not easy to get a complete, static view of the specification
because each part is progressing at a very different pace and is being done
by a different collection of people.

* While CORBA is consolidated, it is still evolving and there are lots of
specifications that are very relevant for DOTS but difficult to track because
they are still moving targets. The reason is that OMG work is divided in
several groups related with core technology (CORBA itself), specific
platforms (like real-time platforms) and specific domains (like utilities or
telecoms) that are making specifications in a continuous procedure.

Even when we have tried to produce a self-contained document, to understand

this mapping it is necessary to have a rather good knowledge about DOTS, IEC

61850 and CORBA. Mandatory readings are:

e DOTS General Model Definition

e OMG CORBA 23

e [EC 61850 Part 7: Basic communication structure for substations and feeder

equipment

The full collection of recommended readings follows in three different collections:

Public V2.0/2002-01-15/ Page 46 of 141

SCSM to CORBA IST10258/009

¢ DOTS Documents
e [EC/ISO Documents
¢ OMG Documents

5.13.1 DOTS Recommended literature

e Project Programmel?

e Project Glossary

e General Requirements Specification
e General Model Definition

e Definition HW and SW

5.13.2IEC/ISO Recommended literature

e [EC 61850 Part 1: Basic Principles

e JEC 61850 Part 5: Communications requirements for functions and device
models.

e [EC 61850 Part 7: Basic communication structure for substations and feeder
equipment

e [SO/IEC 8824 Part 1: Abstract Syntax Notation One (ASN.1) - Specification of
Basic Notation

e ISO/IEC 8824 Part 2: Abstract Syntax Notation One (ASN.1) - Information
object specification

5.13.3 OMG Recommended Literature

OMG organizes the work in different task forces
e ORBOS (ORB & OS)
o CORBA23
o CORBA Messaging Joint Revised Submission
o CORBAservices: Common Object Services Specification
* Naming service
* Trading Service
* Event Service
* Time Service
* Security Service
o Persistent State Service 2.0
e PTC (Platform Technology Committee)
o Real-time CORBA 1.0 Adopted Specification
o C++ Mapping
e Telecom (Telecom Domain Task Force)
o Notification Service Joint Revised Submission
o Telecom Log Service

10 Some of the recommended literature can be available only to speficic groups of readers. The
SCSM to CORBA to be plublicly released should contain no references to non-publicly available
documents.

Public

V2.0/ 2002-01-15/ Page 47 of 141

SCSM to CORBA IST10258/009

e AD (Analysis and Design Task Force)
o OMBG Unified Modeling Language Specification

Public V2.0/2002-01-15/ Page 48 of 141

SCSM to CORBA IST10258/009

Part 2
The mapping

Public V2.0/2002-01-15/ Page 49 of 141

SCSM to CORBA IST10258/009

Mapping of Server Model

6.1

6.2

Server class definition
6.1.1 ServiceAccessPoint

This attribute is intended to be used as system wide identification of the server. In
CORBA applications this functionality is achieved by means of the IOR of the
server. This IOR is generated by the POA upon object creation (unless persistence
policy is used) and can be obtained by means of the C++ IDL compiler-generated
_this () operation.

We will use an ACSI: : ObjectName type for this identification field:

Module ACSI({
typedef CosNaming::name ObjectName;

6.1.2 LogicalDevices

The collection of logical devices in the server.
6.1.3 Files

File objects in the server.

6.1.4 ClientAssociations

See next chapter.

Server services

The server ServerDirectory service returns a list of objects in the server.
ClassTypeCode LOGICAL_DEVICES, FILES and CLIENT_ASSOCIATIONS can
be requested to this service.

The service Response+ is a type Any containing the list of requested entities (see
sections 5.7 and 5.8 in this document).

The service Response- is mapped to two exceptions.

Public

V2.0/ 2002-01-15/ Page 50 of 141

SCSM to CORBA

IST10258/009

6.3

6.4

Access control

Access control can be implemented straightforwardly by means of the CORBA
Security Service [CORBAservices Page 15-1].

The mapping of the attribute to CORBA is:

boolean
boolean
boolean
boolean
boolean
boolean
boolean

IDL

i

struct AccessControl {

execute;

getValue;

setValue;
getDefinitionResult;
getDirectoryResult;
createObject;
deleteObject;

interface Server {
attribute ObjectName ServiceAccessPoint;
attribute LogicalDevicelist LogicalDevices;
attribute FileList Files;
attribute ClientAssociationList ClientAssociations;
any ServerDirectory (in ClassTypeCode classtype)
raises

(FailedDirectory,NoSuchType) ;

Public

V2.0/ 2002-01-15/ Page 51 of 141

SCSM to CORBA IST10258/009

6.5 UML

<<Interface>> <<CORBATypedef>>
Association - AssociationList
(from ACSI) (from ACSI)
+Associations

<<Interface>> <<CORBATypedef>>
ClientAssociation ClientAssociationList | +ClientAssociations
(from ACSI) (from ACSI)
<<Interface>>
Server
. (from ACSI)

<<Interface>> <<CORBATypedef>>| *Files

AIE G — FileList = |+ ServerLNDirectory()
(from ACSI) (from ACS]) + ServelFDirectory()

+ ServerCADirectory()

<<Interface>>

LogicalDevice <<CORBATypedef>> +ServiceAcessPoint
(from ACSI) ~ | LogicalDevicelList | +|ogicalDevices
(from ACSI)

+ LogicalDevice Directory()

+logicalD eviceObjectName

Figure 6-1: UML model for the ACSI::Server interface.

Public V2.0/2002-01-15/ Page 52 of 141

SCSM to CORBA IST10258/009

Mapping of Association Model

7.1

7.2

Concept of abstract associations

The associations in the ACSI are not the same in CORBA applications because the
basic CORBA association model is done on the basis of individual invocations.
This means that associations are created dynamically by the underliying
mechanisms provided by the broker and the POA and are not specficially handled
by the applitation iself.

This is obviously a sacrifice of application tight control, for the benefit of easy of
use, but in some cases it is necessary to:

e Reduce the burden of on-invocation association establishment
e Control resources for real time /embedded performance

These resources are provided now by means of new APIs introduced in the RT-
CORBA specification and the Messaging specification.

Using the RT-POA interfaces it is possible to determine association establishment
policies and also resource management.

Using the PortableServer: : Current interface, the status of the present
invocation context can be determined, and servers can manage associations using
ACSI mapped control structures. In most cases the management of associations is
related with the POA policies used. This can make necessary for a server the use of
several POAs to employ different policies with different clients.

QoS settings are interfaces derived from CORBA: : Policy. PolicyManager isa
locality constrained interface that can be accessed through the ORB interface.
Aditional policies can be established at the object level and at the thread level
(through PolicyCurrent);

IDL

/* Association */

enum TriggeringPolicy {
user triggered,
network_scheduled};

Public

V2.0/ 2002-01-15/ Page 53 of 141

SCSM to CORBA

IST10258/009

enum AssociationEstablishment
pre_established,
pre_defined,
dynamic};

enum AssociationRole {
client,
server,
peer};

struct AssociationChar
TriggeringPolicy triggeringPolicy; // OPTIONAL

boolean queued; // OPTIONAL
boolean connection oriented; // OPTIONAL
AssociationEstablishment established; //

AssociationRole role;

i

enum AssociationTypes {
quu, // queued user triggered unidirectional

//OPTIONAL

OPTIONAL

qUB_CO, // queued user triggered bi directional connection oriented
qUB_CL, // queued user triggered bi directional connectionless
qUB_FC, // queued user triggered bi directional flow control
qUB_Seg, // queued user triggered bi directional segmenting

bNU // buffered network scheduled unidirectional

}i

enum AssociationEndPointState
closed,
open,
requesting,
replied,
responding};

interface Association {
attribute AssociationChar associationChar;
attribute AssociationTypes associationType;

attribute AssociationEndPointState aEPState; // OPTIONAL

attribute long maxReqgCalling; // OPTIONAL
attribute long maxReqgCalled; // OPTIONAL
attribute long maxUCSC; // OPTIONAL
attribute long maxUCSS; // OPTIONAL
attribute long maxOSCC; // OPTIONAL
attribute long maxOSCS; // OPTIONAL

Public

V2.0/ 2002-01-15/ Page 54 of 141

SCSM to CORBA IST10258/009

7.3 UML

<<Interface>> <<CORBAEnum>>
Association AssociationTypes
+ maxReqCalling : long o + quUU
+ maxReqCalled : long +associationType + qUB_CO
+ maxUCSC : long +qUB_CL
+ maxUCSS : long +qUB_FC
+ maxOSCC : long +aEPState + qUB_Seg
+ maxOSCS : long + bNU
+associationChar <<CORBAEnum>>
AssociationEndPointState
<<CORBAStruct>> : gl;)es:d
AssociationChar + requesting
+ queued : boolean + replied
+ connection_oriented : boolean + responding
+role
+established
<<CORBAEnum>>
+triggeringPolicy AssociationRole
+ client
+ server
+ peer
<<CORBAEnum>> <<CORBAEnNuUmM>>
AssociationEstablishment TriggeringPolicy
+ pre_established + user_triggered
+ pre_defined + network_scheduled
+ dynamic

Figure 7-1:Associations.

Public V2.0/2002-01-15/ Page 55 of 141

SCSM to CORBA IST10258/009

Mapping of Logical Device Model

8.1 Logical device class definition
8.1.1 logicalDeviceObjectName
This attribute is intended to be used as system wide identification of the logical
device. The ACSI only addresses server scope, but this mapping requires
application scope.
In CORBA applications this functionality is achieved by means of the IOR of the
server. This IOR is generated by the POA upon object creation (unless persistence
policy is used) and can be obtained by means of the C++ IDL compiler-generated
_this () operation.
We will use an ACSI::ObjectName type for this identification field:
Module ACSI({
typedef CosNaming::name ObjectName;
}
8.1.2 LogicalNodes
The collection of logical nodes in the logical device.
8.1.3 AccessControl
The access control attribute.
8.2 Logical device access services
8.2.1 LogicalDeviceDirectory
The LogicalDeviceDirectory service returns a list of logical nodes in the server.
The service Response+ is a type LogicalNodeList containing the list of requested
entities (see section 5.8 in this document).
Public V2.0/ 2002-01-15/ Page 56 of 141

SCSM to CORBA

IST10258/009

The service Response- is mapped to two exceptions.

8.3 IDL

interface LogicalDevice (

attribute ACSI::ObjectName logicalDeviceObjectName;
attribute LogicalNodeList logicalNodes;
attribute AccessControl accessControl;
LogicalNodeList LogicalDeviceDirectory () ;

i

typedef sequence <LogicalDevices> LogicalDeviceList;

8.4 UML Model

Logical Device Model

+logicalDeviceObjectName

%

<<Interface>>
LogicalDevice
(from ACSI)

<<CORBAStruct>>
AccessControl
(from ACSI)

+ execute : boolean

+ LogicalDeviceDirectory()

+logicalNodes

<<CORBATypedef>>
LogicalNodeList
(from ACSI)

+accessControl |+ getValue : boolean
+ setValue : boolean
+ getDefinitionResult : boolean
+ getDirectoryResult : boolean
+ createObject : boolean
+ deleteObject : boolean
+accessControl

<<Interface>>
LogicalNode
(from ACSI)

+ LogicalNodeDODirectory()

t—— —— —— —— —{+LogicalNodeDSDirectory()

+ LogicalNodeRCDirectory()

+ LogicalNodeLCDirectory()

+ LogicalNodeLDirectory()

+ LogicalNodeGCDirectory()

+ LogicalNodeSMVCDirectory()

"

e

+logicalNodeObjectName

Figure 8-1: UML model of the Logical Device Interface.

Public

V2.0/ 2002-01-15/ Page 57 of 141

SCSM to CORBA IST10258/009

Mapping of Logical Node Model

9.1 Logical node class definition
9.1.1 LnState
The collection of states that are possible for a LogicalNode. An enumerated type:

| enum LogicalNodeState {On, Blocked, Test, TestBlocked, Off};

9.1.2 LogicalNodeObjectName
This attribute is intended to be used as system wide identification of the logical
node. The ACSI only addresses server scope, but this mapping requires
application scope.

In CORBA applications this functionality is achieved by means of the IOR of the
server. This IOR is generated by the POA upon object creation (unless persistence
policy is used) and can be obtained by means of the C++ IDL compiler-generated
_this () operation.

We will use an ACSI: :ObjectName type for this identification field:
Module ACSI({
typedef CosNaming::name ObjectName;
)

9.1.3 DataObjects
A sequence of data objects contained in the Logical Node.

9.1.4 DataSets
A sequence of data sets contained in the Logical Node.

9.1.5 ReportControls
A sequence of report control objects contained in the Logical Node.

Public V2.0/2002-01-15/ Page 58 of 141

SCSM to CORBA

IST10258/009

9.1.6 LogControls

A sequence of report control objects contained in the Logical Node.

9.1.7 Logs

A sequence of log objects contained in the Logical Node.
9.1.8 gOOSEControl

An optional field that will exist only for LNO.

9.1.9 SampledValueControls

An optional field that will exist only for LNO.

9.1.10 AccessControl

The access control attribute.

9.2 Logical node access services
9.2.1 LogicalNodeDirectory
This service provides a list
enum DataAttributeCharacteristic {op, st, co, mx, sp,
ct, dc, cf, rc, lec, gc, sc, ax};
struct LNState {
string dataAttributeName;
sequence <LogicalNodeState> dataAttributeContent;
sequence <DataAttributeCharacteristic> dataAttributeCharacteristic;
}i
interface LogicalNode ({
enum LogicalNodeState {On, Blocked, Test, TestBlocked, Off};
// Attributes
attribute LNState 1lnState;
attribute ACSI::ObjectName logicalNodeObjectName;
attribute DataObjectList dataObjects;
attribute DataSetList dataSets;
attribute ReportControlList reportControls;
attribute LogControlList logControls;
attribute LogList logs;
union LNO g switch (boolean) {
case TRUE:
GOOSEControl gOOSEControl;
}i
union LNO_ s switch (boolean) {
case TRUE:
SampledValueControlList sampledValueControl;
}i
Public V2.0/2002-01-15/ Page 59 of 141

SCSM to CORBA

IST10258/009

9.4

}i

typedef sequence <LogicalNode> LogicalNodelList;

attribute AccessControl accessControl;

// Operations

Any LogicalNodeDirectory

raises

UML

+logicalNodeObjectName

<<CORBATypedef>>
ObjectName
(from ACSI Types)

I

-

+InState

<<Interface>>
LogicalNode
(from ACSI Classes)

+ LogicalNodeDirectory()

<<CORBAStruct>>
LNState
(from ACSI Types)

+ dataAttributeName : string

+dataAttributeContent

<<CORBAEnum>>
LogicalNodeState
(from LogicalNode)

+0On

+ Blocked

+ Test

+ TestBlocked
+ Off

0.n

+dataAttributeCharacteristic

(in ClassTypeCode classtype)
(FailedDirectory,NoSuchType) ;

<<Interface>>
LogicalNodeZero
— | (from ACSI Classes)

+accessControl

<<CORBAStruct>>
AccessControl
(from ACSI| Types

+ execute : boolean

+ getValue : boolean

+ setValue : boolean

+ getDefinitionResult : boolean
+ getDirectoryResult : boolean
+ createObject : boolean

+ deleteObject : boolean

<<CORBAEnum>>

DataAttributeCharacteristic

(from ACSI Types)

+op
+ st
+co
+mx
+sp
+ct
+dc
+cf
+rc
+lc
+gc
+sc
+ax

Figure 9-1: UML model of a logical device.

Public

V2.0/ 2002-01-15/ Page 60 of 141

SCSM to CORBA IST10258/009

10.

Mapping of Data Object Model

10.1 Data object class definition
10.1.1 DataObjectName
This attribute is intended to be used as identification of the data object within the
logical node.
We can use an ACSI: : ObjectName type for this identification field:
Module ACSI({
typedef CosNaming::name ObjectName;
This means that the name includes also names of higher level entities.
10.1.2 DataAttributes
A list of data attributes:
| sequence <DataAttribute> dataAttributes;
10.1.3 AccessControl
An access control attribute.
10.2 Data object class services
10.2.1 GetDataObjectValues
This service is intended for retrieving a collection of object values from a specific
server. This is an example of the problems mentioned in section 4.3.5. This is a
service addressed TO A SERVER to get values of some DATA OBJECTS. Were
they true objects, the request should be addressed directly to them and not to a
higher instance (unless some specific functionality is sought, which is not the
case). So, WE MAP IT AS A Server operation and not as a DataObject
operation.
As was said before, Data Objects are mapped to CORBA objects and this means
that the server will act as an intermediary for this task of gathering data.
Public V2.0/2002-01-15/ Page 61 of 141

SCSM to CORBA IST10258/009

In relation with the mapping of services that move objects from here to there
(GETs and SETs) we can quote the CORBA 2.3.1 section on Objects-by-Value:

Objects, more specifically, interface types that objects support, are defined by
an IDL interface, allowing arbitrary implementations. There is great value,
which is described in great detail elsewhere, in having a distributed object
system that places almost no constraints on implementations.

However there are many occasions in which it is desirable to be able to pass
an object by value, rather than by reference. This may be particularly useful
when an object’s primary “purpose” is to encapsulate data, or an application
explicitly wishes to make a “copy” of an object.

ValueTypes should be adequate for this mapping but they are not yet
implemented in most commenrcial ORBS.

This service can also return also the list of data object names, so the inout
modifier:

ListOfDataObjectValues Server::GetDataObjectValues (
inout ListOfDataObjectNames namelist,
in boolean specificationWithResult)
raises (GetFailed) ;

It looks pretty stupid but it can return one input parameter
(ListOfDataObjectNames) withouh modification.

The ListOfDataObjectValues is a sequence of data object values!! or reasons
for failure in getting the value of a specific object.

10.2.2 SetDataObjectValues
Read the discussion before:

ListOfDataObjectConfirmations Server::SetDataObjectValues (
in ListOfDataObjectNames namelist,
in ListOfDataObjectValues namelist,)
raises (SetFailed) ;

11 As CORBA structs. Remember that object passing in CORBA is done by reference unless you
employ the Objects-by-Value semantics in the IDL:

valuetype exampleValue { // note this is not a CORBA::Object
string name;
float value;
boolean test;

Public V2.0/2002-01-15/ Page 62 of 141

SCSM to CORBA IST10258/009

10.2.3 GetDataObjectDefinition

It is not easy to map this service because it is difficult to determine what is a
“DataObjectDefinition”. The ACSI says that it is in the same page:

e The “list of data attribute object types” : this can be done using CORBA
typecodes (but this means getting into dynamic CORBA'?) or as text strings
(but this will be almost unusable).

e The list of “data attribute definitions”: What is this ?

Another possibility is returning the list of ACSI: :ObjectName that, following
ACSI norms is constructed using DataAttribute types as part of the names.

10.2.4 DataObijectDirectory

This service gets the mentioned list of ACSI: : ObjectName of the data attributes
that compose the DataObject:

sequence <ObjectName> ObjectNameList;

ObjectNameList Server::DataObjectDirectory (
in DataObjectName name)
raises (DirectoryFailed) ;

Going back to the discussion in 10.2.1 about who should be addressed with these
requests, being this a DataObject : : operation intead of a Server: : operation,
it should be:

sequence <ObjectName> ObjectNameList;

ObjectNameList DataObject::Directory ()
raises (DirectoryFailed) ;

It is ~obviously- not necessary to pass as parameter the name of the DataObject
addressed.

10.3 IDL

sequence <ObjectName> ObjectNamelList;
typedef ObjectNameList ListOfDataObjectNames;

sequence <DataAttribute> DataAttributelist;

interface DataObject ({
ObjectName dataObjectName;
DataAttributelList dataAttributes;
AccessControl accessControl;

i

sequence <DataObject> DataObjectList;

12 [.e. going beyond MinimumCORBA implementations.

Public V2.0/2002-01-15/ Page 63 of 141

SCSM to CORBA IST10258/009

ListOfDataObjectValues Server::GetDataObjectValues (
inout ListOfDataObjectNames namelist,
in boolean specificationWithResult)
raises (GetFailed) ;

ListOfDataObjectConfirmations Server::SetDataObjectValues (
in ListOfDataObjectNames namelist,
in ListOfDataObjectValues namelist,)
raises (SetFailed) ;

ObjectNameList Server::DataObjectDirectory (
in DataObjectName name)
raises (DirectoryFailed) ;

10.4 UML

<<Interface>> <<CORBATypedef>>
DataObject +dataObjectName ObjectName <<Interface>>
(from MapTypes) DataObjectl
<<§ORBAStruct>> + GetDataObjectValues()
ccessControl H
\L N + SetDataObjectV alues()
+dataAttributes (from MapTypes) _ N
+accessControl + execute : boolean + DataObjectDirectory()
<<CORBATypedef>> + getValue : boolean
DataAttributeList + setValue : boolean
+ getDefinitionResult : boolean <<CORBAEnum>>
Q/ + getDirectoryResult : boolean DataAttributeCharacteristic
+ createObject : boolean +op
<<lInterface>> + deleteObject : boolean P
DataAttribute +dataAttributeCharacteristic P
+ dataAttributeName : string + mx
\\\\\\\\\\\\\\\\\\g> <<CORBATypedef>> +sp
DataAttributeCharacteristicList ——— 7>: ZL
+cf
+rC
+lc
+gc
+sc
+ax
Sample Attributes <<CORBAEnum>>
+dataAttributeContent ControlModelTypes
+ StatusOnly
<<Interface>> <<CORBATypedef>> N + DirectWithNormalSecurity

ControlModel —> ControlModelTypesList |+ sBOWithNormalSecurity
+ DirectWithEnhancedSecurity

+ SBOWithEnhancedSecurity

+dataAttributeContent
\ <<Interface>> <<CORBATypedef>> <<CORBATypedef>>
ControlSeqNum Attribute ControlSeqNumList ——— ——={ ControlSeqgNum
<<CORBAEnum>>
LogicalNodeState
<<Interface>>| *dataAttributeContent <<CORBATypedef>> +0On
LNState LogicalNodeStateList ——— %+ Blocked

+ Test
+ TestBlocked
+ Off

Figure 10-1: UML model for DataObjects.

Public V2.0/ 2002-01-15/ Page 64 of 141

SCSM to CORBA IST10258/009

Public V2.0/ 2002-01-15/ Page 65 of 141

SCSM to CORBA

IST10258/009

11.

Mapping of Data Attribute Model

1.1

Data attribute class definition
11.1.1 DataAttributeName
The name of the data attribute is mapped to a full hierarchical name:

| ACSI:ObjectName dataAttributeName;

11.1.2 DataAttributeContent

It is not very clear what is the data attribute content in the ACSI. In page 44 it says:

The DataAttributeContent defines the type (range of possible values) of the data
attribute while being communicated.

Does it mean that this field is a variable of that type on only a typecode ?

Our view is that this class is a pure virtual class. The content will vary from heir to
heir and only the DataAttributeName and the DataAttributeCharacteristic will be
common to all heirs.

11.1.3 DataAttributeCharacteristic

The ACSI specifies that the data attribute characteristic is a value set an not a
single value. Its elementary values are of an enumerated type:

enum DataAttributeCharacteristic {
op,
st,
co,
1'n‘}(l
sp,
ct,
dc,
cf,
rc,
1lc,
gc,
sc,
ax

}i

typedef sequence <DataAttributeCharacteristics

Public

V2.0/ 2002-01-15/ Page 66 of 141

SCSM to CORBA

IST10258/009

11.2

11.3

11.4

11.5

11.6

| DataAttributeCharacteristicList;

DataAttributeCharacteristicList is the type used to declare

characteristics of data attributes.

DataAttribute Services

11.2.1 SetDataAttributeValues

This is an equivalent service as SetDataObjectValues. The discussion about the

addressed object is also applicable.

11.2.2 SetDataAttributeValues

This is an equivalent service as GetDataObjectValues.

Attribute and parameter types

See section 5.4, Fundamental data types mapping.

Common types

See section 5.5, Mapping of common types.
IDL

interface DataAttribute({
attribute string dataAttributeName;
attribute DataAttributeCharacteristicList
dataAttributeCharacteristic;
}i

UML

See UML model in Chapter 10.

Public

V2.0/ 2002-01-15/ Page 67 of 141

SCSM to CORBA IST10258/009

12.

Mapping of Data Set Model

12.1

12.2

Data set class definition

A data set is a ordered collection of DataObjects (with an order known by the
client and by the server). In relation with the services specified we are in the same
situation as with the rest of objects in the ACSI. We will map this interface to an
interface for a Server object and not to an interface for a DataSet Object.

struct DataSet ({
ObjectName dataSetObjectName;
DataObjectList dataObjectNames;
AccessControl accessControl;

}i

12.1.1 DataSetObjectName
The name of the data set.
| attribute ObjectName dataSetObjectName;
12.1.2 DataObjectNames
The catalog of objects contained in the set.

| attribute DataObjectList dataObjectNames;

12.1.3 AccessControl
An access control attribute.

| attribute AccessControl accessControl;

Data set services
12.2.1 GetDataSetValue

Get the values of the data set. This service specifies an input parameter
SpecificationWithResult to be equivalent to a similar service for DataObjects. But
in this case the second argument is only a single data set so it has no sense to get

Public

V2.0/ 2002-01-15/ Page 68 of 141

SCSM to CORBA

IST10258/009

12.3

back this argument (in case of success it is known, in case of failure it is known

where is the problem).

DataObjectList GetDatSetValue (
in boolean specificationWithResult,
inout ObjectName name)
raises (GetFailed) ;

12.2.2 SetDataSetValue

ListOfConfirmations SetDatSetValue (
inout ObjectName name,
in DataObjectList list)
raises (SetFailed) ;

12.2.3 CreateDataSet

void CreateDataSet (
in ObjectName name,
in DataObjectList list)
raises (CreateFailed) ;

12.2.4 DeleteDataSet

void DeleteDataSet (
inout ObjectName name)
raises (DeleteFailed) ;

12.2.5 DataSetDirectory

DataObjectList DataSetDirectory(
inout ObjectName name)
raises (FailedDirectory) ;

IDL
12.3.1IDL as ACSI Specifies

struct DataSet ({
ObjectName dataSetObjectName;
DataObjectList dataObjectNames;
AccessControl accessControl;

i

interface DataSetI({
DataObjectList GetDatSetValue (
in boolean specificationWithResult,
inout ObjectName name)
raises (GetFailed) ;
ListOfConfirmations SetDatSetValue (
inout ObjectName name,
in DataObjectList list)
raises (SetFailed) ;

Public

V2.0/ 2002-01-15/ Page 69 of 141

SCSM to CORBA

IST10258/009

void CreateDataSet (
in ObjectName name,
in DataObjectList list)
raises (CreateFailed) ;
void DeleteDataSet (
inout ObjectName name)
raises (DeleteFailed) ;

DataObjectList DataSetDirectory(

inout ObjectName name)

raises (FailedDirectory) ;

}i

typedef sequence <DataSet> DataSetList;

12.3.2 Better IDL

A better IDL is achieved splitting the interface into DataSet interface and Server
interface parts. The Server is requested to create and destroy and the DataSet is
requested for data manipulation.:

interface DataSet (

attribute ObjectName dataSetObjectName;
attribute DataObjectList dataObjectNames;
attribute AccessControl accessControl;

DataObjectList GetDatSetValue ()

raises (GetFailed) ;

ListOfConfirmations SetDatSetValue (

in DataObjectList list)
raises (SetFailed) ;

DataObjectList DataSetDirectory ()
raises (FailedDirectory) ;

}i

interface Server {
void CreateDataSet (
in ObjectName name,
in DataObjectList list)
raises (CreateFailed) ;
void DeleteDataSet (
inout ObjectName name)
raises (DeleteFailed) ;

i

12.4 UML

Public

V2.0/ 2002-01-15/ Page 70 of 141

SCSM to CORBA

IST10258/009

<<Interface>>
DataSetl

+ GetDatSetValue()
+ SetDatSetValue()
+ CreateDataSet()

+ DeleteDataSet()

+ DataSetDirectory()

<<CORBAStruct-> | +dataSetObjectName | -~ CORBATypedef>>
ObjectName
DataSet
(from MapTypes)
+dataObjectNames
<<CORBATypedef>> <<Interface>>
DataObjectList —— —— —— —=| DataObject

Figure 12-1: DataSet Model.

+dataObjectName

Public

V2.0/ 2002-01-15/ Page 71 of 141

SCSM to CORBA

IST10258/009

13.

Mapping of Publish and Subscribe
Data Transfer

13.1

13.2

Overview

This section includes the model of reporting of the ACSI. The specification
indicates that the server contains a report controller that handles report generation
and forwarding to a client.

We have split the specification into two interfaces, one for the report server and
one for the report client. The specification, however, lacks some basic services as
creating/deleting report controls and client subscribing to a report.

While this specification is intended for a one-to-one connection it can easily be
extended to a one-to-many (reporting to many clients) easily (in fact this version
supports this feature). This can be done without a large bandwidth cost if the ORB
provides a multicast transport.

Report control class definition

The ReportControl class stores configuration parameters for report generation.
This class is mapped as follows:

interface ReportControl ({
attribute ObjectName rcNam;
attribute PrtEnaAttribute rptEna;
attribute RptIdAttribute rptID;
attribute OptFldsAttribute optFlds;
attribute DatSetNamAttribute datSetNam;
attribute GIAttribute gI;
attribute BufTimAttribute bufTim;
attribute TrgsAttribute trgs;
attribute TrgOpsAttribute trgOps;
attribute RBEPdAttribute rBEPd;
attribute IntgPdAttribute intgPd;
attribute SegNumAttribute segNum;
AccessControl accessControl;

Attributes used for the report control class are:
attribute ObjectName rcNam;
attribute RptEnaAttribute rptEna;
attribute RptIdAttribute rptID;

Public

V2.0/ 2002-01-15/ Page 72 of 141

SCSM to CORBA IST10258/009

attribute OptFldsAttribute optFlds;
attribute DatSetNamAttribute datSetNam;
attribute GIAttribute gI;

attribute BufTimAttribute bufTim;
attribute TrgsAttribute trgs;

attribute TrgOpsAttribute trgOps;
attribute RBEPdAttribute rBEPd;
attribute IntgPdAttribute intgPd;
attribute SegNumAttribute segNum;
attribute AccessControl accessControl;

The optional fields attribute indicate special content in the report:

| typedef sequence <boolean> OptionalFields;

This is a sequence of boolean fields that define bahavior particularities for the
report generator:

Reserved

Include sequence number
Report time stamp

Include data set name
Include reason for inclusion
Include DataObjectNames

G b= o

13.3 Reporting services

We have two interfaces here: one for the control report object to be configured and
operated (ReportControlI) and a callback interface for the report client
(ReportClientI):

13.3.1 Report
This is the only operation supportd in the callback interface:

|oneway void Report (in ReportFormat data); // No raises

Some more operation would be useful to inform the client about non-requested

changes in service (for example if the server fails and is going to shutdown).
ListOfReportControlAttributes GetReportControlValue (
in ObjectName rcNam,
in ListOfReportControlAttributeNames names)
raises (GetFailed) ;

ListOfConfirmations SetReportControlValue (
in ObjectName rcNam,
in ListOfReportControlAttributes names)
raises (SetFailed) ;

Public V2.0/2002-01-15/ Page 73 of 141

SCSM to CORBA IST10258/009

13.3.2 More operations

More operations would be needed for the proper handling of reports. Examples
are a Subscription interface or a Factory interface for the server ???):

void RegisterAsClient (in ReportClient client) ;
void UnRegisterAsClient (in ReportClient client);

// Create
// Destroy

13.4 IDL
/*===*/
/* Report Control */
/*===*/

module ReportControl(
/* Attributes for Report Control class ----------—--—-—-————--- */

interface RptEnaAttribute : DataAttribute ({
attribute boolean dataAttributeContent;

}i

interface RptIdAttribute : DataAttribute {
attribute string dataAttributeContent;

}i

interface DatSetNamAttribute : DataAttribute {
attribute ObjectName dataAttributeContent;

}i

interface GIAttribute : DataAttribute ({
attribute boolean dataAttributeContent;

}i

interface BufTimAttribute : DataAttribute ({
attribute long dataAttributeContent;

}i

interface TrgsAttribute : DataAttribute ({
attribute long dataAttributeContent;

}i

interface TrgOpsAttribute : DataAttribute ({
attribute TriggerOptions dataAttributeContent;

}i

interface RBEPdAttribute : DataAttribute {
attribute long dataAttributeContent;

}i

interface IntgPdAttribute : DataAttribute ({
attribute long dataAttributeContent;

bi

interface SegNumAttribute : DataAttribute {
attribute long dataAttributeContent;

bi

Public V2.0/ 2002-01-15/ Page 74 of 141

SCSM to CORBA

IST10258/009

interface OptFldsAttribute
attribute OptionalFields dataAttributeContent;

}i

typedef sequence <octet> OptionalFields;

/* reserved (0),
sequence-number (1),
report-time-stamp (2),
data-set-name (3),
reason-for-inclusion (4),
dataObjectNames (5),

*/

struct TriggerOptions {
boolean data_change;
boolean quality change;

}i

interface ReportControl ({

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

i

ObjectName rcNam;
RptEnaAttribute rptEna;
RptIdAttribute rptID;
OptFldsAttribute optFlds;
DatSetNamAttribute datSetNam;
GIAttribute gI;
BufTimAttribute bufTim;
TrgsAttribute trgs;
TrgOpsAttribute trgOps;
RBEPdAttribute rBEPd;
IntgPdAttribute intgPd;
SegNumAttribute segNum;
AccessControl accessControl;

DataAttribute

typedef sequence <ReportControls> ReportControlList;
typedef sequence <DataAttribute> ListOfReportControlAttributes;

interface ReportClientI{

oneway void report (in ReportFormat data) ;

}i

interface ReportControll
ListOfReportControlAttributes GetReportControlValue (
in ObjectName rcNam,

in ListOfReportControlAttributeNames names)

raises (GetFailed) ;

ListOfConfirmations SetReportControlValue (

in ObjectName rcNam,

in ListOfReportControlAttributes names)

raises (SetFailed) ;

void RegisterAsClient (in ReportClient client) ;

// No raises

void UnRegisterAsClient (in ReportClient client) ;

// Create

// Destroy

i

}; /* EO ReportControl */

Public

V2.0/ 2002-01-15/ Page 75 of 141

SCSM to CORBA

IST10258/009
<<CORBATypedef>>
ReportControlList
<<Interface>> <<CORBAStruct>>
BufTimAttribute TriggerOptions
L +bufTim + dataAttributeContent : long + data_change : boolean

<<Interface>> + quality_change : boolean
ReportControl o /
—_— *trgOps <<Interface>> +dataAttributeContent

= TrgOpsAttribute

<<Interface>>
SegNumAttribute

+ dataAttributeContent : long

+segNum

<<Interface>>
*gl GlAttribute

+ dataAttributeContent : boolean

<<Interface>>
+intgPd IntgPdAttribute
+ dataAttributeContent : long

+datSetNam <<Interface>>
——= DatSetNamAttribute

<<Interface>>
+rBEPd RBEPdAttribute

+ dataAttributeContent : long

<<Interface>>
+mptID RptldAttribute
%

+ dataAttributeContent : string

<<Interface>>
+rptEna RptEnaAttibute
+ dataAttributeContent : boolean

<<Interface>>
+irgs TrgsAttribute
+ dataAttributeContent : long
+dataAttributeContent
+optFlds <<Interface>> <<CORBATypedef>>
_ P —{ OptFldsAttribute OptionalFields

Figure 13-1: ReportControl class UML diagram.

Public V2.0/2002-01-15/ Page 76 of 141

SCSM to CORBA IST10258/009

14.

Mapping of Generic Object Oriented
System-wide Event (GOOSE)

14.1

14.2

Introduction

The GOOSE is intended for the distribution of system wide events. The natural
implementation for it is the CORBAservices Event Service. The main problem with
the event service is its lack of real time features. Real-time even services have been

described elsewhere [Harrison 1997].

The GOOSE does not specify who receives the events. System-wide seems to mean
that the event reaches every systems in the SAS. We understand that this means all
Servers in the SAS. It is obviously necessary to provide some way of receiver
registration.

The same can be said about what events should be distributed for each receiver.
The ACSI does not specify types of events nor classes of receivers. Should it be
done, the natural implementation for events with filtering is the Notification
Service.

From the specification it is not clear at all WHAT events are generated nor HOW
they are generated. It is mentioned a power-up event and an associate GOOSE
event, but this seem a little small utility for such kind of service.

Generic object oriented system-wide event control class
This is the controlling class for event generation:

interface GOOSEControl {
attribute ObjectName gcNam;
attribute GooseEna gooseEna;
attribute ObjectName sndglD;
attribute UserDatNam userDatNam;

i

14.2.1 GcName

The name of the GOOSE control object.

Public

V2.0/ 2002-01-15/ Page 77 of 141

SCSM to CORBA IST10258/009

| attribute ObjectName gcNam;

14.2.2 GooseEna
The Boolean controlling if the GOOSE controller wil generate events.

interface GooseEna : GenericDataAttribute(
attribute boolean dataAttributeContent;

}i

14.2.3 SndgLD
Name of sending logical device:

| attribute ObjectName sndglD;

14.2.4 UserDatNam
An user data name to be included in GOOSE messages:

interface UserDatNam : GenericDataAttribute {
attribute string dataAttributeContent;

}i

14.3 Generic object oriented system-wide event (GOOSE) message
The GOOSE message is the informational content of a GOOSE event.
struct GooseMessage
string sendingIED;
TimeStamp t;
long segNum;
long stNum;
long usec;
any userDat;
}i
This should be inserted into a type CORBA: : any if the CORBAservices event
channel is going to be used.
14.4 Service specification
The service specification provides two operations for getting and setting the
GOOSE control state.
14.4.1 GetGOOSEControlValue
GOOSEControl GetGOOSEControlValue ()
raises (GetFailed) ;
Public V2.0/2002-01-15/ Page 78 of 141

SCSM to CORBA IST10258/009

14.4.2 SetGOOSEControlValue

GOOSEControl SetGOOSEControlValue (in GOOSEControl value)
raises (SetFailed) ;

/DD DD Do ______________________—___%]
/* GOOSE */
/DD DD DD oo ____________________—_—___%]
module GOOSE{
interface GooseEna : GenericDataAttribute(
attribute boolean dataAttributeContent;
interface UserDatNam : GenericDataAttribute {
attribute string dataAttributeContent;
interface GOOSEControl ({
attribute ObjectName gcNam;
attribute GooseEna gooseEna;
attribute ObjectName sndglD;
attribute UserDatNam userDatNam;
interface GOOSEControlI ({
GOOSEControl GetGOOSEControlValue ()
raises (GetFailed) ;
GOOSEControl SetGOOSEControlValue (in GOOSEControl value)
raises (SetFailed) ;
struct GooseMessage
string sendingIED;
TimeStamp t;
long segNum;
long stNum;
long usec;
any userDat;
Public V2.0/2002-01-15/ Page 79 of 141

SCSM to CORBA

IST10258/009

14.6 UML

<<Interface>>
GOOSEControll

<<Interface>>
GOOSEControl

+ GetGOOSEContrlValue()
+ SetGOOSE ControlValue()

+gooseEna

<<CORBATypedef>>
ObjectName
(from MapTypes)

+sndgLD
b—
R ——
+gcNam
+userDatNam

<<Interface>>
GooseEna

<<Interface>>
UserDatNam

+ dataAttributeContent : boolean

+ dataAttributeContent : string

<<CORBAStruct>>
GooseMessage

+ sendinglED : string

+ seqNum : long

+ stNum : long

+ usec : long

+ userDat : any

Figure 14-1: GOOSE UML model.

Public

V2.0/ 2002-01-15/ Page 80 of 141

SCSM to CORBA IST10258/009

15.

Mapping of Control Model

15.1

15.2

Control Introduction
The definition of the parameters of the Control interfaces is as follows:

typedef ObjectName ControlObjectName;
typedef any Value;

typedef TimeStamp T;

typedef boolean Test;

struct Check({

boolean synchrocheck;
boolean interlock check;

}i

In case of Response-, additional cause diagnosis shall identify the reason of failure
using the enumerated type enum AddCause™.

Control services

15.2.1 Select

void Select (in ControlObjectName name)
raises (ControlFailed) ;

15.2.2 SelectWithValue
This service will return AddCause = CORBA::nil in case Response+.

AddCause SelectWithValue (
inout ControlObjectName name,
inout Value value,
inout T time,
inout Test test,
in Check check)

raises (ControlFailed) ;

13 Names of values have been changed to use underscores instead of hyphens. Also 1_to_n_control
has been changed to one_to_n_control to comply with IDL naming rules.

Public

V2.0/ 2002-01-15/ Page 81 of 141

SCSM to CORBA IST10258/009

15.2.3 Cancel
This service will return AddCause = NIL in case Response+

AddCause Cancel (
inout ControlObjectName name,
inout T time,
inout Test test)

raises (ControlFailed);

15.2.4 Operate
This service will return AddCause = NIL in case Response+

AddCause Operate (
inout ControlObjectName name,
inout Value value,
inout T time,
inout Test test,
in Check check)
raises (ControlFailed) ;

15.2.5 CommandTermination
This service will return AddCause = NIL in case Response+

AddCause CommandTermination (
out ControlObjectName name,
out T time,
out Test test)

raises (ControlFailed) ;

15.2.6 Synchrocheck
This service will return AddCause = NIL in case Response+

AddCause Synchrocheck (
inout ControlObjectName name,
inout T time,
inout Test test)
raises (ControlFailed) ;

15.2.7 TimeActivatedOperate

This service will return TimOperRsp in case Response+ and AddCause in case
Response-.

any TimeActivatedOperate (
inout ControlObjectName name,
inout Value value,
inout T time,
inout Test test)
raises (ControlFailed) ;

Public V2.0/2002-01-15/ Page 82 of 141

SCSM to CORBA IST10258/009

15.3

IDL

/*===*/
/* Control */
/*==*/

module Control({
// Service paramenters for control interfaces

typedef ObjectName ControlObjectName;
typedef any Value;
typedef TimeStamp T;
typedef boolean Test;
struct Check({
boolean synchrocheck;
boolean interlock check;

}i
// BAdditional cause diagnosis shall identify the reason of failure

enum AddCause {
not supported,
blocked by switching hierarchy,
blocked by event,
blocked by interlocking,
blocked by setpoint_ command,
target exists,
parameter error,
time limit over,
address_error,
hardware_ error,
one of n control,
system crash,
step limit,
command already in execution,
plausibility error,
blocked by synchrocheck,
debounce active,
abortion,
parameter charge in execution,
CB_alarm

i

interface Control {

void Select (in ControlObjectName name)
raises (ControlFailed) ;

// This service will return AddCause = NIL in case Response+

AddCause SelectWithValue (
inout ControlObjectName name,
inout Value value,
inout T time,
inout Test test,
in Check check)

raises (ControlFailed) ;

// This service will return AddCause = NIL in case Response+
AddCause Cancel (

inout ControlObjectName name,
inout T time,

Public

V2.0/ 2002-01-15/ Page 83 of 141

SCSM to CORBA IST10258/009

inout Test test)
raises (ControlFailed) ;

// This service will return AddCause = NIL in case Response+

AddCause Operate (
inout ControlObjectName name,
inout Value value,
inout T time,
inout Test test,
in Check check)
raises (ControlFailed) ;

// This service will return AddCause = NIL in case Response+

AddCause CommandTermination (
out ControlObjectName name,
out T time,
out Test test)

raises (ControlFailed) ;

// This service will return AddCause = NIL in case Response+

AddCause Synchrocheck (
inout ControlObjectName name,
inout T time,
inout Test test)
raises (ControlFailed) ;

// This service will return TimOperRsp in case Response+
// and AddCause in case Response-

any TimeActivatedOperate (
inout ControlObjectName name,
inout Value value,
inout T time,
inout Test test)
raises (ControlFailed) ;

}i

typedef sequence <Control> ControlList;

i

15.4 UML

Public

V2.0/ 2002-01-15/ Page 84 of 141

SCSM to CORBA IST10258/009

Not very useful but here it is.

<<Interface>> <<CORBAStruct>> <<CORBAEnum>>
Control Check AddCause
+ synchrocheck : boolean + not_supported

+ Select() + interlock_check : boolean| |+ blocked_by_switching hierarchy
+ SelectWithValue() + blocked_by_event
+ Cancel() + blocked_by_interlocking
+ Operate() <<CORBATypedef>> + blocked_py_setpoint_comm and
+ CommandTermination() T + target_exists
+ Synchrocheck() + parameter_error
+ TimeActivatedOperate() + time_limit_over

+ address_error

+ hardware_error
+ one_of n_contradl
+ system_crash

+ step_limit

ControlObjectName

A <<CORBATy pedef>>

<<CORBATypedef>> + command_already _in_execution
Value + plausibility_ermor
+ blocked_by_synchrocheck
+ debounce_active
<<CORBATypedef>> + abortion
<<CORBATypedef>> Test + parameter_charge_in_execution
ControlList + CB_alarm

Figure 15-1: Control interface model in UML.

Public V2.0/2002-01-15/ Page 85 of 141

SCSM to CORBA IST10258/009

16. Mapping of Substitution Model

16.1 Substitution overview

Service parameters are very similar to parameters used in the Control Interface.

16.2 Service specification
16.2.1 Substitute
This service will return AddCause = NIL in case Response+

AddCause Substitute (
inout DataObjectName name,
inout Value value,
inout T time,
inout Test test)
raises (SubstituteFailed) ;

16.2.2 UnSubstitute
This service will return AddCause = NIL in case Response+

AddCause UnSubstitute (
inout DataObjectName name,
inout T time,
inout Test test)
raises (SubstituteFailed) ;

%
16.3 IDL
/*==*/
/* Substitution */
/*==*/

module Substitution({

interface Substitution {

// This service will return AddCause = NIL in case Response+

AddCause Substitute (

Public V2.0/2002-01-15/ Page 86 of 141

SCSM to CORBA IST10258/009

inout DataObjectName name,
inout Value value,
inout T time,
inout Test test)
raises (SubstituteFailed) ;

// This service will return AddCause = NIL in case Response+

AddCause Substitute (
inout DataObjectName name,
inout T time,
inout Test test)
raises (SubstituteFailed) ;

Public V2.0/2002-01-15/ Page 87 of 141

SCSM to CORBA IST10258/009

17.

Mapping of Transmission of Sampled
Measured Values

171

17.2

Overview

The model applies to the exchange of values of a data set (collection of data
objects) in a tilaly manner. There exist a data sampler (that can make local
buffering) an a remote buffer where data are pulled by the client.

It is not clear at all how connections between them are going to happen. This can
be nicely implemented using a real-time even service. Multicasting of samplings is
also possible.

Sampled Measured Value Control Class Definition
This is that class for the attributes controlling how sampleas are taken:

interface SampledvValueControl ({
attribute ObjectNameAttribute svcNam;
attribute SvEnaAttribute svEna;
attribute DatSetNamAttribute datSetNam;
attribute RefrRateAttribute refrRate;
attribute NoOfSmpAttribute noOfSmp;
attribute ComUpRateAttribute comUpRate;
attribute SmpRateAttribute SmpRate;

}i

17.2.1 SvcNam
The name of the.

| attribute ObjectNameAttribute svcNam;

17.2.2SvEna
Sampled Value Controller enabling;:

interface SvEnaAttribute : GenericDataAttribute {
attribute boolean dataAttributeContent;

}i

Public

V2.0/ 2002-01-15/ Page 88 of 141

SCSM to CORBA IST10258/009

17.3

17.2.3 DatSetNam

Data set sampled:

attribute ObjectReference dataAttributeContent;

bi

‘ interface DatSetNamAttribute : GenericDataAttribute

17.2.4 RefrRate
Refresh rate:

interface RefrRateAttribute : GenericDataAttribute {
attribute long dataAttributeContent;

}i

17.2.5NoOfSmp
Number of samples:

interface NoOfSmpAttribute : GenericDataAttribute {
attribute long dataAttributeContent;

}i
17.2.6 ComUpRate

Communication rate:

interface ComUpRateAttribute : GenericDataAttribute
attribute long dataAttributeContent;

}i
17.2.7 SmpRate

attribute long dataAttributeContent;

bi

‘ interface SmpRateAttribute : GenericDataAttribute {

Sampled Measured Value Service Definitions

The sampler is controlled using the SampledValueControll interface.

17.3.1 GetSMVControlValues

in ObjectName name)

DataAttributeList GetSMVControlValue (
raises (GetFailed) ;

17.3.2 SetSMVControlValues

void SetSMVControlValue (
in ObjectName name,

Public

V2.0/ 2002-01-15/ Page 89 of 141

SCSM to CORBA IST10258/009

in DataAttributelList data)
raises (SetFailed) ;

}i

17.4 Sampled Measured Value Buffer Format
17.4 .1 Buffer definition

The received buffer has a sequence of structs that can be pulled by clients:

struct SampleData{
any mvVal;
any q;

typedef sequence <SampleData> SampleDatalist;

struct Sample({
SampleDataList listOfDataObjectValues ;
long smpCnt; // Unnecessary (can be queried to the sequence)

}i

typedef sequence <Sample> SamplelList;

struct SampledMeasuredValueBufferFormat {
ObjectReference datSetNam;
long noOfSmp;
SampleList 1listOfSmp;
TimeStam prefrTim;
long confRev;

}i
17.4.2 Buffer interface

interface SampledMeasuredValueBufferlI {
Sample Pull() raises (PullFailed);
boolean BufReceived() ;

Vi
17.5 IDL
/*==*/
/* Sampledvalue */
/*==*/

module SampledvValueControl

interface SvEnaAttribute : GenericDataAttribute ({
attribute boolean dataAttributeContent;

}i

interface DatSetNamAttribute : GenericDataAttribute {
attribute ObjectReference dataAttributeContent;

}i

interface RefrRateAttribute : GenericDataAttribute {
attribute long dataAttributeContent;

}i

interface NoOfSmpAttribute : GenericDataAttribute {
attribute long dataAttributeContent;

}i

Public V2.0/ 2002-01-15/ Page 90 of 141

SCSM to CORBA IST10258/009

interface ComUpRateAttribute : GenericDataAttribute
attribute long dataAttributeContent;

bi

interface SmpRateAttribute : GenericDataAttribute {
attribute long dataAttributeContent;

bi

interface SampledvValueControl ({
attribute ObjectNameAttribute svcNam;
attribute SvEnaAttribute svEna;
attribute DatSetNamAttribute datSetNam;
attribute RefrRateAttribute refrRate;
attribute NoOfSmpAttribute noOfSmp;
attribute ComUpRateAttribute comUpRate;
attribute SmpRateAttribute SmpRate;

}i

interface SampledvalueControlI {
DataAttributeList GetSMVControlValue (
in ObjectName name)
raises (GetFailed) ;
void SetSMVControlValue (
in ObjectName name,
in DataAttributeList data)
raises (SetFailed) ;

Vi

typedef sequence<SampledValueControl> SampledValueControlList;

struct SampleData{
any mvVal;
any dq;

typedef sequence <SampleData> SampleDatalList;

struct Sample({
SampleDatalList listOfDataObjectValues ;
long smpCnt; // Unnecessary (can be queried to the sequence)

I

typedef sequence <Sample> Samplelist;

struct SampledMeasuredValueBufferFormat {
ObjectReference datSetNam;
long noOfSmp;
SamplelList 1listOfSmp;
TimeStam prefrTim;
long confRev;

}i

interface SampledMeasuredValueBufferI
Sample Pull() raises (PullFailed);
boolean BufReceived() ;

Vi

Public V2.0/2002-01-15/ Page 91 of 141

SCSM to CORBA

IST10258/009

17.6 UML

<<Interface>>

<<Interface>> <<Interface>>
SampledValueControll SampledValueControl +comUpRate ComUpRateAttribute
—] - -
+ GetSMVControlValue () + dataAttributeContent : long
+ SetSMVContra Value()
\ +datSetNam
\
<<Interface>> <<Interface>>
SampledM easuredValueBufferl \ DatSetNamA(ttribute
+ Pull |
+ Buﬂgeceived() \\ <<Interface>>
T S NoOmepAtmbute
\/ \ + dataAttributeContent : long
<<CORBAStruct>> \
SampledMeasuredValueBufferFormat '
+ noOfSmp : long \ <<Interface>>
+ confRev: lon B
9 <<CORBATypedef>> > Refr_RateAttnbute.
SampledValueControlList + dataAttributeContent : long
+listOfSmp +SmpRate
<<Interface>>
SmpRateAttribute
<<CORBATypedef>> + dataAttributeContent : long
SampleList <<CORBATypedef>>
SampleDatalList
+svEna
+listOfDataObjectVal
Interface>>
v = _
<<CORBAStruct>> <<CORBAStruct>> SvEnaAttribute
Sample SampleData + dataAttributeContent : boolean
+ smpCnt : long + mVal : any
+q:any

Figure 17-1: UML model of the sampled measure values service.

Public V2.0/2002-01-15/ Page 92 of 141

SCSM to CORBA IST10258/009

18. Mapping of Time Synchronisation
Model

18.1 Introduction

The ACSI does not say very much about these services, mostly only their names.
From the explanation it looks like these services are provided by a server to be
invoked by a synchronization master, but no parameters and/or results are
specified.
18.2 Services
18.2.1 Prepare
For what ?
| void Synchro::Prepare() ;
18.2.2 Measure

Measure what ??

| void Synchro::Measure() ;

18.2.3 Synchronise
Using what time ??

| void Synchro::Synchronise() ;

18.3 IDL

Interface Synchro{
void Synchro: :Prepare () ;
void Synchro: :Measure () ;
void Synchro: :Synchronise () ;

}i

Public V2.0/2002-01-15/ Page 93 of 141

SCSM to CORBA IST10258/009

19.

File transfer

19.1

19.2

File transfer model
19.1.1 FileName

Name in the ACSI file store. What is the “ ACSI File Store”?

typedef string FileName;
FileName name;

19.1.2FileSize
Size in octets.

| long fileSize;

19.1.3 LastModified

|TimeStamp lastModified;

File services

19.2.1 GetFile service

FileData GetFile(in FileName name) raises (GetFailed) ;

Files can be large, an returning a file can produce proble with the stack if the file is
big. This interface does not take this into account but it is possible to use an
iterator to do this work avoiding the stack overflow problem.

19.2.2 SetFile service
Returns TRUE is success.

typedef sequence <octet> FileData;
boolean SetFile(in FileName name, in FileData data) raises (SetFailed) ;

19.2.3 DeleteFile service
Returns TRUE is success.

|boolean DeleteFile (in FileName name) raises (DeleteFailed) ;

Public

V2.0/ 2002-01-15/ Page 94 of 141

SCSM to CORBA IST10258/009

19.2.4 FileDirectory service

This service can be invoked passing the name of a file to get attributes or no name
to get a full directory.

Struct FileDirectoryEntry{
FileName name;
long fileSize;
TimeStamp lastModified;

}

typedef sequence <FileDirectoryEntry> FileDirectoryList;
typedef sequence <FileName> FileNameList;

FileDirectoryList FileDirectory(in FileNamelList list)
raises (DirectoryFailed) ;

The file interface is intended to be used by an ACSI server (as the rest of the ACSI,
indeed).
typedef string FileName;
typedef sequence <octets> FileData;
struct FileDirectoryEntry({
FileName name;
long fileSize;
TimeStamp lastModified;
}i
typedef sequence <FileDirectoryEntrys> FileDirectoryList;
typedef sequence <FileName> FileNameList;
interface File({
FileData GetFile(in FileName name) raises (GetFailed) ;
boolean SetFile(in FileName name, in FileData data) raises (SetFailed) ;
boolean DeleteFile(in FileName name) raises (DeleteFailed) ;
FileDirectoryList FileDirectory(in FileNameList list)
raises (DirectoryFailed) ;
}i
Public V2.0/ 2002-01-15/ Page 95 of 141

SCSM to CORBA

IST10258/009

19.4 UML
<<Interface>>
File
. <<CORBATypedef>>
+ GetFile() FileDirectoryList
+ SetFile()
+ DeleteFile()
+ FileDirectory() /
<<CORBATypedef>> / <<CORBATypedef>>
FileData / FileName
/ +name ‘
L
<<CORBAStmuct>> ‘
FileDirectoryEntry <<CORBATypedef>>
+ fileSize : long FileNameList
Figure 19-1: The file management interface for an
ACSI server.
Public V2.0/ 2002-01-15/ Page 96 of 141

SCSM to CORBA IST10258/009

Part 3
Reference Material

Public V2.0/2002-01-15/ Page 97 of 141

SCSM to CORBA IST10258/009

20. Additional Bibliography

[Sanz 2000] Ricardo Sanz. CORBA for Complex Control Systems. Plenary Speech
at IFAC Symposium on Algorithms and Architectures for Real
Time Control. Palma de Mallorca, Spain, May 2000.

[Harrison 1997] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” in Proceedings
of OOPSLA "97, (Atlanta, GA), ACM, October 1997.

Public V2.0/ 2002-01-15/ Page 98 of 141

SCSM to CORBA IST10258/009

21. IDL Files

211 CORBA
21.1.1 COS Name Service

//* Source file: CosNaming.idl */

//

#ifndef COS NAMING DEFINED
#define _COS NAMING DEFINED

#pragma prefix "omg.org"

module CosNaming

{

typedef string Istring; // The "I" is for future support for
Internationalization.

struct NameComponent

{

Istring id; // The name
Istring kind; // More info

typedef sequence <NameComponents> Name;

enum BindingType

{
nobject, // Object binding.
ncontext // Context binding.

}i

struct Binding

{

Name binding name; // Object name
BindingType binding type; // Context or object

bi

typedef sequence <Binding> BindingList;
interface BindingIterator;
interface NamingContext

{

enum NotFoundReason

Public V2.0/2002-01-15/ Page 99 of 141

SCSM to CORBA IST10258/009

missing node,
not_context,
not object

i

exception NotFound

{

NotFoundReason why;
Name rest of name;

}i

exception CannotProceed

{

NamingContext cxt;
Name rest of name;

}i

exception InvalidName

{

octet something put to_avoid errors from Rose Reverse engineering;
exception AlreadyBound
octet something put to avoid errors from Rose Reverse engineering;
exception NotEmpty
octet something put to_avoid errors_ from Rose Reverse engineering;
// Operations -----------------mmm oo
// Binding

void bind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound) ;

void rebind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName) ;

void bind context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound) ;

void rebind context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName) ;

// Resolution

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName) ;

// Unbinding

void unbind (in Name n)
raises (NotFound, CannotProceed, InvalidName) ;

// Context creation and destruction
NamingContext new context () ;

NamingContext bind new context (in Name n)
raises (NotFound, AlreadyBound, CannotProceed, InvalidName) ;

void destroy ()
raises (NotEmpty) ;

Public V2.0/2002-01-15/ Page 100 of 141

SCSM to CORBA IST10258/009

void list (in unsigned long how many,
out BindingList bl,
out BindingIterator bi) ;
}i

interface BindingIterator

{

boolean next one (out Binding b) ;

boolean next n (in unsigned long how many,
out BindingList bl) ;

void destroy () ;
}i
}i

#endif /* _COS_NAMING DEFINED */

21.1.2 COS Event Service

21.1.2.1 COS Event Channel

//* Source file: CosEvenComm.idl */

/***
* %

Copyright (c) 2000 DOTS Consortium
IR EEE SRS SR SRS SR SRS SRR EE SRS SR SRR SR SRS EEEEESEEREEEEEEEEEEEEEEEEEEEEEEEEESEEEEEESEES]

**/

#ifndef COS EVENTCOMM DEFINED
#define COS EVENTCOMM DEFINED

#pragma prefix "omg.org"

module CosEventComm

{

exception Disconnected

{

octet to_put_something and avoid errors from Rose Reverse_ engineering;

i

interface PushConsumer

{

void push (in any data) raises (Disconnected) ;
void disconnect push consumer () ;

i

interface PushSupplier

{

void disconnect push supplier ();

}i

interface PullSupplier

{

any pull () raises (Disconnected) ;
any try pull (out boolean has_event) raises (Disconnected) ;
void disconnect pull supplier ();

}i

interface PullConsumer

{

void disconnect pull consumer () ;

i

Public

V2.0/2002-01-15/ Page 101 of 141

SCSM to CORBA IST10258/009

i

#endif /* _COS_EVENTCOMM DEFINED */

21.1.2.2 COS Event Channel Administration

/* Source file: CosEvenChannelAdmin.idl */

/***
*

Copyright (c) 2000 DOTS Consortium
IR EEE SRS SR SRS SR SRS SRR EE SRS SR SRR SRS EEEREEEESEEREREEEEEEEEEEEEEEEEEEEEEESEEEEEESEES]

*/

#ifndef COS_ EVENTCHANNELADMIN DEFINED
#define COS EVENTCHANNELADMIN DEFINED

#include "CosEventComm.idl"
#pragma prefix "omg.org"

module CosEventChannelAdmin

{

exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm: :PushConsumer

{

void connect push supplier (in CosEventComm::PushSupplier push supplier)
raises (AlreadyConnected) ;
}i

interface ProxyPullSupplier : CosEventComm: :PullSupplier

{

void connect pull consumer (in CosEventComm::PullConsumer pull consumer)
raises (AlreadyConnected) ;

interface ProxyPullConsumer : CosEventComm: :PullConsumer

{

void connect pull supplier (in CosEventComm::PullSupplier pull supplier)
raises (AlreadyConnected, TypeError) ;
}i

interface ProxyPushSupplier : CosEventComm: :PushSupplier

{

void connect_push consumer (in CosEventComm::PushConsumer push consumer)
raises (AlreadyConnected, TypeError) ;

interface ConsumerAdmin

{

ProxyPushSupplier obtain push supplier ();
ProxyPullSupplier obtain pull supplier ();

}i

interface SupplierAdmin

{

ProxyPushConsumer obtain push consumer ();
ProxyPullConsumer obtain pull consumer ();

}i

interface EventChannel

Public

V2.0/2002-01-15/ Page 102 of 141

SCSM to CORBA IST10258/009

{

ConsumerAdmin for consumers () ;
SupplierAdmin for suppliers () ;

void destroy () ;
}i
}i

#endif /* _COS_EVENTCHANNELADMIN DEFINED */

21.2 ACSI Mapping

The ACSI-CORBA mapping is specified in a single file ACSL.IDL:

/**

CORBA Specific Communcation Service Mapping for IEC 61850
Copyright (c) 2001 DOTS Consortium
kkhkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkkhkkhkkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhhkhhkrhkrhkrhkrhkrhkrxkrxkrxkrxkxkxkx
Revision: 1.9.6
Date: July 16, 2001

Author: Ricardo Sanz, Mariano Alonso
R RS R R R R R R R R R SRR RS E R RS

This file contains an IDL definition of the IEC 61850 Abstract
Communication Service Interface. This interface is documented in part
7-2 of the aforementionaed IEC specification.

Throughout this document, references to specific parts of IEC 61850

are done in the form $$61850-a-b/x.y.z$$ where "a" and "b" refer to parts
of the specification, and "x", "y" and "z" refer to specific clauses,
sections and subsections of the document.

The mapping is structured in several sections

"Types" Contains the mapping of basic types used in the
IEC 61850 specification.

"Exceptions" Contains the collection of exceptions thrown by the ACSI
services.

"Services" Contains the specific parts of 7-2.

This ACSI module contains the mappings of the ACSI services. Each set

of services is mapped as an specific CORBA module. Specific interfaces
are defined to manage specific collections of services in each module.
The services provided by the ACSI are the following:

- Server

- Association

- Logical Device

- Logical Node

- Data

- Data Set

- Substitution

- Setting group control
- Reporting and logging
- GSE

- Transmission of Sampled Values
- Control

- File Transfer

- Time: It is not a real service so it does not have a separate section

dkhkkhkhkkdkhkhkhkhkhhkhkdhhkdhhkdhrhdhkhhkhkdhrkdrhkdhrhdhhhkhkdhrkdrhkdrhdrkdhkrkdhrrkdrhkdrrhrhdkdxx */

Public

V2.0/2002-01-15/ Page 103 of 141

SCSM to CORBA IST10258/009

#ifndef ACSI DEFINED
#define ACSI DEFINED
#pragma prefix "dots"

#include "CosNaming.idl"

/% S m oo oo _______

module acsitypes {

/* Foundation types ===
$$61850-7-2/5.3.28S */

typedef long INTEGER;

typedef unsigned long ULong;

typedef float REAL;

typedef sequence <octet> BIT STRING;

typedef string OCTET STRING;

typedef string VisibleString;

typedef sequence <octet> RawData;

/* Common types ===
// $$61850-7-2/5.3.3$3

/*ODJECtNAME = - - - m - m oo oo o oo oo x/
typedef VisibleString ObjectName;

typedef sequence <acsitypes::0ObjectName> ObjectNameList;

typedef acsitypes::0bjectNameList ListOfDataObjectNames;

/* ObjectReference -—--------- - - o - oo */
// Do not confuse these references with CORBA object references !!!!
typedef CosNaming::Name ObjectReference;

typedef sequence <ObjectReference> ObjectReferencelist;

typedef ObjectReferencelist LogicalDeviceRefList;

typedef ObjectReferencelList LogicalNodeRefList;

typedef ObjectReferencelList DataReflist;

typedef ObjectReferencelList DataSetReflList;

typedef ObjectReferencelList ReportControlRefList;

typedef ObjectReferencelList LogReflist;

typedef ObjectReferencelList LogControlReflist;

typedef ObjectReferencelList SettingGroupControlRefList;

typedef ObjectReferencelList GOOSEControlRefList;

Public V2.0/2002-01-15/ Page 104 of 141

SCSM to CORBA IST10258/009

typedef ObjectReferencelList MulticastSMVCRefList;
typedef ObjectReferencelList UnicastSMVCRefList;
typedef ObjectReferencelList DataAttributeReflist;
typedef ObjectReferencelList URCRefList;

typedef ObjectReferencelList BRCRefList;

Y B« T e */
// $$61850-7-2/18s5$

enum TimeAccuracyType {

TO,
T1,
T2,
T3,
T4,
T5

Vi

struct TimeQualityType {
boolean faultClockFailure;
boolean clockNotSynchronized;
TimeAccuracyType timeAccuracy;

Vi

struct Time ({
ULong secondOfCentury;
ULong fractionOfSecond;
TimeQualityType timeQuality;
boolean leapSecondPending;
boolean leapSecondOccured;
boolean leapSecondNegative;
boolean daylightSavingsPending;
boolean daylightSavingsTime;
ULong daylightSavingsDateSpring;
ULong daylightSavingsDateFall;
ULong localTimeOffset;

}i
/* Time SEaAmMD - - - - - - - - m oo - oo oo */

struct TimeStamp {
TimeQualityType timQ;
boolean leapSecondNegative;
boolean leapSecondOccured;

}i
/% Selectors —-- - - oo m oo oo */

/* Selectors serve the purpose of specifying filters for collections
of objetcs. We use ACSI ObjectReferences for this purpose,
indicating in the <id> field of each CosNaming: :NameComponent

the identifier and in the field <kind> the type of the scope.

The main difference between selectors and ObjectReferences is

in their use because selectors can contain information that

include scopes our of the hierarchy of LogicalDevice/LogicalNode.Xxx
(for example they can include functional constraints
$$61850-7-2.11.3.6.3.133) */

typedef ObjectReference Selector;

typedef sequence <Selector> SelectorList;

Public V2.0/2002-01-15/ Page 105 of 141

SCSM to CORBA IST10258/009
/* Test status (GSE, Control) --------mmmmmm oo */
enum TestStatus {
TEST,
NO_ TEST
}i
/* DataAttributes == */

enum DataAttributeCharacteristic {
op, sT, CO, MX, sp, CT, DC, CF, RC, LC, GC, SC, AX

}i

typedef sequence <DataAttributeCharacteristics>
DataAttributeCharacteristicList;

typedef RawData DataAttributeValue;
interface DataAttribute
attribute ObjectName dataAttributeName;

attribute DataAttributeCharacteristicList dataAttributeCharacteristic;
attribute DataAttributeValue value;

typedef sequence <DataAttribute> DataAttributelist;
typedef sequence <DataAttributeValue> DataAttributeValuelList;
typedef sequence <DataAttributeValue> ListOfDataValues;

typedef string ListOfConfirmations;

module acsiexceptions {

exception FailedDirectory
long reason;

}i

exception NoSuchData {
acsitypes: :0bjectName name;

I

exception GetFailed {
long reason;

}i

exception SetFailed {
long reason;

}i

exception CreateFailed {
long reason;

Vi

exception DeleteFailed {
long reason;

Vi

exception ControlFailed {
long reason;

Public

V2.0/ 2002-01-15/ Page 106 of 141

SCSM to CORBA

IST10258/009

}i

exception PullFailed {
long reason;

}i

exception AssociateFailed (
long reason;

}i

exception NoSuchAssociation {
long reason;

Vi

exception NoSuchClient {
long reason;

Vi

exception NoData {
long reason;

Vi

exception NoAvailableUSMVC
long reason;

Vi

exception ActivateFailed ({
long reason;

Vi

exception SubstituteFailed {
long reason;

Vi

/* ==

module acsireportlog {

struct TriggerOptions {

boolean
boolean
boolean
boolean
boolean
boolean

Vi

data_change;
filtered data change;
quality change;

cyclic integrity;
general interrogation;
data set directory;

struct ReportOptionalFields {

boolean
boolean
boolean
boolean
boolean
boolean

Vi

/* Buffered Report Control

enum BRCStateType {DISABLED,HOLD,ENABLED};

reserved;
sequence_number;
report time stamp;
data_set_name;
reason_ for inclusion;
dataReference;

/* Report Client

Public

V2.0/2002-01-15/ Page 107 of 141

SCSM to CORBA IST10258/009

This callback interface is to be supported by a report client */

enum ReasonForInclusion {
DATA CHANGE_REASON,
QUALITY CHANGE_REASON,
PERIODIC_REASON,
INTEGRITY REASON,
GENERAL INTERROGATION_REASON,
NOT_VALID REASON

Vi

struct ReportDataltem {
acsitypes::0bjectReference dataName;
string value;
/* FALSE in optFlds */
ReasonForInclusion reasonCode;

}i

struct ReportFormat {
acsitypes::VisibleString rptId;
ReportOptionalFields optFlds;
/* Only Valid if Sequence Number == TRUE in optFlds */
acsitypes: :ULong segNum;
acsitypes: :ULong subSegNum;
boolean bufOvfl;
boolean reqBufAck;

/* Only Valid if Report Time Stamp == TRUE in optFlds */
acsitypes::TimeStamp rptTim;
/* Only Valid if DataSet Name == TRUE in optFlds */

acsitypes: :0bjectReference datSetRef;
sequence <ReportDataltem> listOfData;

Vi

interface ReportClient ({
void Report (
in ReportFormat reportFmt
)

raises (acsiexceptions::NoSuchClient) ;

}i
/* Log Control €lasSs ------ - - - - oo oo */

interface LogControl {
J* ALtribubes ... e */

attribute acsitypes::0bjectName 1CName;

attribute boolean logEna;

attribute acsitypes::0bjectReference dataSetRef;

attribute TriggerOptions trgOps;

attribute acsitypes::ULong intgPd;

attribute acsitypes::0bjectReference logRef;

/S TVACES it e
GetLogControlValue and SetLogControlValue are implemented by
the IDL compiler for each attribute. */

}i

struct EntryData ({
acsitypes::0bjectReference datRef;
acsitypes::DataAttributeValue datValue;
ReasonForInclusion inclusionReasonCode;

i

struct LogEntry
acsitypes::TimeStamp timeOfLog;
acsitypes: :ULong entryId;
EntryData entryDat;

Public V2.0/2002-01-15/ Page 108 of 141

SCSM to CORBA

IST10258/009

}i

typedef sequence <LogEntry> LogEntryList;

typedef unsigned long long EntryNo;

interface Log ({

Vi

/* Attributes */

attribute acsitypes::0bjectReference logRef;

attribute acsitypes::TimeStamp oldEntrTim;

attribute acsitypes::TimeStamp newEntrTim;

attribute EntryNo oldEnt;

attribute EntryNo newEnt;

/* This attribute should be internal to the implementation of
the Log and not manifest in the interface !!! */

attribute LogEntryList logEntries;
/* SETVACES o e */
// GetLogStatusValue() is implemented by the IDL Compiler

LogEntryList QueryLogByTime (
in acsitypes::TimeStamp rangeStartTime,
in acsitypes::TimeStamp rangStopTime
)

raises (acsiexceptions::NoData) ;

LogEntryList QueryLogByEntry (
in EntryNo startEntry,
in EntryNo stopEntry
)

raises (acsiexceptions::NoData) ;

interface ReportControl ({

i

attribute acsitypes::0bjectName RCName;

attribute acsitypes::0bjectReference dataSetReference;
attribute acsitypes::ULong bufTim;

attribute TriggerOptions trgOps;

attribute acsitypes::ULong intgPd;

attribute acsitypes::VisibleString rptId;

attribute ReportOptionalFields optFlds;

interface BufferedReportControl : ReportControl {

/* Attributes */

attribute BRCStateType bRCstate;
attribute boolean discBuf;

/% SEIVICES ottt e */
// "Report" service should be implemented by clients

void AckReport (

in acsitypes::VisibleString rptId,
in long segNum,

in long subSegNum

)i

// GetReportControlValue and SetReportControlValue are automatically
// generated by the IDL compiler

void RegisterAsClient (
in ReportClient client

Public

V2.0/ 2002-01-15/ Page 109 of 141

SCSM to CORBA

IST10258/009

)i

void UnRegisterAsClient (
in ReportClient client

)i
}i
typedef sequence <ReportControls ReportControlList;
/* Unbuffered Report Control ======================================= *%/

interface UnbufferedReportControl : ReportControl {
/* Attributes */

attribute boolean rptEna;
/% SETVICES i e */
// "Report" is implemented by clients and used by ReportControl

// GetReportControlValue and SetReportControlValue are automatically
// generated by the IDL compiler

void RegisterAsClient (
in ReportClient client

)i

void UnRegisterAsClient (
in ReportClient client

)i
}i
typedef sequence <LogControls LogControlList;

typedef sequence <Log> LogList;

/* ==

module acsidataset {

interface DataSet
attribute acsitypes::0bjectName dataSetName;
attribute acsitypes::SelectorList listOfSelectors;

acsitypes::ListOfDataValues GetDatSetValue (
in boolean specificationWithResult

)

raises (acsiexceptions::GetFailed) ;

acsitypes::ListOfConfirmations SetDatSetValue (
in acsitypes::ListOfDataValues listOfDataValues
)

raises (acsiexceptions::SetFailed) ;

void DeleteDataSet ()
raises (acsiexceptions::DeleteFailed) ;

acsitypes::SelectorList GetDataSetDirectory ()
raises (acsiexceptions::FailedDirectory) ;

Public

V2.0/2002-01-15/ Page 110 of 141

SCSM to CORBA

IST10258/009

/* A Factory object should be created before to perform
DataSet creation (And deletion?) */

interface DataSetFactory {
acsitypes::0bjectReference CreateDataSet (
in acsitypes::0ObjectName dataSetName,
in acsitypes::SelectorList listOfSelectors

)

raises (acsiexceptions::CreateFailed) ;

void DeleteDataSet (
in acsitypes::0bjectReference dataSetReference
)

raises (acsiexceptions::DeleteFailed) ;

Vi

typedef sequence <DataSet> DataSetList;

/* ==

module acsisettinggroupcontrol {

interface SettingGroupControl
attribute acsitypes::0bjectName sGCControlName;
attribute acsitypes::SelectorList listOfSelectors;
attribute acsitypes::ULong numOfSG;
attribute acsitypes::ULong activeSG;

boolean ActivateSG (
in acsitypes::ULong sGNumber
)

raises (acsiexceptions::ActivateFailed);

acsitypes::ListOfConfirmations SetSGValues (
in acsitypes::ULong sGNumber,
in acsitypes::ListOfDataValues dataValues

)

raises (acsiexceptions::SetFailed) ;

acsitypes::ListOfDataValues GetSGValues (
in acsitypes::ULong sGNumber

)

raises (acsiexceptions::GetFailed) ;

boolean GetSGControlValues (
out acsitypes::ULong activesSG,
out acsitypes::ULong numOfSG,
out acsitypes::SelectorList listOfSelectors

)

raises (acsiexceptions::GetFailed) ;

}i

typedef sequence <SettingGroupControl> SettingGroupControlList;

Public

V2.0/2002-01-15/ Page 111 of 141

SCSM to CORBA

IST10258/009

module acsigse {
typedef sequence <long> ElementOffsets;

struct Dataltem ({
acsitypes: :0bjectReference dataReference;
acsitypes::DataAttributeValue value;

I

struct GOOSEMessage {
acsitypes: :0bjectReference datSetRef;
acsitypes::VisibleString appId;
acsitypes::TimeStamp t;
acsitypes: :ULong stNum;
acsitypes: :ULong sgNum;
acsitypes::TestStatus test;
long confRev;
boolean needsCommissioning;
boolean dataRefIncluded;
sequence <Dataltems> listOfData;

typedef sequence <acsitypes::VisibleString> Labellist;
typedef sequence <octets> Data;

struct GSSEMessage {
acsitypes::VisibleString appId;
acsitypes::TimeStamp t;
acsitypes: :ULong stNum;
acsitypes: :ULong sgNum;
acsitypes::TestStatus test;
long confRev;
Data listOfData;

}i

interface GSEControl ({
attribute acsitypes::0bjectReference gCRef;
attribute acsitypes::VisibleString appId;

Vi
/* GOOSE —==m=m=————m—mmmmmm oo m oo oo oo oo oo—oooo—oo————o———o————ooo %/

interface GOOSEControl : GSEControl ({
J*F AEETrdAbULES .. e */

attribute acsitypes::0bjectReference dataSetRef;
attribute boolean needsCommissioning;

T T =5 v R o= = */

// GetGSEControlValue() and SetGSEControlValue () equivalents are
// generated by the IDL compiler

acsitypes::0bjectReferencelist GetReference (
in ElementOffsets listOfElementOffsets
)

raises (acsiexceptions::NoSuchData) ;

ElementOffsets GetGSEElementNumber (
in acsitypes::0bjectReferencelist listOfReferences

)

raises (acsiexceptions::NoSuchData) ;

Public

V2.0/2002-01-15/ Page 112 of 141

SCSM to CORBA

IST10258/009

/*

interface GSSEControl : GSEControl ({
J* AEETrAbULES . . e */

attribute Labellist datalLabels;
attribute Data lastSentData;

T 1= v =1 = */

// GetGSEControlValue () and SetGSEControlValue () equivalents
// are generated by the IDL compiler

LabellList GetReference (
in ElementOffsets listOfElementOffsets
)

raises (acsiexceptions::NoSuchData) ;

ElementOffsets GetGSEElementNumber (
in LabelList listOfLabels
)

raises (acsiexceptions::NoSuchData) ;

}i

typedef sequence <GSEControl> GSEControlList;

module acsisampledvalue

/* SMV buffer == %/

struct SMVOptionalFields {
boolean reserved;
boolean refresh time;
boolean configuration revision;
boolean sample_ rate;

}i

/* The buffer definition contains places for indication
of optional content but no place for the content itself 1!l */

struct SMVBuffer (
acsitypes::VisibleString sMVId;
SMVOptionalFields optFlds;
acsitypes::0bjectReference dataSetRef;
acsitypes::ListOfDataValues 1listOfSmp;
acsitypes: :ULong smpCnt;
acsitypes::TimeStamp refrTime;
acsitypes: :ULong confRev;
acsitypes: :ULong smpRate;

}i

interface SMvVControl ({
attribute acsitypes::0bjectName sMVCNam;
attribute acsitypes::VisibleString sMVId;
attribute acsitypes::0bjectReference DatSetRef;
attribute acsitypes::ULong smpRate;

i
/* MulticastSMVC == %/

interface MulticastSMVC : SMvVControl ({
T T =5 v R o= = */

Public

V2.0/2002-01-15/ Page 113 of 141

SCSM to CORBA

IST10258/009

// GetMSMVCValue () and SetMSMVCValue () equivalents are generated
// by the IDL compiler */

/* UnicastSMVC == %/

interface UnicastSMVC : SMvControl {
J* AEEribULES .. e */

attribute boolean sMVEna;
T T =5 v R o= = */

// GetMSMVCValue () and SetMSMVCValue () equivalents are generated
// by the IDL compiler

// The GetNextUSMVC () service has been put in the LogicalDevice
// interface (see $3$61850-7-2/16.3.2.333$). Perhaps it should be
// put in the LogicalNodeZero interface :-(

}i

typedef sequence <SMVControl> SMVControlList;

module acsifile {

/* Note on getting big files: If files are large, returning a file
can produce problems with the stack. This interface does not take

this into account but it is possible to use an iterator to do this
work. */

typedef sequence <octets> FileData;

struct FileEntry ({
acsitypes::VisibleString name;
acsitypes::ULong fileSize;
acsitypes::TimeStamp lastModified;

typedef sequence <FileEntrys> FileEntryList;

// Forward declaration
interface File;

typedef sequence <File> Filelist;
interface File {
J* AL ribULES . . e e */
attribute acsifile::FileEntry fileEntry;
YT S T=5 v R =1 = S */
acsifile::FileData GetFile (
in acsitypes::VisibleString fileName
)

raises (acsiexceptions::GetFailed) ;

boolean SetFile (
in acsitypes::VisibleString name,

Public

V2.0/2002-01-15/ Page 114 of 141

SCSM to CORBA IST10258/009

in FileData data

)

raises (acsiexceptions::SetFailed) ;

boolean DeleteFile (
in acsitypes::VisibleString name
)

raises (acsiexceptions::DeleteFailed) ;

// The FileDirectory operation should return a full list
// in the case of empty argument.

acgsifile::FilelList FileDirectory (
in acsitypes::VisibleString fileName
)

raises (acsiexceptions::FailedDirectory) ;

Vi

2 S ——
LogicalNode $3 61850-7-2/9 $$
A —
module acsilogicalnode {
interface LogicalNode ({
J*F AL TAbULES . . e */

attribute acsitypes::0bjectName logicalNodeName;

attribute acsitypes::DataAttributelList listOfData;

attribute acsidataset::DataSetList listofDataSets;

attribute acsireportlog: :ReportControlList lisOfReportControls;
attribute acsireportlog: :LogControlList listOfLogControls;
attribute acsireportlog::LogList listofLogs;

T 1= v =1 <
*/
// The polimorphic service LogicalNodeDirectory is expanded into a
// set of non-polimorphic services
acsitypes::DataReflList LogicalNodeDataDirectory ()
raises (acsiexceptions::FailedDirectory) ;
acsitypes::DataSetReflList LogicalNodeDataSetDirectory ()

raises (acsiexceptions::FailedDirectory) ;

acsitypes: :BRCRefList LogicalNodeBRCDirectory ()
raises (acsiexceptions::FailedDirectory) ;

acsitypes::URCRefList LogicalNodeURCDirectory ()
raises (acsiexceptions::FailedDirectory) ;

acsitypes: :LogControlRefList LogicalNodeLogControlDirectory ()
raises (acsiexceptions::FailedDirectory) ;

acsitypes::LogReflList LogicalNodeLogDirectory ()
raises (acsiexceptions::FailedDirectory) ;

acsitypes: :SettingGroupControlReflList
LogicalNodeSettingGroupControlDirectory ()
raises (acsiexceptions::FailedDirectory) ;

Public V2.0/2002-01-15/ Page 115 of 141

SCSM to CORBA

IST10258/009

acsitypes: :GOOSEControlRefList LogicalNodeGOOSEControlDirectory ()
raises (acsiexceptions::FailedDirectory) ;
acsitypes::MulticastSMVCRefList LogicalNodeMulticastSMVCDirectory ()
raises (acsiexceptions::FailedDirectory) ;
acsitypes::UnicastSMVCRefList LogicalNodeUnicastSMVCDirectory ()
raises (acsiexceptions::FailedDirectory) ;
}i
interface LogicalNodeZero : acsilogicalnode: :LogicalNode
attribute acsisettinggroupcontrol::SettingGroupControlList
listOfSettingGroupControls;

attribute acsigse::GSEControlList 1listOfGSEControls;
attribute acsisampledvalue::SMVControlList listOfSampledvValueControls;

}i

interface LogicalNodePHD : acsilogicalnode::LogicalNode {

Vi

typedef sequence <LogicalNode> LogicalNodelList;

2 S —

module acsilogicaldevice {
interface LogicalDevice {
attribute acsitypes::0bjectName logicalDeviceName;
attribute acsilogicalnode::LogicalNodeList logicalNodes;
attribute acsilogicalnode: :LogicalNodeZero logicalNodeZero;
attribute acsilogicalnode: :LogicalNodePHD logicalNodePHD;
acsitypes::LogicalNodeRefList LogicalDeviceDirectory ()

raises (acsiexceptions::FailedDirectory) ;

// This service is an LD service but is described as a
// service of the Unicast SMVC $3$61850-7-2/16.3.2.333

acsitypes: :0bjectName GetNextUSMVC ()
raises (acsiexceptions::NoAvailableUSMVC) ;

}i

typedef sequence <LogicalDevices> LogicalDeviceList;

/* ===

A simple userid/passwd authentication scheme is used. This is the level
required by IEC 61850. Futher security can be attained by means of a
CORBA Securiy Service Level 1 or Level 2.

Views are implemented by means of selectors. */

module acsiassociation {

Public

V2.0/2002-01-15/ Page 116 of 141

SCSM to CORBA IST10258/009

typedef acsitypes::VisibleString ViewId;

struct View {
ViewId id;
acsitypes::Selector selector;

I

struct AuthenticationType {
string userId;
string passwd;
string viewId;

typedef acsitypes::0bjectName AssociationIdent;
typedef sequence <AssociationIdent> ClientAssociationList;
/* Two-party association class (interface) -----------—--———-———~—--- x/

interface Association {
/* attributes */

attribute AssociationIdent associationId;
attribute AuthenticationType authenticationParameter;

/* Services */

AssocilationIdent Associate (
in AuthenticationType authentication

)

raises (acsiexceptions::AssociateFailed) ;

boolean Abort (
in AssociationIdent association

)

raises (acsiexceptions::NoSuchAssociation) ;
// Ignored "indication" argument in 61850
boolean Release (

in AssociationIdent association

)

raises (acsiexceptions::NoSuchAssociation) ;

}i

/* Multicast association class (interface) -------------~—--—~-~—~—~—~—~—~~—~—-
We cannot fullly understand how this class is goin to be used !!! */

interface MulticastAssociation {
/* attributes */

attribute AuthenticationType authenticationParameter;

2 S —

module acsiserver {

interface Server ({
/* Attributes */

attribute acsitypes::0bjectReference serviceAccessPoint;
attribute acsitypes::VisibleString configurationVersion;

Public V2.0/2002-01-15/ Page 117 of 141

SCSM to CORBA

IST10258/009

attribute acsilogicaldevice: :LogicalDevicelList LogicalDevices;
attribute acsifile::FileList Files;
attribute acsiassociation::ClientAssociationList ClientAssociations;

/* Services */
acsilogicaldevice: :LogicalDevicelList ServerLogicalDeviceDirectory ()
raises (acsiexceptions::FailedDirectory) ;

acsifile::FileList ServerFileDirectory ()
raises (acsiexceptions::FailedDirectory) ;

acsiassociation::ClientAssociationList
ServerClientAssociationDirectory ()
raises (acsiexceptions::FailedDirectory) ;

module acsidata {

interface Data
attribute acsitypes::0bjectName dataName;
attribute acsitypes::DataAttributelList dataAttributes;
attribute acsitypes::RawData rawdata;

acsitypes::DataAttributeValuelList GetDataValues (
in boolean specificationWithResult,
inout acsitypes::SelectorList listOfSelectors

)

raises (acsiexceptions::GetFailed) ;

acsitypes::ListOfConfirmations SetDataValues (
in acsitypes::SelectorList listOfSelectors,
in acsitypes::DataAttributeValuelList dataValues
)

raises (acsiexceptions::SetFailed) ;

acsitypes::DataAttributeRefList GetDataDirectory (
in acsitypes::Selector selector

)
raises (acsiexceptions::FailedDirectory) ;
acsitypes::DataAttributeReflist GetDataDefinition (

in acsitypes::Selector selector

)

raises (acsiexceptions::FailedDirectory) ;

/* ==

module acsisubstitution {

interface Substitution ({

Public

V2.0/2002-01-15/ Page 118 of 141

SCSM to CORBA IST10258/009
boolean Substitute (
in acsitypes::0ObjectReference dataAttributeReference,
in acsitypes::DataAttributeValue substitutionValue
)
raises (acsiexceptions::SubstituteFailed) ;
boolean UnSubstitute (
in acsitypes::0ObjectReference dataAttributeReference
)
raises (acsiexceptions::SubstituteFailed) ;
}i
/* ==
Control
== %/

module acsicontrol ({

/* As stated in $3$61850-7-2/17.1$$ control objects can be any data class
one of the following common data classes: SPC, DPC, IST, BST, IST, ASP */

/* Service parameters for control interface ================= */

struct Check {
boolean synchrocheck;
boolean interlock check;

enum TimeActivatedOperateType

TIMER ACTIVATED,
COMMAND_EXECUTED

}i
/* Additional cause diagnosis shall identify the reason of failure */
enum AddCause {

NOT_SUPPORTED,

BLOCKED BY SWITCHING HIERARCHY,
BLOCKED_ BY EVENT,
BLOCKED BY INTERLOCKING,
BLOCKED BY SETPOTNT COMMAND,
TARGET EXISTS,

PARAMETER ERROR,

TIME LIMIT OVER,
ADDRESS_ERROR,

HARDWARE_ERROR,

ONE_OF N_CONTROL,
SYSTEM_CRASH,

STEP_LIMIT,

COMMAND ALREADY IN EXECUTION,
PLAUSTBILITY ERROR,
BLOCKED BY SYNCHROCHECK,
DEBOUNCE_ACTIVE,

ABORTION,

PARAMETER CHARGE_IN_EXECUTION,
CB_ALARM

}i

interface Control
void Select (
in acsitypes::0bjectName name
)

raises (acsiexceptions::ControlFailed) ;

Public

V2.0/2002-01-15/ Page 119 of 141

SCSM to CORBA

IST10258/009

// This service will return AddCause="No error" in case Response-

AddCause SelectWithvalue (
inout acsitypes::0ObjectName name,
inout acsitypes::DataAttributeValue value,
inout acsitypes::TimeStamp time,
inout acsitypes::TestStatus test

)

raises (acsiexceptions::ControlFailed) ;
// This service will return AddCause="No error" in case Response-

AddCause Cancel (
inout acsitypes::0ObjectName name,
inout acsitypes::TimeStamp time,
inout acsitypes::TestStatus test

)

raises (acsiexceptions::ControlFailed) ;
// This service will return AddCause="No error" in case Response-

AddCause Operate (
inout acsitypes::0ObjectName name,
inout acsitypes::DataAttributeValue value,
inout acsitypes::TimeStamp time,
inout acsitypes::TestStatus test,
in acsicontrol::Check check

)

raises (acsiexceptions::ControlFailed) ;
// This service will return AddCause="No_ error" in case Response-

AddCause CommandTermination (
out acsitypes::0ObjectName name,
out acsitypes::TimeStamp time,
out acsitypes::TestStatus test

)

raises (acsiexceptions::ControlFailed) ;
// This service will return AddCause="No error" in case Response-

AddCause Synchrocheck (
inout acsitypes::0ObjectName name,
inout acsitypes::TimeStamp time,
inout acsitypes::TestStatus test

)

raises (acsiexceptions::ControlFailed) ;

// This service will return TimeActivatedOperateType in case Response+

// and AddCause in case Response-

AddCause TimeActivatedOperate (
inout acsitypes::0ObjectName name,
inout acsitypes::DataAttributeValue value,
inout acsitypes::TimeStamp time,
inout acsitypes::TestStatus test,
out acsicontrol::TimeActivatedOperateType type

)

raises (acsiexceptions::ControlFailed) ;

Public

V2.0/ 2002-01-15/ Page 120 of 141

SCSM to CORBA IST10258/009

61850-7-2/18 defines not a service but two types (Time and TimeQuality)
that are so basic they have been moved to the "Types" section. */

#endif

Public V2.0/2002-01-15/ Page 121 of 141

SCSM to CORBA

IST10258/009

22. ACSI Document Quick Reference

Chapters 5 to 19 of this mapping have a one-to-one correspondence with the IEC
61850 Part 7-2. As a fast access guide the following tables indicate the page
numbers of the sections in the IEC 61850 Part 7-2 document (ACSI Page).
Corresponding pages in this document can be found in the table of contents.

Section | Content . ACSI Page |
5 ACSI communication service model 14

5.1 Abstract modelling techniques 14

5.2 Overview on ACSI models 16

5.3 Class model 18

5.4 Service tables 19

Section | Content . ACSI Page |
6 Server model 20

6.1 Server class definition 20

6.1.1 ServiceAccessPoint 20

6.1.2 LogicalDevices 21

6.1.3 Files 21

6.1.4 ClientAssociations 21

6.2 Server services 21

6.2.1 ServerDirectory 21

6.3 Access control 22

6.3.1 Access control definition 23

6.3.2 Use of access control 25
Section | Content . ACSI Page |
7 Application association model 27

7.1 Concept of abstract associations 27

7.2 Association class 28

7.2.1 Trigger policy 28

7.2.2 Queues and buffers 29

7.2.3 Connection and connectionless protocols 29

724 Establishing associations 29

7.2.5 Role 29

7.2.6 Cardinality 29

Public

V2.0/2002-01-15/ Page 122 of 141

SCSM to CORBA

IST10258/009

7.3 Association Types 30
7.3.1 Queued User Triggered Unidirectional (QUU) 30
7.3.2 Queued User Triggered Bi-directional Connection 30
Oriented (QUB-CO)
7.33 Queued User Triggered Bi-directional 30
Connectionless (QUB-CL)
734 Queued User Triggered Bi-directional Flow 30
Control (QUB-FC)
7.3.5 Queued User Triggered Bi-directional Segmenting 30
(QUB-Seg)
7.3.6 Buffered Network-Scheduled Uni-directional 30
(BNU)
7.4 Definitions of association end points 31
741 Association end point state 31
74.2 Max outstanding requests calling 31
7.4.3 Max outstanding requests called 31
744 Max outstanding unconfirmed requests client 31
(maxUCSC)
7.4.5 Max outstanding unconfirmed requests server 31
(maxUCSS)
7.4.6 Maximum outstanding requests client (maxOSCC) 31
74.7 Maximum outstanding requests server 31
(maxOSCS)
Section | Content . ACSI Page |
8 Logical device model 32
8.1 Logical device class definition 32
8.1.1 logicalDeviceObjectName 33
8.1.2 LogicalNodes 33
8.1.3 AccessControl 33
8.2 Logical device access services 33
8.2.1 LogicalDeviceDirectory 33
Section | Content . ACSI Page |
9 Logical node model 35
9.1 Logical node class definition 35
9.1.1 LnState 35
9.1.2 LogicalNodeObjectName 36
9.1.3 DataObjects 36
9.1.4 DataSets 36
9.1.5 ReportControls 36
9.1.6 LogControls 36
9.1.7 Logs 36

Public

V2.0/2002-01-15/ Page 123 of 141

SCSM to CORBA

IST10258/009

9.1.8 gOOSEControl 36
9.1.9 SampledValueControls 36
9.1.10 | AccessControl 37
9.2 Logical node access services 37
9.2.1 LogicalNodeDirectory 37
Section | Content . ACSI Page |
10 Data object model 39

10.1 Data object class definition 39

10.1.1 |dataObjectName 39

10.1.2 | DataAttributes 39

10.1.3 | AccessControl 39

10.2 Data object class services 39

10.2.1 |GetDataObjectValues 39

10.2.2 |SetDataObjectValues 41

10.2.3 | GetDataObjectDefinition 42
10.2.4 | DataObjectDirectory 43
Section | Content . ACSIPage |
11 Data attribute model 44

11.1 Data attribute class definition 44

11.1.1 |DataAttributeName 44

11.1.2 | DataAttributeContent 44

11.1.3 | DataAttributeCharacteristic 44

11.2 DataAttribute Services 45

11.2.1 |SetDataAttributeValues 45

11.2.2 |SetDataAttributeValues 45

11.3 Attribute and parameter types 45

11.4 Common types 45

11.4.1 |ObjectName 45

11.4.2 | ObjectReference 45

11.4.3 |TimeStamp 46

11.4.4 |RelativeTime 47
Section Content . ACSI Page |
12 Data set model 48

12.1 Data set class definition 48

12.1.1 | DataSetObjectName 48

12.1.2 | DataObjectNames 48

12.1.3 | AccessControl 48

12.2 Data set services 49

1221 |GetDataSetValue 49

Public

V2.0/2002-01-15/ Page 124 of 141

SCSM to CORBA IST10258/009

12.2.2 |SetDataSetValue 49
12.2.3 |CreateDataSet 49
12.2.4 | DeleteDataSet 50
12.2.5 |DataSetDirectory 51
Section | Content . ACSI Page |
13 Publish and subscribe data transfer (reporting and |52
logging)
13.1 Overview 52
13.2 Report model 53
13.2.1 |Report control class definition 53
13.2.2 |Reporting services 59
13.3 Log model 64
13.3.1 |Overview 64
13.3.2 |Log control class definition 64
13.3.3 |Log control attribute definition 65
13.3.4 |Log class definition 66
13.3.5 |Log attribute definition 67
13.3.6 |Log and log control services 68
Section | Content . ACSI Page |
14 Generic Object Oriented System-wide Event 74
(GOOSE)
14.1 Introduction 74
14.2 Generic object oriented system-wide event 74
(GOOSE) control class
14.2.1 | GcName - GOOSE control name 75
14.2.2 | GooseEna - GOOSE enable 75
14.2.3 |SndgLD - Name of sending logical device 75
1424 | UserDatNam - user data name 75
14.3 Generic object oriented system-wide event 75
(GOOSE) message
14.4 Service specification 76
Section | Content . ACSIPage |
15 Control 77
15.1 Control Introduction 77
15.2 Control with normal security 77
15.2.1 |Direct control with normal security 78
15.2.2 | SBO control with normal security 78
15.3 Control with enhanced security 79

Public V2.0/2002-01-15/ Page 125 of 141

SCSM to CORBA

IST10258/009

15.3.1 |Direct control with enhanced security 79
15.3.2 | SBO control with enhanced security 79
154 Typical control operations 80
15.4.1 |Direct control with normal security 80
15.4.2 | Select before operate with enhanced security 81
15.4.3 | Control with synchrocheck 82
15.4.4 |Time activated control 84
15.5 Control services 85
15.5.1 |Service parameter definition 85
15.5.2 | Service specification 86
Section | Content . ACSI Page |
16 Substitution model 90
16.1 Substitution overview 90
16.2 Substitution services 90
16.2.1 |Service parameter definition 90
16.2.2 |Service specification 91
16.2.3 | Service procedure 92
Section | Content . ACSI Page |
17 Transmission of sampled measured values 93
17.1 Overview 93
17.2 Sampled Measured Value Control Class Definition |94
17.21 |SvcNam 94
17.2.2 |SvEna 94
17.2.3 | DatSetNam 95
17.2.4 |RefrRate 95
17.2.5 |NoOfSmp 95
17.2.6 | ComUpRate 95
17.2.7 |SmpRate 95
17.3 Sampled Measured Value Service Definitions 95
17.3.1 |GetSMVControlValues 95
17.3.2 | SetSMVControlValues 95
17.4 Sampled Measured Value Buffer Format 96
Section | Content . ACSI Page |
18 Time Synchronisation Model 98
Section | Content . ACSI Page |
19 File transfer 99
19.1 File transfer model 99

Public

V2.0/ 2002-01-15/ Page 126 of 141

SCSM to CORBA IST10258/009
19.1.1 |FileName 99
19.1.2 |FileSize 99
19.1.3 |LastModified 99
19.2 File services 99
19.2.1 |GetFile service 99
19.2.2 |SetFile service 100
19.2.3 | DeleteFile service 101
19.2.4 |FileDirectory service 101

Public

V2.0/2002-01-15/ Page 127 of 141

SCSM to CORBA IST10258/009

23.

DOTS General Model Update

23.1

23.2

23.3

Introduction

This annex reflects changes in DOTS general model on Communication Networks
and Systems in Substations, from v04.mdl to v07.mdl. Principally, modifications
are due to updates from revision of January 2001 to March 2001, in documents IEC
61850-7-3 and IEC 61850-7-4.

Parts 7-3 and 7-4 specify the basic communication structure for substations and
feeder equipment. The first one includes Common Data Classes (attribute types
and class specifications) while the second one delas with Compatible Loginal
Node Classes and Data Classes.

Common Data Attribute Types

Main types remain the same. Only a few more types have been added.

Common Data Class Specifications

The following common data classes were specified in the old version:

Status Information

- Single Point Status (SPS)

- Double Point Status (DPS)

- Step Position Information (SPI)

- Status Indication Group (SIG)

- Integer Status (ISI)

- Protection Activation Information (ACT)

- Security Violation Counting (SEC)

- Name Plate (PLATE)

- Binary Counter Reading (BCR)
Measurand Information

- Measured Value (MV)
- WYE (WYE)
- Delta (DEL)

Public

V2.0/2002-01-15/ Page 128 of 141

SCSM to CORBA IST10258/009

- Sequence (SEQ)

- Harmonics for WYE (HVWYE)

- Harmonics for DEL (HVDEL)
Controllable Status Information

- Controllable Single Point (SPC)

- Controllable Double Point (DPC)

- Controllable Integer Status (ISC)

- Binary Controlled Step Position Information (BST)

- Integer Controlled Step Position Information (IST)
Controllable Analogue Information (Set Point)

- Analogue Set Point (ASP)
- Pick up Group (PUG)
- Setting Curve (CURVE)

In the new version, HV has been added while DPS, SPI and PUG have been
removed.

23.3.1 Data Classes

In the old version we had:

Measurands and metered values

- Measured values and analogue setpoints
- Metered values

Commands

- System commands and system return information
- LN specific commands and their related return information

Status

- System information

- LN status indications

- LN monitoring indications

- LN functional indications (fault indications for protection)

In the new version, the data has been reorganised as follows:

Public V2.0/2002-01-15/ Page 129 of 141

SCSM to CORBA IST10258/009

System information

- Basic LN class information

- Physical device information

Measured values and analogue setpoints

Measurand Identification

Metered values

Controllable data

Controllable data
Status Information

Settings Information

Additionally, all the inherited object from these data classes have drastically
changed. This is due to the fact that they are components of Logical Node classes,
and these have been completely redifined. Changes in DOTS model have been
made restarting from the beginning.

23.3.2 Data Attribute Class

Data Attributes have also changed a bit due to modifications in Logical Nodes.
This does not strongly affect Logical Nodes definition.

23.3.3 Logical Node Classes

Many logical nodes have been kept in the new release. Nevertheless, the main
modifications follow:

B Logical nodes kept have seen their attributes completed and/or importantly
changed.

B New logical nodes have appeared.

B [ogical nodes classification has been substantially changed.

First type of modification has been the most important in model updating.
Changes in structure follow.

Public V2.0/2002-01-15/ Page 130 of 141

SCSM to CORBA IST10258/009

Old structure:

Logical node zero

Protection related

Protection functions

Supervisory control

Switchgear

Instrument transformers

Power transformer related
Further Power System Equipment

New structure:

System Logical Nodes
Control

Switchgear

Instrument Transformers
Power Transformer Related
Further Power System Equipment
Protection Related
Protection Functions
Generic References
Interfacing and archiving
Automatic Control
Metering and Measurement

23.4 Conclusion

Due to the important modifications carried out in the model, it is not possible to
compare both versions with simple tables indicating corresponding changes. This
means that it is not recommendable to try to adapt any old developement to the
new version, but to redevelope everything. The most important changes have been
made in Data Classes, and this affects all Logical Nodes structure.

Public V2.0/2002-01-15/ Page 131 of 141

SCSM to CORBA IST10258/009

24.

Comparison between IEC 61850 Draft
Standard and IEEE 1525 Draft
Standard

241

24.2

The IEEE 1525 specification

The reference document is Draft IEEE 1525, Standard for Substation Protection,
Control
and Data Acquisition Communications (P1525 Draft 4r3, December 2000).

The IEEE 1525

This standard applies to systems used to communicate between intelligent
electronic devices (IEDs) for substation integrated protection, control and data
acquisition. The requirements of this standard are in addition to those contained in
standards for individual devices (e.g., relays, switchgear).

This standard establishes the requirements for developing detailed object models
for substation IEDs. The object models define the data structures and methods
required for communication transaction processing between IEDs. Abstract Syntax
Notation One (ASN.1) is used to define the data structures. Functional and
performance requirements for communication are also defined.

Use this standard as part of a specification to develop new, or modify existing
substation automation capability to ensure open system communication interfaces
for substation IEDs.

This standard specifies a suite of communication protocols based on TCP/IP for
connection-oriented communications and UDP/IP for connectionless oriented
protocols. Other protocol suites may be used to provide communication services
that are functionally equivalent to those specified for TCP/IP and UDP/IP.

Public

V2.0/2002-01-15/ Page 132 of 141

SCSM to CORBA IST10258/009

24.3 Comparison with IEC 61850

Both draft standards are orientated to the same subject, Communications in
Substations, but the focus is quite different.

The approach of IEEE 1525 is beginning in the physical layer, specifying bottom-
up the different requirements. First in Clause 4, this norm specifies Internet
Protocols and performance criteria to accomplish. Requirements for deploying
multicast in a substation are described in Clause 5. Network security is specified in
Clause 6, based in encryption and authentication using Internet Protocol Security
(IPSec) protocols. Substation data model requirements are described in Clause 7.
Substation communication capabilities required are described in Clause 8 and
system requirements are described in Clause 9.

On the contrary, the point of view of IEC 51850 is the system developers one, and
so, is a top-down functional approach. The starting point is Part 3, devoted to the
General Requirements of the global system: quality requirements as reliability,
availability, maintainability and security, environmental conditions and auxiliary
services. Part 4 establishes specifications for system and project management. Part
5 describes the communication requirements for functions and device models. The
Substation Configuration Language, SCL, is specified in Part 6 for describing IED
configurations and communications systems.

Part 7 is the centre of IEC standard. It describes the Basic communication
structure for substation and feeder equipment, defining the Abstract
Communication Service Interface, ACSI, Common data classes, Compatible logical
node classes and data classes. As already was said in point 1.2 of this document,
ASCl is an abstract interface and, so, this part of IEC 61850 does not specify
individual implementations and does not specify the mapping of the abstract
functionality to standard application layers. In consequence ACSI needs specific
communication service mapping, SCSM, as those described in Parts 8 and 9 of IEC
draft, or the Mapping to CORBA described in this document.

In conclusions, IEC 61850 and IEEE 1525 could be consider as complementary
specifications: IEC covers high levels of the substation application while IEEE
covers low ones. From this point of view it is possible to think in developing a
specific communication service mapping from IEC 61850 ACSI to IEEE 1525.

Public V2.0/2002-01-15/ Page 133 of 141

SCSM to CORBA IST10258/009

25.

Comparison between IEC 61850 Draft
Standard and OMG UMS-DAF

25.1

25.2

Contents

This chapter contains a comparison between “Utility Management System Data
Access Facility UMS-DAF” of the Object Management Group, Inc. with the
Specific Communication Service Mapping “SCSM” developed in Distributed Object
Telecontrol Systems and Networks DOTS, IST Project 1999-10258.

Main documents consulted were:

B “Utility Management System (UMS) Data Access Facility”. OMG, Version 1.0,
June 2001

B “Specific Communication Service Mapping. Mapping to CORBA”. July 2001.
IST 10258-DOTS. Version 1.8

UMS Introduction (from the referred document)

Utilities operate their water, gas, or power assets through control systems. The
scope of control may include production facilities, bulk transmission networks,
distribution networks, and supply points.

The most basic control system provides Supervisory Control and Data Acquisition
(SCADA) functions. More sophisticated systems provide simulation and analysis
applications that help the operators optimize performance, quality, and security of

supply.

Public

V2.0/2002-01-15/ Page 134 of 141

SCSM to CORBA IST10258/009

Equipment Telemetry UMS
A
I ™
% L SCADA Simulation
TFE ~10" | &Analysis
O PLC classes *-103 classes

e e

Figure 2: A global view of an Utility Management System.

We will use the umbrella term Utility Management System (UMS) to refer to this
class of system. It covers Water Quality and Energy Management Systems
(WQEMS) in the water sector, and Energy Management Systems (EMS) or
Distribution Management Systems (DMS) in the power sector.

Figure 1-1 illustrates a UMS. Two interfaces are shown as block arrows: SCADA
interface (which will be covered in other RFPs) and the analysis data interface (the
subject of this specification).

The applications in a UMS employ extensive physical models representing
networks, production facilities, and demand behavior among other things. These
models distinguish a UMS from other types of control system.

For example, a power system model in an EMS may contain several hundred
classes representing both physical and circuit theoretical concepts. Parts of this
model must be understood by any external application that hopes to interpret the
simulation and analysis results.

However, in all extant systems, this model is implemented in one or another
proprietary database management system. There are no standard query languages
or APIs for today’s EMS, DMS, or WQEMS resident data.

This sets the UMS data access problem apart from conventional database access on
the one hand, and from SCADA data access on the other where just a few classes
are involved representing generic concepts such as measure and device.

Notwithstanding the difficulties, the need for inter-operation between the UMS
and other applications or systems is evident. The UMS automates key utility
activities that touch on many other parts of the business. Moreover, UMS
functions are being redefined as the utility business environment is reshaped.
Consequently, new inter-operation requirements are steadily emerging.

Public

V2.0/2002-01-15/ Page 135 of 141

SCSM to CORBA IST10258/009

25.3

The goal of the Utility Management System Data Access Facility is to improve the
interoperability of these UMS applications with other applications and systems.

The goal of the UMS-DAF is to improve the interoperability of these UMS
applications with other applications and systems.

The DAF is distinguished from some other database APIs because it can be
applied to very simple systems, which may not contain a full-blown database
management system.

Accordingly, the DAF defines very few interfaces, and does not require
implementations to manage large, dynamic populations of CORBA objects. Most
activity centers on the interface ResourceQueryService, which defines a small but
sufficient set of queries as methods. The queries defined by the DAF are simple
enough to be implemented in any UMS database and many related systems and
applications.

The information made available through DAF interfaces can be described by one o
more schema. A schema has the following contents:

Simple Values

Resource Descriptors

Resource Query Service
Resource Identifiers

Query Sequence

DAF Events

Current Version and Transactions

When DAF is used to access power system model data, a schema derived from
EPRI CIM (Electric Power Research Institute Common Information Model) will be
employed. This schema is undergoing standardization in the IEC under Technical
Committee TC57.

Characteristics of UMS-Data Access Facility

The mentioned document explain that DAF formulates queries and their results in
terms of resources, properties, and values.

The ResourceQueryService performs single queries by means of following
operations:

get_values()
get_extent_values()
get_related_values()
get_descendent_values()

Public

V2.0/ 2002-01-15/ Page 136 of 141

SCSM to CORBA IST10258/009

The class is given by its ClassID and the source by a ResourcelD.

25.4 Comparison with IEC 61850 and DOTS

UMS-DAF is the “analysis data interface” for Off-line applications with Complex
Data Models and Complex algorithms or techniques and not cover the interface
with other RFPs.

The advantages of UMS-DAF are well described in the mentioned document.

IEC 61850 and DOTS are interfaces with RFPs. this difference of goals is owing to
that in real-time applications in the Energy Management Systems (EMS) o
Distribution Management Systems (DMS):

e Applications needs data interchange, not only data access. The meaning of
client and server is less restrictive

e Remote Call Procedures is necessary.
e Complete Object Oriented functionality is needed.

e In Real-Time Systems in order to reduce data volume, some times you only
ask for values recently modified

DOTS covers UMS-DAF functionality, the ResourceQueryService of UMS-DAF
performs single queries by means of following operations:

get_values()
get_extent_values()
get_related_values()
get_descendent_values()

The class is given by its ClassID and the source by a ResourcelD.

DOTS offers access to Data Object Model, Data Attribute Model, Server Model, etc.
IEC 61850 Model are not pure Object Oriented and present the difficulties
mentioned in 4.3 paragraph of this document:

e Partial O.O. implementation
e Violations of encapsulation
e [EC 61850 is not yet finished

e Loose typing and unnecessary polymorphism

DOTS proposal solve this disadvantages and may be considered as equilibrated
task force to move IEC 61850 towards a standard interoperability.

Public

V2.0/2002-01-15/ Page 137 of 141

SCSM to CORBA IST10258/009

In this way, is possible to consider UMS-DAF a subset of DOTS and some works
of normalization of names (ex. Path or Directory) and criteria (errors treatment,
some structures) may produce a rational standard for EMS and DMS systems.

Public V2.0/2002-01-15/ Page 138 of 141

SCSM to CORBA

IST10258/009

26. Index
abstract, 6, 12, 13, 14, 15, 16, 26, 27, 30, Common Object Request Broker
56,126,137 Architecture, 15
Abstract Communication Service communication, 5, 6, 12, 13, 14, 15, 16,
Interface, 13, 15, 137 21, 25, 26, 28, 39, 47, 48, 50, 126, 132,
abstract,, 13, 16 136,137, 138

access, 6, 7,14, 15, 27, 29, 30, 31, 37,
59, 62, 64,71,126,127,128, 140, 141,
142

ACSI, 2,5,6,7,9,13,14,15,16,17, 18,
21, 26, 29, 31, 36, 37, 38, 39, 40, 41,
43,44, 45, 46,47, 48,53, 56,59, 60,
61, 62,64, 66,69,71,72,75, 80,97,
98, 99, 107,108, 109, 110, 126, 127,
128, 129, 130, 131, 137, 138

Activation, 132

Analysis, 51

API, 17,30

application, 13, 14, 16, 17, 27, 30, 31,
37,47,56,59, 61, 65,137,138, 140

Application, 18, 126

architecture, 15, 25

Architecture, 15, 22, 26

Association, 6, 18, 43, 56, 57,107,121,
126,127

ATM, 17

Attribute, 7, 9, 40, 69, 70, 128, 132,
134, 142

Binding, 103, 104, 105

broker, 56

bus, 17, 26

Class, 8,9, 40, 92,126, 131, 132, 134

Client, 31, 112

COM, 16

COMH+, 16

common, 6, 16, 26, 28, 41,47, 69, 70,
123, 132

Connection, 127

Connectionless, 127

context, 15, 26, 44, 56, 104

control, 6,7, 8,14, 15,16, 17, 32, 38,
54,56,57,59, 62,64,71,75,76, 80,
81, 82, 85, 87,107,123, 126, 129, 130,
135, 136, 139, 140

CORBA, 1,2,5,6,9,12,13,14, 15, 16,
17,18, 22, 23, 25, 26, 28, 29, 30, 31,
32,33, 34, 36,37, 38, 39, 40, 41, 42,
43,44, 45, 46,47, 48, 49, 50, 51, 53,
54,56, 59, 61, 65, 66, 82, 85,102, 103,
107,108,121, 137, 139, 141

critical, 16

data, 6,9, 14, 15,17, 21, 26, 29, 30, 31,
36,39, 41, 61, 64, 65, 66, 69, 70, 71,
72,73,76,78,81,92,94, 95, 98, 99,
105,111, 112,119, 123, 129, 130, 132,
134, 136, 137, 140, 141, 142

Data Model, 142

Data Type, 41

DCOM, 16

de-facto, 16

descriptive, 15

Design, 51, 102

desktop, 16

device, 6, 13, 14, 15, 21, 26, 30, 36, 39,
43,45, 46,50, 59, 81, 127, 130, 134,
137,140

Device, 6, 14, 59, 107

distributed, 2, 4, 13, 16, 18, 25, 34, 45,
65, 80

Public

V2.0/2002-01-15/ Page 139 of 141

SCSM to CORBA

IST10258/009

Distribution, 2, 20, 140, 142

Domain, 51

EC, 25

Event, 8,9, 14, 33, 48, 50, 80, 102, 105,
106, 129

evolvability, 16

Factory, 77, 115

Generic Object, 8, 26, 80, 129

GOMSFE, 26

GOOSE, 8, 36, 48, 80, 81, 82,116, 129,
130

hardware, 17, 87

HV, 133

IDL,2,6,7,8,9,17,18, 23,31, 32, 37,
38, 39, 40, 44, 46, 47, 53, 54, 57, 59,
60, 61, 62, 65,67,70,72,73,77, 82,
85, 87,90, 94, 97, 99, 103, 107, 113,
114,117,118

IEC, 4, 5,6,10,12,13,14,15,16,17,
18, 20, 21, 25, 26, 27, 28, 29, 31, 36,
38,39, 43,44, 49, 50, 107, 121, 126,
132, 136, 137,139, 141, 142, 143

IED, 15, 137

IIOP, 2, 15, 16, 49

industrial, 15, 16

infrastructure, 12, 15, 16, 37

Intelligent Electronic Device, 21

interface, 9, 13, 14, 15, 21, 26, 27, 37,
39, 46, 54, 56, 57, 60, 62, 65, 67, 70,
71,73,75,76,77,78, 80, 81, 82, 87,
90, 92,93, 94, 95, 98, 99, 103, 105,
106, 107,110, 112, 113, 114, 115, 116,
117,118,119, 120, 121, 122, 123, 124,
137, 140, 141, 142

Interface, 2,13, 15, 31, 37, 40, 90, 97,
107, 137

Interface Definition Language, 2

Internet, 16, 137

interoperability, 2, 16, 18, 32, 34, 141,
143

Interoperability, 17

interoperate, 15, 27

interoperation, 15

IP, 16, 136

ISO, 6,17, 21, 50

Java, 16, 23

language,, 15

limitation, 16

LN, 43, 46,133, 134

Log, 51,112, 113, 114, 129

Logical Node, 6, 9, 61, 62,107, 134,
135

machines, 16

mapping, 2, 4, 5, 6,12,13, 14,17, 18,
20, 21, 25, 26, 27, 29, 30, 31, 33, 35,
36,37,38,39,40,41,42,43,45,47,
49,52,54,59, 61, 65,70, 107, 126,
137,138

Mapping, 1,2,5,6,7,8,9,12, 14, 16,
18, 23, 36, 37,41,47,51, 53, 56, 59,
61, 64, 69, 70, 71, 75, 80, 85, 90, 92,
97,107,137,139

middleware, 13, 14, 16, 31

MMS, 16

MOF, 15,17

MV, 132

network, 15, 57

object, 7, 8,13, 14, 15, 16, 25, 26, 27,
28, 29, 30, 34, 35, 36, 38, 39, 40, 41,
43,44,47,50, 53,56, 59, 61, 64, 65,
66, 70,71, 76,80, 81,103, 104, 108,
115, 128, 130, 134, 136

Object, 2, 5, 6,7,15,22, 23, 24, 26, 27,
31, 32, 33, 34, 40, 41, 43, 44, 50, 64,
65,71, 80,103,104, 129, 139, 142

Object Management Group, 2, 22, 23,
24,139

Object Name, 5, 33, 34

Object Reference, 5, 33, 34, 41, 43

Object Request Broker, 15, 22

Object Services, 33, 50

OMA, 5, 33

OMG, 2,4,5,6,10,13,15,17, 20, 22,
23,24,31, 33,49, 50, 51, 139

open, 15, 16, 41, 46, 57, 136

ORB, 2, 16,17, 50, 56, 75

0OsS, 32, 50

performance, 15, 48, 49, 56, 136, 137,
139

platform, 16

power, 15, 80, 139, 140, 141

program, 15

Public

V2.0/ 2002-01-15/ Page 140 of 141

SCSM to CORBA

IST10258/009

Protection, 132, 135, 136

protocol, 16, 26, 32, 49, 136

Protocol, 16, 137

Public, 2

Query, 141

RC, 110

Report, 7, 8, 21, 36, 75, 76, 77, 112, 114,
129

request, 33, 34, 37, 38, 39, 46, 48, 49, 64

Request, 5, 22, 31, 46, 48

Requirements, 20, 50, 137

Result, 38

Role, 127

RTU, 45

SAS, 13, 25, 80

SBO, 130

SC, 110

scalability, 16

SCL, 137

SCS, 16

SCSM,, 14, 16, 26, 30, 50, 137, 139

self, 15, 49

Server, 6, 18, 36, 43, 44, 53, 54, 64, 65,
66,67,71,73,107,122, 126, 142

service, 6,9,12,13, 14, 16, 21, 26, 33,
34,35,37,38,44,47,50, 53, 54, 59,
60, 62, 64, 65, 66,70, 72,76, 80, 82,
85, 86, 87, 88, 90, 91, 92, 98, 99, 108,

114, 118,119, 121, 124, 125, 126, 131,
137,138

Service, 1, 2,5,8,9,12, 13, 15, 16, 23,
24,34,35,43, 48,49, 50, 51, 54, 80,
82,87,90, 93,102,103, 105, 107, 121,
123,126,130, 131, 137, 139, 141

Specific Communication Service
Mapping, 1, 2,12, 139

stack, 5, 16, 98, 118

standard, 12, 14, 15, 16, 26, 27, 28, 30,
136,137,140, 143

State, 23, 50

substation, 2, 14, 18, 21, 25, 26, 45,
136, 137

Substation Configuration Language,
137

System, 8, 9, 14, 80, 129, 133, 134, 135,
139, 140, 141

TCP/IP, 16, 136

transfer, 9, 14, 15, 36, 98, 129, 131

Transmission, 8, 14, 36, 92, 108, 131

transparency, 16, 31, 34

Type, 40, 41, 43

UCA, 15

UCA 20,15

UML,6,7,8,9,15,17,18, 55, 58, 60,
63,67,70,73,79, 84, 88, 96, 100

XM], 15

Public

V2.0/2002-01-15/ Page 141 of 141

