
WRAPPING A MOBILE ROBOT WITH
RT-CORBA

Ricardo Sanz ∗,1 Adolfo Hernando ∗

Carlos Mart́ınez ∗ Ignacio López ∗

∗ Autonomous Systems Laboratory
Universidad Politécnica de Madrid, Spain

Abstract: Building complex controllers is a major challenge and it is widely
accepted that object technology can help with the problem. This is of special
relevance in the field of complex robot control, in particular when distribution is
necessary. CORBA is a suitable technology for deployment and is well demon-
strated in the experimental field and in commercial robots. In this paper we
describe the implementation of a real-time object wrapper for a mobile robot using
Real-time CORBA technology. This type of wrapping enables the implementation
of networked robot control systems with increased degrees of predictability.

Keywords: Robot control software, distributed control, object wrappers,
CORBA, Real-time CORBA.

1. INTRODUCTION

The nature of applied research in intelligent
robot controllers makes having a versatile soft-
ware architecture a real need for exploring al-
ternative designs in robotic mind construction.
Flexibility, modularity, maintainability and even
hot-replaceability of components are major non-
functional needs for such systems. While some
effort has been spent on genericity is robot control
system construction, most research has been cen-
tered around the provision of ultimate architec-
tures and reusable software components to fulfill
specific missions in the robot controller. Less effort
has been put, however, in the development of a
robust and flexible underlying software platform
where to explore such designs and components.

However, as it can be seen from the research
on intelligent robot control, it is not so easy to
provide an ultimate robot control architecture nor

1 Partially supported by the European Comission through
project IST COMPARE.

a general factoring of controller functionality as
to provide true generic software components for
specific roles into the architecture. The approach
we pursue in our ASys project can be regarded as
a product line approach(Sanz et al., 1999b). We
try to explore alternative control designs —the
product line— as a collection of implementations
that share a set of common assets —i.e. as a
product family. Building product lines as product
families is a major reengineering objective for
development processes.

The particular underlying technology that we
have selected for this research is the technology
of modular, distributed, embedded objects pro-
vided by the CORBA suite of specifications. This
paper presents an experiment in the line of pro-
viding distributed implementations over such an
framework architecture based on these well known
interoperability standards.

This paper demonstrates not only the feasibil-
ity but the convenience of using state-of-the-art,
modular software technologies for the construc-

tion of advanced robot controllers. This is the only
possibility to tackle the complexity requiered for
the controller of autonomous systems(Huang et
al., 2003).

2. DISTRIBUTED SOFTWARE FOR
CONTROL

2.1 Aspects of distributed computing

Most robot controllers of a minimum complexity
are distributed systems. A distributed computer
system is defined to be a system of multiple
autonomous processing elements, cooperating in
a common purpose to achieve a common goal; in
this case the control of the robot to perform its
mission.

The reasons for the distribution are multiple but
two are the most important in the robotics do-
main:

• Deployment constraints that requiere the use
of a particular computing platform (e.g. to
run a specific sensor driver or employ a par-
ticular computer-generated implementation
of a software module)

• Performace requirements that force the use of
several computers (e.g. for sensor processing
or high level real-time planning)

The traditional approaches to distribution were
based on the use of low level APIs for specific
communication protocols or the use of libraries
for parallel computing. This aproach, however,
does not scale well to the complexity level that
is requiered in modern autonomous robots.

The approach used in our research is the employ-
ment of real-time middleware to support the im-
plementation of complex controllers as collections
of interacting real time agents(Sanz et al., 1999a).
Many types of middleware are in use today like
Transaction Processing Monitors (TPM), Remote
Procedure Calling (RPC), Message Oriented Mid-
dleware (MOM) or Object Oriented Middleware
(OOM) (see Table 1)

Obviously, component reusability can only be
achieved if the components do address domain
needs and have well known and public spec-
ifications of provided and requiered interfaces
(Radermacher et al., 2005). This has already been
recognised by the robotics community and a DSIG
has been created inside the OMG 2 and an Re-
quest For Information has been publised. The
OMG Robotics RFI(OMG Robotics DSIG, 2005)

2 The purpose of the OMG Robotics DSIG is to foster the
integration of robotics systems from modular components
through the adoption of OMG standards.

IBM CICS
TPM BEA Tuxedo

HP Encina

Gradient RPC
RPC DCE de Compaq (HP)

RPC de Sun

IBM MQSeries
MOM Software AG EntireX

TIBCO Enterprise Message Service / Rendezvous

Microsoft COM/DCOM
OOM RMI de Sun

CORBA del OMG

Table 1. Some middleware examples
classified by category. Only RPC and
OOM seem relevant for control system

loop implementation.

Fig. 1. Timeliness of networked interaction is
critical for the performace of a distributed
control loop.

seeks information which will be used to direct fu-
ture standardization efforts in the area of reusabil-
ity and interoperability of robotics technology.

2.2 Networked control systems

A specilly interesting distributed system of rel-
evance to our investigation is the networked
controller(Hristu and Levine, 2005). In such a
controller a control engine runs in a computer
while the sensor and/or the actuator are run by
software in other computer connected by a net-
work. Different end-to-end properties and guaran-
tees —timeliness in particular— can be provided
by different OSs and networking infrastructures.

In our approach we try to achieve a unified tech-
nology implementation of any complex distributed
controller without sacrificing any feature that may
be needed at any level. That is of special impor-
tance regarding predictability issues in networked
controllers. In this way we can guarantee the tem-
poral behavior of a distributed controller withouth
worrying about the details of the different layers.

Within a node, tasks interfere with each other
through pre-emption and blocking when accessing
shared resources. The execution times of the tasks
themselves may be data-dependent or may vary
due to hardware features such as processor caches.
On the distributed level, the comunications gives
rise to delays that can be more or less determinis-
tic depending on the communication protocol and

the hardware infraestructure. This will affect the
level of performace of distributed activities (e.g.
degradation of real-time coordination of a group
of autonomous vehicles).

Some sources of communication delays are the
time needed to pass the messages through the
different protocol layers in the sender and re-
ceiver hosts and forward the messages to other
nodes, wait in the output queue buffer, transmit
the message into the link, propagate over the
link, acknowledge and (possible) resend in reliable
transport protocols and link-layer resend in case
of collision detection. RT distributed platforms
provide APIs to somewhat configure these inner
mechanics and provide QoS control.

Providing a framework for isolation between the
functional application level and the underlaying
mechanisms for real-time performance is hence
critical. RT middleware can provide part of this
isolation while other parts are coming from the
more emcompassing embedded components ap-
proach 3 .

2.3 Frameworks for distributed controllers

There are not many attempts to develop a frame-
works with the required properties but some at-
tempts are worth mentioning in robotics and re-
lated fields.

OROCOS consists of two decoupled but inte-
grated sub-projects:

Open Realtime Control Services —This is a
hard realtime software framework directed to-
ward all possible machine control applications
(an outreach of the project’s original robotics
focus). It is designed to run safely parallel user
defined tasks, on Linux 2.6 and RTAI (for hard
realtime). It provides some interesting features
like hardware and operating system abstrac-
tion, event handling, hierarchical and paral-
lel state machines, multiple time- and event-
triggered threads, advanced data protection for
synchronous/asynchronous data flow, strongly
typed data flow, etc. Integration between RTAI
and TAO is also part of the ongoing work to-
wards a hard realtime distributed control infras-
tructure based on CORBA.

Open Robot Control Software —A set of class
libraries and an application framework offer-
ing generic functionality for machine tools and
robots: cascaded control loops and control com-
ponents, motion generation and interpolation;
kinematics and dynamics; robot-specific control
algorithms; estimation and identification; etc.

3 See, for example, www.ist-compare.org.

CORBAapps CORBAdomains CORBAfacilities

CORBAservices

CORBA Object Request Broker

Fig. 2. CORBA technology offers resources at
multiple levels for the construcion of complex
distributed applications.

ORCA is an open-source suite of tools for develop-
ing component-based robotic systems. It provides
the means for defining and developing components
which can be pieced together to build arbitrarily
complex robotic systems, from single vehicles to
distributed sensor networks. In addition it pro-
vides a repository of pre-made components which
can be used to quickly assemble a working robotic
system.

3. CORBA CONTROLLERS

3.1 CORBA Technology

We have selected the CORBA suite of specifica-
tions 4 for the purpose of serving as a base stan-
dardization platform where to build the required
technology.

This collection of specifications includes the CORBA
specification itself (Common Object Request Bro-
ker Architecture) but also the specifications re-
lated to the implementation on small footprint
systems (i.e. the Minimum CORBA spec), pre-
dictability augmentation (the Real-time CORBA
spec), fault tolerance (the Fault-tolerant CORBA
spec) and componentization (the CORBA Com-
ponent Model and the Lightweight CORBA Com-
ponent Model).

Of special importance is the model proposed by
the Object Management Architecture (see Figure
2) that specifies a categorisation of prebuilt com-
ponents that enable the specification of standard-
ized services of horizontal scope like the CORBA
Facilities or CORBA services (time, persistence,
evente, transactions, etc.) or of domain scope.
This last case has got more interest with the
creation of the Robotics DSIG inside the OMG 5 .

CORBA technology —in particular object request
brokers— has been used in many applications in
robotics (specially in distributed robotics). Some
past experiences in our laboratory are:

4 Publicly available from www.omg.org.
5 See http://robotics.omg.org/.

• A reimplemenation of the distributed inter-
action mechanisms in the ARCO multirobot
systems(Sanz et al., 2001b).

• An implementation of a CORBA server
wrapping the local API of a mobile robot
Pioneer 2AT (Pareja, 2004).

This last implementation served as a basis for the
system described in this paper.

3.2 Real-time CORBA Technology

The Real-time CORBA specification (Schmidt
and Kuhns, 2000) was developed to provide
further control to the application developer to
improve application predictability. RT CORBA
specifies aditional mechanisms to increase the
control of resources to improve end-to-end pre-
dictability of distributed object applications. There
are two main specifications for real-time CORBA:
The 1.1 specification relies in an extension of key
CORBA entities and services that allows manag-
ing three types of core resources: processor, mem-
ory and communication. The 2.0 specification in-
corporates mechanisms for dynamic scheduling.

Regarding increased predictability the RT CORBA
specification defines the concept of end-to-end
predictability(e.g. predictability of a networked
control loop from sensor to actuator): respect-
ing thread priorities between clients and servers
during the processing of CORBA invocations
and bounding latencies of operation invocations
and priority inversions during end-to-end process-
ing. This specification only supports fixed-priority
scheduling whereas another specification has been
created to address dynamic distributed systems.
This second specification generalizes the concepts
of distributed system scheduling and distributable
thread in order to allow control on the scheduling
discipline and associated parameter elements. The
schedulable entity is now a distributable thread
that may span node boundaries.

3.3 CORBA Control Systems

CORBA has been used in many control applica-
tions with varying temporal requirements. Some
examples from our laboratory are:

• Emergency management in chemical plants
(Sanz et al., 2000)

• Networked process control systems (Sanz et
al., 2005)

• Electrical substation protection (Sanz et al.,
2001a)

• Cooperating movile robots (Sanz et al.,
2001b)

• Strategic control of cement plants, etc.

See (Segarra, 2005) for more details on the use of
CORBA technology in control systems.

4. RTHIGGS WRAPPER

4.1 The SOUL Project

The SOUL project tries to develop a cognitive
architecture for complex cognitive control of tech-
nical systems. In this project we try to:

(1) investigate the nature and generation mech-
anisms of meaning in cognitive autonomous
systems and also

(2) apply the emerging concepts in several re-
search platforms with very different cogni-
tive requirements and contexts: heterogene-
ity, scalability and visual awareness.

In this context, the project tries to build a formal
theory of meaning to be applied in the definition of
control mechanisms based on explicit representa-
tions of meaning. These mechanisms will be used
in the design of self-aware control architectures
for autonomous systems and will be implemented
in the form of reusable software modules using
standardized software deployment platforms.

Two domain targets are being used for the exlpo-
ration of meaning-centric cognitive architectures:
the domain of process control systems (as de-
scribed in (Sanz et al., 2005)) and the domain of
cognitive robotics.

In the context of this last one we are using a com-
mon mobile robot platform to build a cognitive
control system atop of it. The platform runs com-
mon local software and is accessible to a collection
of remote agents by means of CORBA technology.
This base design enables the exploration of several
architectural alternatives with a minimum of re-
engineering effort of the robotic platform (for ex-
ample, we have integrated a SOAR-based system
with the robot platform using the CORBA object
wrappers).

4.2 Robot characteristics

The robot selected is a well-known Pioneer 2AT8
robot (see Figure 3). The Pioneer 2AT-8 is a
mobile robot made by ActivMedia Robotics. It is a
sked-steering vehicle with lightweight aluminium
body and four pneumatic wheels propulsed by
four reversible DC motors, equipped with high-
resolution optical encoders for precise position,
speed sensing and advanced dead-reckoning. Elec-
tronic devices aboard are controlled by a Hitachi
H8S microcontroller.

Fig. 3. Pioneer 2AT robot with wireless antenna.

The Pioneer 2AT robot has also two sonar ar-
rays, each with eight transducers that provide ob-
ject detection and range information for collision
avoidance.

4.3 Wrapper design

The Pioneer robot comes with a robotic sensing
and control class library called ARIA. This library
allows control of Pioneer robots from a computer
connected through a serial link to the onboard
Hitachi H8S microcontroller.

We have developed a CORBA wrapper to ARIA
library. This initial implementation of the Pioneer
CORBA wrapper (Pareja, 2004) provided remote
access to the robotic platform by means of a col-
lection of methods provided by a single CORBA
object running on the robot computers.

CORBA broker technology, an IDL-specified in-
terface and a servant implementation associated
to this interface allow the creation of a server
application that allows the remote control of the
Pioneer robot. The IDL establishes a contract
between clients and the Pioneer server that de-
scribes the types and object interfaces used by
our application. The servant implementation con-
tains calls to ARIA methods corresponding to
remotely requested IDL operations. Mutexes are
used when appropiate to avoid more than one
thread, simultaneous control data modifications.
Data structures defined in the IDL and used
by some functions allow faster communication of
multiple state, movement, position and sensing
data in a single operation than multiple CORBA
calls asking for data one by one.

4.4 RT wrapper implementation

A new implementation of the wrapper has been
developed for the SOUL project using Real-time

interface Pioneer2AT{
...

// Data exchanging methods --------------

Pioneer2AT State getRobotState ();

Pioneer2AT Movement getRobotMovement ();

Pioneer2AT Position getRobotPosition ();

void getRobotSensing (out Pioneer2AT Sensing

sensing);

/ Robot fast state checking ------------

boolean isReady ();

boolean isConnected ();

boolean isRunning ();

boolean isStalled ();

boolean isEmergency ();

boolean isMoving ();

boolean isEnabled ();

boolean isBreaked ();

float getBattery ();

TimeStamp getTime();

void setTimeToNow();

...

Fig. 4. A portion of the IDL interface specification
of the CORBA server Pioneer.

Fig. 5. A simple GUI client of the CORBA server
Pioneer.

CORBA technology. This implementation will en-
able the implementation of coexisting indepen-
dent applications interacting with the same robot
platform. This new implementation leverages the
RT CORBA control of resources to reduce the
interference produced between applications.

The RT Pioneer server uses the following RT-
CORBA features:

• Server declared priorities: to coordinate pri-
orities across the distributed system.

• Threadpools with lanes: to reduce latencies
in time-critical method invocation and elim-
inate race conditions and interference in the
provision of thread resources for prioritised
method invocations.

• Priority banded connections: to minimise in-
terference in prioritised request management
between real-time and non real-time invoca-
tions.

External
Interface

RT/E Container

Component

Execution Platform

(CCM-based Component Infrastructure)

Container API
(includes

RTOS/Middleware
subset)

Obtain
References

Callback
Iinterface

External
Interface

Container Services
(Scheduling, timing, etc)

(as configured in container)
Context

Mediated by
Container

Fig. 6. Embbedable component technology im-
proves encapsulation and functional/non-
functional separation of concerns in real-time
embedded systems while at the same time
enables a simplified configuration and deploy-
ment of distributed applications.

5. CONCLUSIONS AND FUTURE WORK

CORBA technlogy has demonstrated its utility
on the construction of distributed aplications in
many domains. The Real-time CORBA specfi-
ciation —and, in particular, the RT CORBA
brokers— have made possible the use of this tech-
nology in the implementation of networked con-
trollers.

A CORBA object has been built in this line of
work. This object wraps a Pioneer 2AT robot
from Activmedia Robotics that enables the re-
mote object interaction with parts of the ARIA
class library. The RT CORBA implemantion of
the broker incorporates resource control mecha-
nisms to improve end-to-end predictability of the
aplication.

Using these resources it is possible build a control
system for the Pioneer robot where remote clients
(e.g. the GUI client of Figure 5) do not interfere
with networked control loops that run remotely
to the robot. This reduced interference will make
possible also the schedulability analysis of the
aplication.

Ongoing work include the refactoring and recon-
strucion of the system using embeddable com-
ponent technology (see figure 6) based on the
Lightweigh CORBA Component Model specifica-
tion. More information in the IST COMPARE
project website (www.ist-compare.org).

REFERENCES

Hristu, Dimitrios and Levine, William S., Eds.
(2005). Handbook of Networked and Embed-
ded Control Systems. Birkhauser.

Huang, Hui-Min, Elena Messina and James Albus
(2003). Autonomy level specification for intel-
ligent autonomous vehicles: Interim progress
report. In: Proceedings of the 2003 Perfor-
mance Metrics for Intelligent Systems (Per-
MIS) Workshop. Gaithersburg, MD, USA.

OMG Robotics DSIG (2005). Robotic systems
RFI. RFO mars/05-06-12.

Pareja, Iván (2004). Sistema de comunicaciones de
la plataforma móvil pioneer 2at-8. Master’s
thesis. Universidad Politécnica de Madrid.
Escuela Técnica Superior de Ingenieros In-
dustriales.

Radermacher, Ansgar, S. Robert, C. Wigham,
V. Seignole and R. Sanz (2005). State of
the art in embedded commponent technology.
IST COMPARE Project Deliverable 1.1.

Sanz, Ricardo, Fernando Mat́ıa and Eugenio A.
Puente (1999a). The ICa approach to in-
telligent autonomous systems. In: Advances
in Autonomous Intelligent Systems (Spy-
ros Tzafestas, Ed.). Chap. 4, pp. 71–92.
Microprocessor-Based and Intelligent Sys-
tems Engineering. Kluwer Academic Publish-
ers. Dordretch, NL.

Sanz, Ricardo, Idoia Alarcón, Miguel J. Segarra,
Angel de Antonio and José A. Clavijo
(1999b). Progressive domain focalization in
intelligent control systems. Control Engineer-
ing Practice 7(5), 665–671.

Sanz, Ricardo, Jos Antonio Clavijo, Miguel
Segarra, Angel de Antonio and Mariano
Alonso (2001a). CORBA-based substation
automation systems. In: Proceedings of IEEE
Conference on Control Applications. Mexico
D.F.

Sanz, Ricardo, Mariano Alonso, Ignacio López
and Carlos A. Garćıa (2001b). Enhancing
control architectures using CORBA. In: 2001
IEEE International Symposium on Intelligent
Control. Mexico D.F.

Sanz, Ricardo, Miguel Segarra, Angel de Anto-
nio, Idoia Alarcn, Fernando Mata and Agustn
Jimnez (2000). Plant-wide risk management
using distributed objects. In: IFAC SAFE-
PROCESS’2000. Budapest, Hungary.

Sanz, Ricardo, Rafael Chinchilla, Manuel Ro-
driguez, David Perez and Carlos Martinez
(2005). Pct: Component-based process con-
trol testbed. In: 44th IEEE Conference on
Decision and Control and European Control
Conference. Seville, Spain.

Schmidt, Douglas C. and Fred Kuhns (2000). An
overview of the real-time CORBA specifica-
tion. Computer 33(6), 56–63.

Segarra, Miguel J. (2005). CORBA Control Sys-
tems. PhD thesis. Universidad Politécnica de
Madrid.

