
POSIX API

Ricardo.Sanz@etsii.upm.es
http://aslab.org/~sanz

Curso 2005-2006

Computadores I / R.Sanz / 2005-2006

The Standard

 IEEE Std 1003.1-2003 IEEE Standard for Information
Technology— Portable Operating System
Interface(POSIX®)— Part 1: System Application Program
Interface (API)

 Abstract: This standard is part of the POSIX series of
standards for applications and user interfaces to open systems.
It defines the applications interface to system services for
synchronization, memory management, time management, and
thread management. This standard is stated in terms of its C
language binding.

 keywords: API, application portability, C (programming
language), data processing, information interchange, open
systems, operating system, portable application, POSIX,
programming language, realtime, system configuration
computer interface.

Computadores I / R.Sanz / 2005-2006

API Releases

 POSIX.1
 Standard API

 POSIX.1b
 Real time Extensions

 POSIX.1c
 Thread extensions

 Last one: POSIX.1j (More real-time)

Computadores I / R.Sanz / 2005-2006

POSIX.1

 Process Creation and Control
 Signals
 Floating Point Exceptions
 Segmentation Violations
 Illegal Instructions
 Bus Errors
 Timers
 File and Directory Operations
 Pipes
 I/O Port Interface and Control

Computadores I / R.Sanz / 2005-2006

POSIX.1b
Real time extensions
 Priority Scheduling
 Real-Time Signals
 Clocks and Timers
 Semaphores
 Message Passing
 Shared Memory
 Asynch and Synch I/O
 Memory Locking

Computadores I / R.Sanz / 2005-2006

POSIX.1c
Threads extensions
 Thread Creation, Control, and Cleanup
 Thread Scheduling
 Thread Synchronization
 Signal Handling

Computadores I / R.Sanz / 2005-2006

Interesting site

 The Open Group Single Unix
Specification website:

http://www.unix.org/

Example 1

Simple timer using POSIX API

Computadores I / R.Sanz / 2005-2006

sleep()
NAME

sleep - suspend execution for an interval of time

SYNOPSIS

#include <unistd.h>

unsigned sleep(unsigned seconds);

DESCRIPTION

The sleep() function shall cause the calling thread to be suspended
from execution until either the number of realtime seconds specified
by the argument seconds has elapsed or a signal is delivered to the
calling thread and its action is to invoke a signal-catching function
or to terminate the process. The suspension time may be longer
than requested due to the scheduling of other activity by the
system.

Computadores I / R.Sanz / 2005-2006

int main (int argc, char *argv[])
{
int sec;
char line[128];
char msg[64];
while (1) {
 printf ("Alarm> ");
 if (fgets (line, sizeof (line), stdin) == NULL)
 exit (0);
 if (strlen (line) <= 1) continue;
 if (sscanf (line, "%d %64[^\n]", &sec, msg) < 2)
 {
 fprintf (stderr, “Bad command\n");
 }
 else
 {
 sleep (sec);
 printf ("(%d) %s\n", sec, msg);
 }
}
}

Threads

Software Multi-Processors

Computadores I / R.Sanz / 2005-2006

Threads

 Basic unit of CPU utilization
 Own

 program counter
 register set
 stack space

 Shares
 code section
 data section
 OS resources

text segment

data segment

Program
Counter

(Threads)

C
 st

ac
k

B
 st

ac
k

A
 st

ac
k

A B C

A B C

“Multithreaded Program”

Process

Computadores I / R.Sanz / 2005-2006

Example: A Threaded
Spreadsheet

Command
Thread

Spreadsheet
Data

Other
Data

Display
Thread

Recalculate
Thread

Computadores I / R.Sanz / 2005-2006

What to Thread?

 Independent tasks
 ex: debugger needs gui, program, perf

monitor…
 especially when blocking for I/O!

 Single program, concurrent operation
 Servers

• ex: file server, web server

 OS kernels
• concurrent requests by multiple users -- no

protection needed in kernel

Computadores I / R.Sanz / 2005-2006

Thread Benefits

 “What about just using processes with
shared memory?”
 fine
 debugging tougher (more thread tools)
 processes slower

• 30 times slower to create on Solaris
• slower to destroy
• slower to context switch among

 processes eat up memory
• few thousand processes not ok
• few thousand threads ok

Computadores I / R.Sanz / 2005-2006

Threads Standards

 POSIX threads (pthreads)
 Common API
 Almost all Unix’s have thread library

 Win32 and OS/2
 very different from POSIX, tough to port
 commercial POSIX libraries for Win32
 OS/2 has POSIX option

 Solaris
 started before POSIX standard
 likely to be like POSIX

Computadores I / R.Sanz / 2005-2006

POSIX Threads

#include <pthread.h>

int pthread_create(
pthread_t *thread,
pthread_attr_t *attr,
void *(*start_routine)(void *),
void *arg);

 pthread_create creates a new thread of
control that executes concurrently with
the calling thread.

Computadores I / R.Sanz / 2005-2006

POSIX Threads

#include <pthread.h>

int pthread_join(
pthread_t th,
void **thread_return);

 pthread_join suspends the execution of
the calling thread until the thread identified
by th terminates

Computadores I / R.Sanz / 2005-2006

#include <pthread.h>

void *hello (void *arg)
{
 printf ("Hello world\n");
 return NULL;
}

int main (int argc, char *argv[])
{
 pthread_t hello_id;
 int status;

 status = pthread_create (&hello_id, NULL, hello, NULL);
 if (status != 0) exit (1);

 status = pthread_join (hello_id, NULL);
 if (status != 0) exit (2);

 return 0;
}

Processes

Those who Live in Computers

Computadores I / R.Sanz / 2005-2006

Process Management

 A Unix process is the execution of an image of
a virtual machine

 This virtual machine remains in memory until
its displaced by a higher priority process or
terminated by an exit system call or kill signal

 An image is characterized by:
 Memory in use
 General register values
 Status of files opened
 Default (current) directory

Computadores I / R.Sanz / 2005-2006

Process Creation &
Initialization
 In Unix, process 0 is assigned to the scheduler and

is created as part of the system boot process
 Every other process is created as the result of a fork

or vfork system call
 The fork and vfork system calls split a process into

two processes
 The process that calls fork/vfork is the parent

process
 The newly created process is known as the child

process

Computadores I / R.Sanz / 2005-2006

The fork System Call

 The fork system call creates a child process in the
image of the parent process

 The image includes:
 Shared text (code)
 Data
 User stack
 User structure
 Kernel stack

 A combination of fork and exec system calls is
used to create a new process and start another
program under the new process

Computadores I / R.Sanz / 2005-2006

Virtual Machine

 Unix implements a collection of virtual machines for
managing process execution

 These virtual machines are generally similar to the base
hardware except some hardware dependent and
potentially hazardous instructions are not available

 The virtual machines share a number of hardware
resources
 Memory
 Disk drives
 I/O ports
 The CPU

Computadores I / R.Sanz / 2005-2006

Unix System Memory Map

Low Core
Vectors

Device Handlers

Kernel Code

Unix Data Structures
Proc Structures

Buffers

Process 1

Process 2

Process 3

Process n

Computadores I / R.Sanz / 2005-2006

Process Table

 Process table entries are defined in
/usr/include.sys/proc.h

 The proc structure, of which there is
one per process, is used by the kernel
to determine:
 Priorities
 Scheduling states
 Required resources for a process to

run

Computadores I / R.Sanz / 2005-2006

Proc Structure Components

 Process state (sleeping, running, ready-to-run)
 Process flags (in-core, being swapped out, cannot

be swapped out)
 Process priority and priority adjustments (nice)
 Scheduling parameters
 Pending signals
 Name of highest level process in group hierarchy

and the parent ID
 Address and size of swappable image
 Pointer to user structure
 Pointer to linked list of running processes

Computadores I / R.Sanz / 2005-2006

Process Events

 There are two process events that can
affect a process
 Interrupts
 Signals

Computadores I / R.Sanz / 2005-2006

Interrupts

 Interrupts are asynchronous events that are
generally caused by a hardware condition
 May be an indication that something needs

attention or that something is now available
or ready

• A printer is ready for more data or a disk drive has
the requested block available

 There are two types of interrupts handled by
the kernel
 Device interrupts
 Hardware traps

Computadores I / R.Sanz / 2005-2006

 Interrupts

 Hardware traps are usually a result of
some kind of CPU error condition
 Invalid bus access
 Divide by zero

 Device interrupts often indicate the
completion of an I/O request

 Interrupt service often results in a
process switch

Computadores I / R.Sanz / 2005-2006

Signals

 Signals are a software mechanism that are
similar to a message of some sort

 They can be trapped and handled or
ignored

 Signals operate through two different
system calls
 The kill system call
 The signal system call

Computadores I / R.Sanz / 2005-2006

kill() System Call

 The kill system call sends a signal to a process
 kill is generally used to terminate a process
 It requires the PID of the process to be terminated

and the signal number to be sent as arguments

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

Computadores I / R.Sanz / 2005-2006

The Signal System Call

 The signal system call is much more diverse
 When a signal occurs, the kernel checks to see if

the user had executed a signal system call and was
therefore expecting a signal
 If the call was to ignore the signal, the kernel returns
 Otherwise, it checks to see if it was a trap or kill signal
 If not, it processes the signal
 If it was a trap or kill signal, the kernel checks to see if

core should be dumped and then calls the exit routine
to terminate the user process

Computadores I / R.Sanz / 2005-2006

signal() system call

 The signal() system call installs a new
signal handler for the signal

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum,
sighandler_t handler);

Computadores I / R.Sanz / 2005-2006

Common Unix Signals

 SIGHUP Hang-up
 SIGINT Interrupt (Ctrl-C)
 SIGQIT Quit
 SIGINS Illegal Instruction
 SIGTRAP Trace Trap
 SIGKILL Kill
 SIGSYS Bad argument to system call
 SIGPIPE Write on pipe with no one to read it
 SIGTERM Software termination signal from kill
 SIGSTOP Stop signal
 See /usr/include/sys/signal.h

Computadores I / R.Sanz / 2005-2006

Signal Acceptance

 There are several possible actions to take
when a signal occurs
 Ignore it (not SIGKILL nor SIGSTOP)
 Catch it
 Let the default action apply

 The superuser can send signals to any
process

 Normal users can only send signals to their
own processes

Computadores I / R.Sanz / 2005-2006

raise() function

 The raise() function sends a signal
to the current process.

#include <signal.h>
int raise(int sig);

 It is equivalent to:
kill(getpid(),sig);

Computadores I / R.Sanz / 2005-2006

Process Termination

 A process is terminated by executing an exit
system call or as a result of a kill signal

 When a process executes an exit system
call, it is first placed in a zombie state

 In this state, it doesn't exist anymore but
may leave timing information and exit status
for its parent process

 A zombie process is removed by executing
a wait system call by the parent process

Computadores I / R.Sanz / 2005-2006

Process Cleanup

 The termination of a process requires a number of
cleanup actions

 These actions include:
 Releasing all memory used by the process
 Reducing reference counts for all files used by the

process
 Closing any files that have reference counts of zero
 Releasing shared text areas, if any
 Releasing the associated process table entry, the

proc structure
• This happens when the parent issues the wait system

call, which returns the terminated child's PID

Computadores I / R.Sanz / 2005-2006

Example

 Catch signals
 SIGINT
 SIGTSTP

 Can be generated from the keyboard
 Crtl-C
 Ctrl-Z

 SIGTSTP ≠ SIGSTOP

Computadores I / R.Sanz / 2005-2006

#include <signal.h>

static void sig_handler(int signum)
{
 if (signum == SIGINT)
 printf("received SIGINT\n");
 else if (signum == SIGTSTP)
 {printf("received SIGTSTP\n"); exit(0);}
 else
 printf("ERROR: received signal %d\n",

signum);
 return;
}

int main(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 printf("ERROR: can't catch SIGINT");
 if (signal(SIGTSTP, sig_handler) == SIG_ERR)
 printf("ERROR: can't catch SIGINT");

 for(;;) pause();
}

File IO

Writing and reading data from files

Computadores I / R.Sanz / 2005-2006

POSIX and C

 There are functions for file IO both in
the
 Standard C library

• printf(), scanf(), putc(), getc()
 POSIX API

• creat(), write(), read()

 Both can be used to handle files

Computadores I / R.Sanz / 2005-2006

Some interesting functions

 creat(): create file
 open(): open file
 close(): close file
 read(): read data
 write(): write data
 lseek(): reposition head

Computadores I / R.Sanz / 2005-2006

open(), creat() - open a file

SYNOPSIS
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>

 int open(const char *pathname, int flags);
 int open(const char *pathname, int flags, mode_t mode);
 int creat(const char *pathname, mode_t mode);

DESCRIPTION

 The open() system call is used to convert a pathname into a file
descriptor (a small, non-negative integer for use in subsequent I/O as with
read, write, etc.).

 This call creates a new open file with the minimum available number.

Computadores I / R.Sanz / 2005-2006

close() - close a file descriptor

SYNOPSIS
 #include <unistd.h>

 int close(int fd);

DESCRIPTION
 Closes a file descriptor, so that it no longer refers to

any file and may be reused.

Computadores I / R.Sanz / 2005-2006

write() - write to a file

 SYNOPSIS
 include <unistd.h>

 ssize_t write(int fd, const void *buf,
size_t count);

DESCRIPTION
 write() writes up to count bytes to the file referenced

by the file descriptor fd from the buffer starting at buf.
 It returns the number of bytes written

Computadores I / R.Sanz / 2005-2006

read() - read from a file

 SYNOPSIS
 #include <unistd.h>

 ssize_t read(int fd, void *buf, size_t count);

DESCRIPTION
 read() attempts to read up to count bytes from file descriptor

fd into the buffer starting at buf.
 If count is zero, read() returns zero and has no other results.
 POSIX requires that a read() which can be proved to occur

after a write() has returned returns the new data.
 Note that not all file systems are POSIX conforming.

Computadores I / R.Sanz / 2005-2006

lseek() - reposition file offset

SYNOPSIS
 #include <sys/types.h>
 #include <unistd.h>

 off_t lseek(int fildes, off_t offset, int whence);

DESCRIPTION

 The lseek() function repositions the offset of the file descriptor fildes
to the argument offset according to the directive whence as follows:

 SEEK_SET: The offset is set to offset bytes.
 SEEK_CUR: The offset is set to its current location plus offset

bytes.
 SEEK_END: The offset is set to the size of the file plus offset bytes.

Computadores I / R.Sanz / 2005-2006

Example
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

/* default file access permissions for new file */
#define FILE_MODE (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)

char buf[] = "abcdefghij";

int main(void)
{
 int fd;

 if ((fd = creat("file.test", FILE_MODE)) < 0)
 {printf("creat error");exit(1);}

 if (write(fd, buf1, 10) != 10)
 {printf("buf1 write error");exit(2);}

 if (close(fd) != 0)
 {printf("close error");exit(3);}

 exit(0);
}

Pipes

Inter-process Communication

Computadores I / R.Sanz / 2005-2006

IPC

 How does one process communicate with
another process?
 semaphores -- signal notifies waiting process
 software interrupts -- process notified

asynchronously
 message passing -- processes send and

receive messages.
 pipes -- unidirectional stream

communication

Computadores I / R.Sanz / 2005-2006

Pipes

 Pipes are a way to allow processes to
communicate with each other

 Pipes are uni-directional
 They can only transfer data in one

direction
 If you want two processes to have a

two-way conversation, you must use
two pipes

Computadores I / R.Sanz / 2005-2006

Shell Pipes
 Shell command: % ls | more

 The shell:
 creates a pipe
 creates a process for ls command, setting

stdout to write side of pipe
 creates a process for more command,

setting stdin to read side of pipe

Shell

ls more

1

stdout
23

stdin

Computadores I / R.Sanz / 2005-2006

Pipes Implement a FIFO

 A FIFO (First In, First Out) buffer is like a
queue or a line at a movie theater

 Elements are added at one end of the
queue and exit the other end in the same
order

 There is no way for any individual element
to move ahead of another

Computadores I / R.Sanz / 2005-2006

Multiple Inputs

 It is possible to have multiple feeders
of a pipe but there is no guarantee of
order beyond first in, first out

Computadores I / R.Sanz / 2005-2006

The Pipe

 Bounded Buffer
 shared buffer (Unix 4096K)
 blocks writes to full pipe
 blocks reads to empty pipe

b l a h . c \0

write fdread fd

Computadores I / R.Sanz / 2005-2006

The Pipe

 Process inherits file descriptors from
parent
 file descriptor 0 stdin, 1 stdout, 2

stderr
 Process doesn't know when reading

from keyboard, file, or process or
writing to terminal, file, or process

Computadores I / R.Sanz / 2005-2006

pipe() System call

 Pipe creation:
 pipe(fds) creates a pipe
 fds is an array of 2 file descriptors
 Read from fds[0], write to fds[1]

 Read:
read(fds[0], buffer, nbytes)

 Write:
write(fds[1], buffer, nbytes)

Computadores I / R.Sanz / 2005-2006

int n, fd[2];
pid_t pid;
char line[MAXLINE];

if (pipe(fd) < 0)
 {printf("pipe() error\n");exit(1);}

if ((pid = fork()) < 0)
 {printf("fork() error\n");exit(2);}
else if (pid > 0) { /* parent */
 close(fd[0]);
 write(fd[1], "hello world\n", 12);
} else { /* child */
 close(fd[1]);
 n = read(fd[0], line, MAXLINE);
 write(STDOUT_FILENO, line, n);
}

write(STDOUT_FILENO, "Bye.\n", 5);

Computadores I / R.Sanz / 2005-2006

Exercise

 Use a pipe to make a child know the PID of
the father to kill() it a SIGHUP

 Use
 pipe()
 fork()
 getpid()
 write()
 read()
 kill()

