
Computadores II / 2004-2005

Distributed Systems

Basic concepts

Computadores II / 2004-2005

Definition
 A distributed system:

– Multiple connected CPUs working together
– A collection of independent computers that appears to its users

as a single coherent system
– One in which components located at networked computers

communicate and coordinate their actions only by passing
messages.

 Examples
– The internet
– A local area network
– A distributed control system
– Mobile and ubiquitous computing
– Battelfield management system

Computadores II / 2004-2005

HYDRA
 Real time WAN video
 Remote operation of

hydraulic power plants

CAMERA

CCI

Computadores II / 2004-2005

HYDRA : Operation Modes
 Local

– (Almost) Classic video security system

 Remote manual
– From CCI (Integral Control Center, operation center o another

plant)

 Remote automatic
– From CCI using events generated by SCADA

 Bidirectional Audio/Video

Computadores II / 2004-2005

HYDRA : Structure

Burguillo
Almoguera

Entrepeñas

Buendia

Colectora

CCL

Bolarque

CCL

CCI

CCL

CCL

CCL

ATM Links

ATM Links

ATM Links

ATM Links

Security

ATM Links

Computadores II / 2004-2005

Advantages and Disadvantages
 Advantages

– Communication and resource sharing possible
– Economics – price-performance ratio
– Reliability
– Scalability
– Potential for incremental growth
– Localisation

 Disadvantages
– Complexity: design, implementation, management
– Distribution-aware PLs, OSs and applications
– Network connectivity essential
– Security and privacy

Computadores II / 2004-2005

Topics in Distributed Systems
 Interprocess Communication
 Processes and their scheduling
 Naming and location management
 Resource sharing, replication and consistency
 Canonical problems and solutions
 Fault-tolerance
 Security in distributed Systems
 Distributed middleware
 Further topics: web services, multimedia, real-time and

mobile systems

Computadores II / 2004-2005

Basic Concepts

Distributed systems and OSs

Computadores II / 2004-2005

Challenges for D-Systems
 Heterogeneity
 Openness
 Security
 Scalability
 Failure handling
 Concurrency
 Assurance
 Transparency

Computadores II / 2004-2005

Heterogeneity
 Different networks, hardware, operating systems,

programming languages, developers.
 We set up protocols to solve these heterogeneities.
 Middleware: a software layer that provides a

programming abstraction as well as masking the
heterogeneity.

 Mobile code: code that can be sent from one computer
to another and run at the destination.

Computadores II / 2004-2005

Openness
 The openness of DS is determined primarily by the

degree to which new resource-sharing services can be
added and be made available for use by a variety of
client programs.

 Open systems are characterized by the fact that their
key interfaces are published.

 Open DS are based on the provision of a uniform
communication mechanism and published interfaces for
access to shared resources.

 Open DS can be constrcted from heterogeneous
hardware and software.

Computadores II / 2004-2005

Security
 Security for information resources has three

components:
– Confidentiality: protection against disclosure to unauthorized

individuals.
– Integrity: protection against alteration or corruption.
– Availability: protection against interference with the means to

access the resources.

 Two new security challenges:
– Denial of service attacks (DoS).
– Security of mobile code.

Computadores II / 2004-2005

Scalability
 A system is described as scalable if it remains effective

when there is a significant increase in the number of
resources, tasks and/or number of users.

 Challenges:
– Controlling the cost of resources or money.
– Controlling the performance loss.
– Preventing software resources from running out
– Avoiding preformance bottlenecks.

Computadores II / 2004-2005

Failure handling
 When faults occur in hardware or software, programs

may produce incorrect results or they may stop before
they have completed the intended computation.

 Techniques for dealing with failures:
– Detecting failures
– Masking failures
– Tolerating failures
– Recovering form failures
– Redundancy

Computadores II / 2004-2005

Concurrency
 There is a possibility that several clients will attempt to

access a shared resource at the same time.
 Any object that represents a shared resource in a

distributed system must be responsible for ensuring
that operates correctly in a concurrent environment.

Computadores II / 2004-2005

Assurance
 What is possible to be assured for a localized system

cannot possibly be so for a distributed system
 E.g. there are algorithms that do not have proofs of

convergence when distributed

Computadores II / 2004-2005

Transparency
 Transparency is defined as the concealment from the

user and the application programmer of the
separation of components in a distributed system, so
that the system is perceived as a whole rather than
as a collection of independent components.

 Many forms of transparency:
– Access transparency
– Location transparency
– Concurrency transparency
– Replication transparency
– Failure transparency
– Mobility transparency
– Technology transparency
– Performance transparency
– Scaling transparency

Computadores II / 2004-2005

Many forms of transparency in a distributed system!

Hide implementation technology for a resourceTechnology

Hide whether a (software) resource is in memory or on diskPersistence

Hide the failure and recovery of a resourceFailure

Hide that a resource may be shared by several competitive usersConcurrency

Hide that a resource may be shared by several competitive usersReplication

Hide that a resource may be moved to another location while in useRelocation

Hide that a resource may move to another locationMigration

Hide where a resource is locatedLocation

Hide differences in data representation and how a resource is accessedAccess

DescriptionTransparency

Transparency in a D-System

Computadores II / 2004-2005

Scalability Problems

Examples of scalability limitations.

Doing routing based on complete informationCentralized algorithms

A single on-line telephone bookCentralized data

A single server for all usersCentralized services

ExampleConcept

Computadores II / 2004-2005

Multiprocessors (1)
 Multiprocessor dimensions

– Memory: could be shared or be private to each CPU
– Interconnect: could be shared (bus-based) or switched

 A bus-based multiprocessor.

Computadores II / 2004-2005

1.8

Multiprocessors (2)
 A crossbar switch  An omega switching

network

Computadores II / 2004-2005

1-9

Homogeneous Multicomputers
 Grid  Hypercube

Computadores II / 2004-2005

Distributed Operating Systems
 Minicomputer model (e.g., early networks)

– Each user has local machine
– Local processing but can fetch remote data (files, databases)

 Workstation model (e.g., Sprite)
– Processing can also migrate

 Client-server Model (e.g., V system, world wide web)
– User has local workstation
– Powerful workstations serve as servers (file, print, DB servers)

 Processor pool model (e.g., Amoeba, Plan 9)
– Terminals are Xterms or diskless terminals
– Pool of backend processors handle processing

Computadores II / 2004-2005

Basic DOS Implementations
 Distributed OS

– One OS / Many processors
– Two variantes: Multiprocessor and Multicomputer

 Network-oriented OS
– Many OSs
– Network-level transparency

 Middleware-based OS
– Many OSs
– Appplication-level transparency

Computadores II / 2004-2005

Uniprocessor Operating Systems
 An OS acts as a resource manager or an arbitrator

– Manages CPU, I/O devices, memory

 OS provides a virtual interface that is easier to use than
hardware

 Structure of uniprocessor operating systems
– Monolithic (e.g., MS-DOS, early UNIX)

• One large kernel that handles everything
– Layered design

• Functionality is decomposed into N layers
• Each layer uses services of layer N-1 and implements new

service(s) for layer N+1

Computadores II / 2004-2005

Uniprocessor Operating Systems
 Microkernel architecture

– Small kernel
– user-level servers implement additional functionality

Computadores II / 2004-2005

Distributed Operating System
 Manages resources in a distributed system

– Seamlessly and transparently to the user

 Looks to the user like a centralized OS
– But operates on multiple independent CPUs

 Provides transparency
– Location, migration, concurrency, replication,…

 Presents users with a virtual uniprocessor

Computadores II / 2004-2005

Types of Distributed OSs

Provide
distribution
transparency

Additional layer atop of NOS
implementing general-purpose services

Middleware

Offer local
services to
remote clients

Loosely-coupled operating system for
heterogeneous multicomputers (LAN
and WAN)

NOS

Hide and
manage
hardware
resources

Tightly-coupled operating system for
multi-processors and homogeneous
multicomputers

DOS

Main GoalDescriptionSystem

Computadores II / 2004-2005

Multiprocessor OSs
 Like a uniprocessor operating system
 Manages multiple CPUs transparently to the user
 Two variants

– SMP: Symmetric Multiprocessing
– AMP: Asymmetric Multiprocessing

 Each processor has its own hardware cache
– Maintain consistency of cached data

Computadores II / 2004-2005

Multicomputer OSs

1.14

Distributed OS Services

Distributed applications

Computadores II / 2004-2005

Network Operating System

1-19Distributed applications

Computadores II / 2004-2005

Network Operating System
 Employs a client-server model

– Minimal OS kernel
– Additional functionality as user processes

1-20

Computadores II / 2004-2005

1-22

Middleware-based Systems
 General structure of a distributed system as middleware.

Distributed applications

Middleware

Computadores II / 2004-2005

Comparison between Systems

OpenOpenClosedClosedOpenness

VariesYesModeratelyNoScalability

Per nodePer nodeGlobal, distributedGlobal, centralResource management

Model specificFilesMessagesShared memoryBasis for communication

NNN1Number of copies of OS

NoNoYesYesSame OS on all nodes

HighLowHighVery HighDegree of transparency

Multicomp.Multiproc.

Middleware-
based OS

Network OS

Distributed OS

Item

Computadores II / 2004-2005

Communication in Distributed
Systems

Basic Concepts

Computadores II / 2004-2005

Communication
 Message-oriented Communication
 Remote Procedure Calls

– Transparency but poor for passing references

 Remote Method Invocation
– RMIs are essentially RPCs but specific to remote objects
– System wide references passed as parameters

 Stream-oriented Communication
 Broker-based Middleware

– Maximum Transparency
– Complexity

Computadores II / 2004-2005

Interprocess Communication

 Unstructured communication
– Use shared memory or shared data structures

 Structured communication
– Use explicit messages (IPCs)

 Distributed Systems: both need low-level
communication support (why?)

Computadores II / 2004-2005

2-1

Communication Protocols
 Protocols are agreements/rules on communication
 Protocols could be connection-oriented or

connectionless

Computadores II / 2004-2005

2-2

Layered Protocols
 A typical message as it appears on the network.

Computadores II / 2004-2005

Client-Server TCP

a) Normal operation of TCP.
b) Transactional TCP.

2-4

Computadores II / 2004-2005

2-5

Middleware Protocols
 Middleware: layer that resides between an OS and an

application
– May implement general-purpose protocols that warrant their

own layers

Computadores II / 2004-2005

kernel

client

kernel kernel kernel

file
server

process
server

terminal
server

Client-Server Communication
 Structure: group of servers offering service to clients
 Based on a request/response paradigm
 Techniques:

– Socket, remote procedure calls (RPC), Remote Method
Invocation (RMI), Object Request Brokering (ORB)

Computadores II / 2004-2005

Issues in Client-Server
 Addressing
 Blocking versus non-blocking
 Buffered versus unbuffered
 Reliable versus unreliable
 Server architecture: concurrent versus sequential
 Scalability

Computadores II / 2004-2005

Addressing Issues
 Question: how is the server

located?
 Hard-wired address

– Machine address and process
address are known a priori

 Broadcast-based
– Server chooses address from a

sparse address space
– Client broadcasts request
– Can cache response for future

 Locate address via name
server

user server

user server

user serverNS

Computadores II / 2004-2005

Synchronicity
 Asynchronous communication

– Sender continues immediately after it has submitted the
message

– Need a local buffer at the sending host

 Synchronous communication
– Sender blocks until message is stored in a local buffer at the

receiving host or actually delivered to sending
– Variant: block until receiver processes the message

Computadores II / 2004-2005

Blocking versus Non-blocking
 Blocking communication (synchronous)

– Send blocks until message is actually sent
– Receive blocks until message is actually received

 Non-blocking communication (asynchronous)
– Send returns immediately
– Return does not block either

Computadores II / 2004-2005

Buffering Issues
 Unbuffered communication

– Server must call receive before
client can call send

 Buffered communication
– Client send to a mailbox
– Server receives from a mailbox

user server

user server

Computadores II / 2004-2005

Reliability
 Unreliable channel

– Need acknowledgements (ACKs)
– Applications handle ACKs
– ACKs for both request and reply

 Reliable channel
– Reply acts as ACK for request
– Explicit ACK for response

 Reliable communication on
unreliable channels
– Transport protocol handles lost

messages

request

ACK
reply

ACK

Cl
ie

nt

Se
rv

er

request
reply

ACK

Cl
ie

nt

Se
rv

er

Computadores II / 2004-2005

Server Architecture
 Sequential

– Serve one request at a time
– Can service multiple requests by employing events and

asynchronous communication

 Concurrent
– Server spawns a process or thread to service each request
– Can also use a pre-spawned pool of threads/processes

(apache, RT-CORBA threadpools)

 Thus servers could be
– Pure-sequential, event-based, thread-based, process-based

 Which architecture is most efficient?
– This is application dependent

Computadores II / 2004-2005

Scalability
 How can you scale the server capacity?
 Buy bigger machine!
 Replicate
 Distribute data and/or algorithms
 Ship code instead of data
 Cache

Computadores II / 2004-2005

To Push or Pull ?
 Client-pull architecture

– Clients pull data from servers (by sending requests)
– Example: HTTP
– Pro: stateless servers, failures are each to handle
– Con: limited scalability

 Server-push architecture
– Servers push data to client
– Example: video streaming, stock tickers
– Pro: more scalable
– Con: stateful servers, less resilient to failure

 When/how-often to push or pull?

Computadores II / 2004-2005

Group Communication
 One-to-many communication

– Very useful for distributed applications

 Issues:
– Group characteristics:

• Static/dynamic, open/closed
– Group addressing

• Multicast, broadcast, application-level multicast (unicast)
– Atomicity
– Message ordering
– Scalability

Computadores II / 2004-2005

Putting it all together: Email
 User uses mail client to compose a message
 Mail client connects to mail server
 Mail server looks up address to destination mail server
 Mail server sets up a connection and passes the mail to

destination mail server
 Destination stores mail in input buffer (user mailbox)
 Recipient checks mail at a later time

Computadores II / 2004-2005

Email: Design Considerations
 Structured or unstructured?
 Addressing?
 Blocking/non-blocking?
 Buffered or unbuffered?
 Reliable or unreliable?
 Server architecture
 Scalability
 Push or pull?
 Group communication

Computadores II / 2004-2005

Remote Procedure Call

An example of distribution technology

Computadores II / 2004-2005

Remote Procedure Calls
 Goal: Make distributed computing look like centralized

computing
 Allow remote services to be called as procedures

– Transparency with regard to location, implementation, language

 Issues
– How to pass parameters
– Bindings
– Semantics in face of errors

 Two classes:
– Integrated into programming language
– Separate system service

Computadores II / 2004-2005

Parameter Passing
 Local procedure parameter passing

– Call-by-value
– Call-by-reference: arrays, complex data structures

 Remote procedure calls simulate this through:
– Stubs – proxies
– Flattening – marshalling

 Related issue: global variables are not allowed in RPCs

Computadores II / 2004-2005

Client and Server
 Principle of RPC between a client and server program.

Computadores II / 2004-2005

Stubs
 Client makes procedure call (just like a local procedure

call) to the client stub
 Server is written as a standard procedure
 Stubs take care of packaging arguments and sending

messages
 Packaging parameters is called marshalling
 Stub compiler generates stub automatically from specs

in an Interface Definition Language (IDL)
 Simplifies programmer task

STUBSTUB ServerServer

Server MachineClient Machine

STUBSTUBClientClient

Computadores II / 2004-2005

Steps in a RPC
1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Computadores II / 2004-2005

Example of an RPC

2-8

Computadores II / 2004-2005

Marshalling
 Problem: different machines have different data formats

– Intel: little endian, SPARC: big endian

 Solution: use a standard representation
– Example: external data representation (XDR)

 Problem: how do we pass pointers?
– If it points to a well-defined data structure, pass a copy and the

server stub passes a pointer to the local copy

 What about data structures containing pointers?
– Prohibit
– Chase pointers over network

 Marshalling: transform parameters/results into a byte
stream

Computadores II / 2004-2005

Binding
 Problem: how does a client locate a server?

– Use Bindings

 Server
– Export server interface during initialization
– Send name, version no, unique identifier, handle (address) to

binder

 Client
– First RPC: send message to binder to import server interface
– Binder: check to see if server has exported interface

• Return handle and unique identifier to client

Computadores II / 2004-2005

Binding: Comments
 Exporting and importing incurs overheads
 Binder can be a bottleneck

– Use multiple binders

 Binder can do load balancing

Computadores II / 2004-2005

Failure Semantics
 Client unable to locate server: return error
 Lost request messages: simple timeout mechanisms
 Lost replies: timeout mechanisms

– Make operation idempotent
– Use sequence numbers, mark retransmissions

 Server failures: did failure occur before or after
operation?
– At least once semantics (SUNRPC)
– At most once
– No guarantee
– Exactly once: desirable but difficult to achieve

Computadores II / 2004-2005

Failure Semantics
 Client failure: what happens to the server computation?

– Referred to as an orphan
– Extermination: log at client stub and explicitly kill orphans

• Overhead of maintaining disk logs
– Reincarnation: Divide time into epochs between failures and

delete computations from old epochs
– Gentle reincarnation: upon a new epoch broadcast, try to locate

owner first (delete only if no owner)
– Expiration: give each RPC a fixed quantum T; explicitly request

extensions
• Periodic checks with client during long computations

Computadores II / 2004-2005

Implementation Issues
 Choice of protocol [affects communication costs]

– Use existing protocol (UDP) or design from scratch
– Packet size restrictions
– Reliability in case of multiple packet messages
– Flow control

 Copying costs are dominant overheads
– Need at least 2 copies per message

• From client to NIC and from server NIC to server
– As many as 7 copies

• Stack in stub – message buffer in stub – kernel – NIC – medium
– NIC – kernel – stub – server

– Scatter-gather operations can reduce overheads

Computadores II / 2004-2005

Case Study: SUNRPC
 One of the most widely used RPC systems
 Developed for use with NFS
 Built on top of UDP or TCP

– TCP: stream is divided into records
– UDP: max packet size < 8912 bytes
– UDP: timeout plus limited number of retransmissions
– TCP: return error if connection is terminated by server

 Multiple arguments marshaled into a single structure
 At-least-once semantics if reply received, at-least-zero

semantics if no reply. With UDP tries at-most-once
 Use SUN’s eXternal Data Representation (XDR)

– Big endian order for 32 bit integers, handle arbitrarily large data
structures

Computadores II / 2004-2005

Where to go ?

What to know more on distributed systems ?

Computadores II / 2004-2005

Canonical Problems
 Time ordering and clock synchronization
 Leader election
 Mutual exclusion
 Deadlock detection
 Causality
 Global state and termination detection
 Election algorithms
 Distributed synchronization and mutual exclusion
 Distributed transactions

Computadores II / 2004-2005

More Independence

IIOP(CORBA) orIIOP(CORBA) or
ORPC(DCOM) orORPC(DCOM) or
JRMP(Java/RMI)JRMP(Java/RMI)

ServerServerClientClient

Client
Stub

Server
Stub

Computadores II / 2004-2005

Literature
 Distributed Systems

– Tannenbaum and Van Steen
– Prentice Hall 2001

 Distributed Systems - Concepts and Design
– Coulouris, Dollimore and Kindberg
– Addison Wesley 2000

