
POSIX API

Ricardo.Sanz@etsii.upm.es
http://aslab.org/~sanz

Curso 2005-2006



Computadores I /  R.Sanz / 2005-2006

The Standard

 IEEE Std 1003.1-2003 IEEE Standard for Information
Technology— Portable Operating System
Interface(POSIX®)— Part 1: System Application Program
Interface (API)

 Abstract: This standard is part of the POSIX series of
standards for applications and user interfaces to open systems.
It defines the applications interface to system services for
synchronization, memory management, time management, and
thread management. This standard is stated in terms of its C
language binding.

 keywords: API, application portability, C (programming
language), data processing, information interchange, open
systems, operating system, portable application, POSIX,
programming language, realtime, system configuration
computer interface.



Computadores I /  R.Sanz / 2005-2006

API Releases

 POSIX.1
 Standard API

 POSIX.1b
 Real time Extensions

 POSIX.1c
 Thread extensions

 Last one: POSIX.1j (More real-time)



Computadores I /  R.Sanz / 2005-2006

POSIX.1

 Process Creation and Control
 Signals
 Floating Point Exceptions
 Segmentation Violations
 Illegal Instructions
 Bus Errors
 Timers
 File and Directory Operations
 Pipes
 I/O Port Interface and Control



Computadores I /  R.Sanz / 2005-2006

POSIX.1b
Real time extensions
 Priority Scheduling
 Real-Time Signals
 Clocks and Timers
 Semaphores
 Message Passing
 Shared Memory
 Asynch and Synch I/O
 Memory Locking



Computadores I /  R.Sanz / 2005-2006

POSIX.1c
Threads extensions
 Thread Creation, Control, and Cleanup
 Thread Scheduling
 Thread Synchronization
 Signal Handling



Computadores I /  R.Sanz / 2005-2006

Interesting site

 The Open Group Single Unix
Specification website:

http://www.unix.org/



Example 1

Simple timer using POSIX API



Computadores I /  R.Sanz / 2005-2006

sleep()
NAME

sleep - suspend execution for an interval of time

SYNOPSIS

#include <unistd.h>

unsigned sleep(unsigned seconds);

DESCRIPTION

The sleep() function shall cause the calling thread to be suspended
from execution until either the number of realtime seconds specified
by the argument seconds has elapsed or a signal is delivered to the
calling thread and its action is to invoke a signal-catching function
or to terminate the process. The suspension time may be longer
than requested due to the scheduling of other activity by the
system.



Computadores I /  R.Sanz / 2005-2006

int main (int argc, char *argv[])
{
int sec;
char line[128];
char msg[64];
while (1) {
  printf ("Alarm> ");
  if (fgets (line, sizeof (line), stdin) == NULL)
     exit (0);
  if (strlen (line) <= 1) continue;
  if (sscanf (line, "%d %64[^\n]", &sec, msg) < 2)
    {
      fprintf (stderr, “Bad command\n");
    }
  else
    {
      sleep (sec);
      printf ("(%d) %s\n", sec, msg);
    }
}
}



Threads

Software Multi-Processors



Computadores I /  R.Sanz / 2005-2006

Threads

 Basic unit of CPU utilization
 Own

 program counter
 register set
 stack space

 Shares
 code section
 data section
 OS resources

text segment

data segment

Program
Counter

(Threads)

C
 st

ac
k

B
 st

ac
k

A
 st

ac
k

A B C

A B C

“Multithreaded Program”

Process



Computadores I /  R.Sanz / 2005-2006

Example: A Threaded
Spreadsheet

Command
Thread

Spreadsheet
Data

Other
Data

Display
Thread

Recalculate
Thread



Computadores I /  R.Sanz / 2005-2006

What to Thread?

 Independent tasks
 ex: debugger needs gui, program, perf

monitor…
 especially when blocking for I/O!

 Single program, concurrent operation
 Servers

• ex: file server, web server

 OS kernels
• concurrent requests by multiple users -- no

protection needed in kernel



Computadores I /  R.Sanz / 2005-2006

Thread Benefits

 “What about just using processes with
shared memory?”
 fine
 debugging tougher (more thread tools)
 processes slower

• 30 times slower to create on Solaris
• slower to destroy
• slower to context switch among

 processes eat up memory
• few thousand processes not ok
• few thousand threads ok



Computadores I /  R.Sanz / 2005-2006

Threads Standards

 POSIX threads (pthreads)
 Common API
 Almost all Unix’s have thread library

 Win32 and OS/2
 very different from POSIX, tough to port
 commercial POSIX libraries for Win32
 OS/2 has POSIX option

 Solaris
 started before POSIX standard
 likely to be like POSIX



Computadores I /  R.Sanz / 2005-2006

POSIX Threads

#include <pthread.h>

int  pthread_create(
pthread_t      *thread,
pthread_attr_t *attr,
void *(*start_routine)(void *),
void           *arg);

 pthread_create creates a new thread of
control  that  executes  concurrently  with
the  calling  thread.



Computadores I /  R.Sanz / 2005-2006

POSIX Threads

#include <pthread.h>

int pthread_join(
pthread_t th,
void      **thread_return);

 pthread_join  suspends  the  execution  of
the calling thread until the thread identified
by th terminates



Computadores I /  R.Sanz / 2005-2006

#include <pthread.h>

void *hello (void *arg)
{
  printf ("Hello world\n");
  return NULL;
}

int main (int argc, char *argv[])
{
  pthread_t hello_id;
  int status;

  status = pthread_create (&hello_id, NULL, hello, NULL);
  if (status != 0) exit (1);

  status = pthread_join (hello_id, NULL);
  if (status != 0) exit (2);

  return 0;
}



Processes

Those who Live in Computers



Computadores I /  R.Sanz / 2005-2006

Process Management

 A Unix process is the execution of an image of
a virtual machine

 This virtual machine remains in memory until
its displaced by a higher priority process or
terminated by an exit system call or kill signal

 An image is characterized by:
 Memory in use
 General register values
 Status of files opened
 Default (current) directory



Computadores I /  R.Sanz / 2005-2006

Process Creation &
Initialization
 In Unix, process 0 is assigned to the scheduler and

is created as part of the system boot process
 Every other process is created as the result of a fork

or vfork system call
 The fork and vfork system calls split a process into

two processes
 The process that calls fork/vfork is the parent

process
 The newly created process is known as the child

process



Computadores I /  R.Sanz / 2005-2006

The fork System Call

 The fork system call creates a child process in the
image of the parent process

 The image includes:
 Shared text (code)
 Data
 User stack
 User structure
 Kernel stack

 A combination of fork and exec system calls is
used to create a new process and start another
program under the new process



Computadores I /  R.Sanz / 2005-2006

Virtual Machine

 Unix implements a collection of virtual machines for
managing process execution

 These virtual machines are generally similar to the base
hardware except some hardware dependent and
potentially hazardous instructions are not available

 The virtual machines share a number of hardware
resources
 Memory
 Disk drives
 I/O ports
 The CPU



Computadores I /  R.Sanz / 2005-2006

Unix System Memory Map

Low Core
Vectors

Device Handlers

Kernel Code

Unix Data Structures
Proc Structures

Buffers

Process 1

Process 2

Process 3

Process n



Computadores I /  R.Sanz / 2005-2006

Process Table

 Process table entries are defined in
/usr/include.sys/proc.h

 The proc structure, of which there is
one per process, is used by the kernel
to determine:
 Priorities
 Scheduling states
 Required resources for a process to

run



Computadores I /  R.Sanz / 2005-2006

Proc Structure Components

 Process state (sleeping, running, ready-to-run)
 Process flags (in-core, being swapped out, cannot

be swapped out)
 Process priority and priority adjustments (nice)
 Scheduling parameters
 Pending signals
 Name of highest level process in group hierarchy

and the parent ID
 Address and size of swappable image
 Pointer to user structure
 Pointer to linked list of running processes



Computadores I /  R.Sanz / 2005-2006

Process Events

 There are two process events that can
affect a process
 Interrupts
 Signals



Computadores I /  R.Sanz / 2005-2006

Interrupts

 Interrupts are asynchronous events that are
generally caused by a hardware condition
 May be an indication that something needs

attention or that something is now available
or ready

• A printer is ready for more data or a disk drive has
the requested block available

 There are two types of interrupts handled by
the kernel
 Device interrupts
 Hardware traps



Computadores I /  R.Sanz / 2005-2006

 Interrupts

 Hardware traps are usually a result of
some kind of CPU error condition
 Invalid bus access
 Divide by zero

 Device interrupts often indicate the
completion of an I/O request

 Interrupt service often results in a
process switch



Computadores I /  R.Sanz / 2005-2006

Signals

 Signals are a software mechanism that are
similar to a message of some sort

 They can be trapped and handled or
ignored

 Signals operate through two different
system calls
 The kill system call
 The signal system call



Computadores I /  R.Sanz / 2005-2006

kill() System Call

 The kill system call sends a signal to a process
 kill is generally used to terminate a process
 It requires the PID of the process to be terminated

and the signal number to be sent as arguments

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);



Computadores I /  R.Sanz / 2005-2006

The Signal System Call

 The signal system call is much more diverse
 When a signal occurs, the kernel checks to see if

the user had executed a signal system call and was
therefore expecting a signal
 If the call was to ignore the signal, the kernel returns
 Otherwise, it checks to see if it was a trap or kill signal
 If not, it processes the signal
 If it was a trap or kill signal, the kernel checks to see if

core should be dumped and then calls the exit routine
to terminate the user process



Computadores I /  R.Sanz / 2005-2006

signal() system call

 The  signal()  system call installs a new
signal handler for the signal

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum,
sighandler_t handler);



Computadores I /  R.Sanz / 2005-2006

Common Unix Signals

 SIGHUP Hang-up
 SIGINT Interrupt (Ctrl-C)
 SIGQIT Quit
 SIGINS Illegal Instruction
 SIGTRAP Trace Trap
 SIGKILL Kill
 SIGSYS Bad argument to system call
 SIGPIPE Write on pipe with no one to read it
 SIGTERM Software termination signal from kill
 SIGSTOP Stop signal
 See /usr/include/sys/signal.h



Computadores I /  R.Sanz / 2005-2006

Signal Acceptance

 There are several possible actions to take
when a signal occurs
 Ignore it (not SIGKILL nor SIGSTOP)
 Catch it
 Let the default action apply

 The superuser can send signals to any
process

 Normal users can only send signals to their
own processes



Computadores I /  R.Sanz / 2005-2006

raise() function

 The raise() function  sends  a  signal
to the current process.

#include <signal.h>
int raise(int sig);

 It is equivalent to:
kill(getpid(),sig);



Computadores I /  R.Sanz / 2005-2006

Process Termination

 A process is terminated by executing an exit
system call or as a result of a kill signal

 When a process executes an exit system
call, it is first placed in a zombie state

 In this state, it doesn't exist anymore but
may leave timing information and exit status
for its parent process

 A zombie process is removed by executing
a wait system call by the parent process



Computadores I /  R.Sanz / 2005-2006

Process Cleanup

 The termination of a process requires a number of
cleanup actions

 These actions include:
 Releasing all memory used by the process
 Reducing reference counts for all files used by the

process
 Closing any files that have reference counts of zero
 Releasing shared text areas, if any
 Releasing the associated process table entry, the

proc structure
• This happens when the parent issues the wait system

call, which returns the terminated child's PID



Computadores I /  R.Sanz / 2005-2006

Example

 Catch signals
 SIGINT
 SIGTSTP

 Can be generated from the keyboard
 Crtl-C
 Ctrl-Z

 SIGTSTP  ≠  SIGSTOP



Computadores I /  R.Sanz / 2005-2006

#include <signal.h>

static void sig_handler(int signum)
{
    if (signum == SIGINT)
        printf("received SIGINT\n");
    else if (signum == SIGTSTP)
        {printf("received SIGTSTP\n"); exit(0);}
    else
        printf("ERROR: received signal %d\n",

signum);
    return;
}

int main(void)
{
    if (signal(SIGINT, sig_handler) == SIG_ERR)
        printf("ERROR: can't catch SIGINT");
    if (signal(SIGTSTP, sig_handler) == SIG_ERR)
        printf("ERROR: can't catch SIGINT");

    for(;;) pause();
}



File IO

Writing and reading data from files



Computadores I /  R.Sanz / 2005-2006

POSIX and C

 There are functions for file IO both in
the
 Standard C library

• printf(), scanf(), putc(), getc()
 POSIX API

• creat(), write(), read()

 Both can be used to handle files



Computadores I /  R.Sanz / 2005-2006

Some interesting functions

 creat(): create file
 open(): open file
 close(): close file
 read(): read data
 write(): write data
 lseek(): reposition head



Computadores I /  R.Sanz / 2005-2006

open(), creat() - open a file

SYNOPSIS
       #include <sys/types.h>
   #include <sys/stat.h>
   #include <fcntl.h>

   int open(const char *pathname, int flags);
   int open(const char *pathname, int flags, mode_t mode);
   int creat(const char *pathname, mode_t mode);

DESCRIPTION

 The  open()  system  call  is  used  to  convert a pathname into a file
descriptor (a small, non-negative integer for use in subsequent I/O  as with
read,  write,  etc.).

 This call creates a new open file with the minimum available number.



Computadores I /  R.Sanz / 2005-2006

close() - close a file descriptor

SYNOPSIS
      #include <unistd.h>

   int close(int fd);

DESCRIPTION
 Closes a file descriptor, so that it no longer refers to

any file and may be reused.



Computadores I /  R.Sanz / 2005-2006

write() - write to a file

 SYNOPSIS
   include <unistd.h>

  ssize_t write(int fd, const void *buf,
size_t count);

DESCRIPTION
 write() writes up to count bytes to the file referenced

by the file descriptor fd from the buffer starting at buf.
 It returns the number of bytes written



Computadores I /  R.Sanz / 2005-2006

read() - read from a file

 SYNOPSIS
    #include <unistd.h>

  ssize_t read(int fd, void *buf, size_t count);

DESCRIPTION
 read()  attempts to read up to count bytes from file descriptor

fd into the buffer starting at buf.
 If count is zero, read() returns zero and has no other  results.
 POSIX requires that a read() which can be proved to occur

after a write() has returned returns the new data.
 Note that not all file systems are POSIX conforming.



Computadores I /  R.Sanz / 2005-2006

lseek() - reposition file offset

SYNOPSIS
     #include <sys/types.h>
  #include <unistd.h>

  off_t lseek(int fildes, off_t offset, int whence);

DESCRIPTION

 The lseek() function repositions the offset of the file descriptor fildes
to the argument offset according to the directive whence as follows:

 SEEK_SET: The offset is set to offset bytes.
 SEEK_CUR: The offset is set to its current location plus offset

bytes.
 SEEK_END: The offset is set to the size of the file plus offset bytes.



Computadores I /  R.Sanz / 2005-2006

Example
#include    <sys/stat.h>
#include    <fcntl.h>
#include    <unistd.h>

/* default file access permissions for new file */
#define FILE_MODE   (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)

char    buf[] = "abcdefghij";

int main(void)
{
    int     fd;

    if ( (fd = creat("file.test", FILE_MODE)) < 0)
        {printf("creat error");exit(1);}

    if (write(fd, buf1, 10) != 10)
        {printf("buf1 write error");exit(2);}

   if (close(fd) != 0)
        {printf("close error");exit(3);}

   exit(0);
}



Pipes

Inter-process Communication



Computadores I /  R.Sanz / 2005-2006

IPC

 How does one process communicate with
another process?
 semaphores -- signal notifies waiting process
 software interrupts -- process notified

asynchronously
 message passing -- processes send and

receive messages.
 pipes -- unidirectional stream

communication



Computadores I /  R.Sanz / 2005-2006

Pipes

 Pipes are a way to allow processes to
communicate with each other

 Pipes are uni-directional
 They can only transfer data in one

direction
 If you want two processes to have a

two-way conversation, you must use
two pipes



Computadores I /  R.Sanz / 2005-2006

Shell Pipes
 Shell command: % ls | more

 The shell:
 creates a pipe
 creates a process for ls command, setting

stdout to write side of pipe
 creates a process for more command,

setting stdin to read side of pipe

Shell

ls more

1

stdout
23

stdin



Computadores I /  R.Sanz / 2005-2006

Pipes Implement a FIFO

 A FIFO (First In, First Out) buffer is like a
queue or a line at a movie theater

 Elements are added at one end of the
queue and exit the other end in the same
order

 There is no way for any individual element
to move ahead of another



Computadores I /  R.Sanz / 2005-2006

Multiple Inputs

 It is possible to have multiple feeders
of a pipe but there is no guarantee of
order beyond first in, first out



Computadores I /  R.Sanz / 2005-2006

The Pipe

 Bounded Buffer
 shared buffer (Unix 4096K)
 blocks writes to full pipe
 blocks reads to empty pipe

b l a h . c \0

write fdread fd



Computadores I /  R.Sanz / 2005-2006

The Pipe

 Process inherits file descriptors from
parent
 file descriptor 0 stdin, 1 stdout, 2

stderr
 Process doesn't know when reading

from keyboard, file, or process or
writing to terminal, file, or  process



Computadores I /  R.Sanz / 2005-2006

pipe() System call

 Pipe creation:
 pipe(fds) creates a pipe
 fds is an array of 2 file descriptors
 Read from fds[0], write to fds[1]

 Read:
read(fds[0], buffer, nbytes)

 Write:
write(fds[1], buffer, nbytes)



Computadores I /  R.Sanz / 2005-2006

int     n, fd[2];
pid_t   pid;
char    line[MAXLINE];

if (pipe(fd) < 0)
        {printf("pipe() error\n");exit(1);}

if ( (pid = fork()) < 0)
        {printf("fork() error\n");exit(2);}
else if (pid > 0) {     /* parent */
        close(fd[0]);
        write(fd[1], "hello world\n", 12);
} else {                /* child */
        close(fd[1]);
        n = read(fd[0], line, MAXLINE);
        write(STDOUT_FILENO, line, n);
}

write(STDOUT_FILENO, "Bye.\n", 5);



Computadores I /  R.Sanz / 2005-2006

Exercise

 Use a pipe to make a child know the PID of
the father to kill() it a SIGHUP

 Use
 pipe()
 fork()
 getpid()
 write()
 read()
 kill()


