
Computadores II / 2004-2005

Distributed Systems

Basic concepts

Computadores II / 2004-2005

Definition
 A distributed system:

– Multiple connected CPUs working together
– A collection of independent computers that appears to its users

as a single coherent system
– One in which components located at networked computers

communicate and coordinate their actions only by passing
messages.

 Examples
– The internet
– A local area network
– A distributed control system
– Mobile and ubiquitous computing
– Battelfield management system

Computadores II / 2004-2005

HYDRA
 Real time WAN video
 Remote operation of

hydraulic power plants

CAMERA

CCI

Computadores II / 2004-2005

HYDRA : Operation Modes
 Local

– (Almost) Classic video security system

 Remote manual
– From CCI (Integral Control Center, operation center o another

plant)

 Remote automatic
– From CCI using events generated by SCADA

 Bidirectional Audio/Video

Computadores II / 2004-2005

HYDRA : Structure

Burguillo
Almoguera

Entrepeñas

Buendia

Colectora

CCL

Bolarque

CCL

CCI

CCL

CCL

CCL

ATM Links

ATM Links

ATM Links

ATM Links

Security

ATM Links

Computadores II / 2004-2005

Advantages and Disadvantages
 Advantages

– Communication and resource sharing possible
– Economics – price-performance ratio
– Reliability
– Scalability
– Potential for incremental growth
– Localisation

 Disadvantages
– Complexity: design, implementation, management
– Distribution-aware PLs, OSs and applications
– Network connectivity essential
– Security and privacy

Computadores II / 2004-2005

Topics in Distributed Systems
 Interprocess Communication
 Processes and their scheduling
 Naming and location management
 Resource sharing, replication and consistency
 Canonical problems and solutions
 Fault-tolerance
 Security in distributed Systems
 Distributed middleware
 Further topics: web services, multimedia, real-time and

mobile systems

Computadores II / 2004-2005

Basic Concepts

Distributed systems and OSs

Computadores II / 2004-2005

Challenges for D-Systems
 Heterogeneity
 Openness
 Security
 Scalability
 Failure handling
 Concurrency
 Assurance
 Transparency

Computadores II / 2004-2005

Heterogeneity
 Different networks, hardware, operating systems,

programming languages, developers.
 We set up protocols to solve these heterogeneities.
 Middleware: a software layer that provides a

programming abstraction as well as masking the
heterogeneity.

 Mobile code: code that can be sent from one computer
to another and run at the destination.

Computadores II / 2004-2005

Openness
 The openness of DS is determined primarily by the

degree to which new resource-sharing services can be
added and be made available for use by a variety of
client programs.

 Open systems are characterized by the fact that their
key interfaces are published.

 Open DS are based on the provision of a uniform
communication mechanism and published interfaces for
access to shared resources.

 Open DS can be constrcted from heterogeneous
hardware and software.

Computadores II / 2004-2005

Security
 Security for information resources has three

components:
– Confidentiality: protection against disclosure to unauthorized

individuals.
– Integrity: protection against alteration or corruption.
– Availability: protection against interference with the means to

access the resources.

 Two new security challenges:
– Denial of service attacks (DoS).
– Security of mobile code.

Computadores II / 2004-2005

Scalability
 A system is described as scalable if it remains effective

when there is a significant increase in the number of
resources, tasks and/or number of users.

 Challenges:
– Controlling the cost of resources or money.
– Controlling the performance loss.
– Preventing software resources from running out
– Avoiding preformance bottlenecks.

Computadores II / 2004-2005

Failure handling
 When faults occur in hardware or software, programs

may produce incorrect results or they may stop before
they have completed the intended computation.

 Techniques for dealing with failures:
– Detecting failures
– Masking failures
– Tolerating failures
– Recovering form failures
– Redundancy

Computadores II / 2004-2005

Concurrency
 There is a possibility that several clients will attempt to

access a shared resource at the same time.
 Any object that represents a shared resource in a

distributed system must be responsible for ensuring
that operates correctly in a concurrent environment.

Computadores II / 2004-2005

Assurance
 What is possible to be assured for a localized system

cannot possibly be so for a distributed system
 E.g. there are algorithms that do not have proofs of

convergence when distributed

Computadores II / 2004-2005

Transparency
 Transparency is defined as the concealment from the

user and the application programmer of the
separation of components in a distributed system, so
that the system is perceived as a whole rather than
as a collection of independent components.

 Many forms of transparency:
– Access transparency
– Location transparency
– Concurrency transparency
– Replication transparency
– Failure transparency
– Mobility transparency
– Technology transparency
– Performance transparency
– Scaling transparency

Computadores II / 2004-2005

Many forms of transparency in a distributed system!

Hide implementation technology for a resourceTechnology

Hide whether a (software) resource is in memory or on diskPersistence

Hide the failure and recovery of a resourceFailure

Hide that a resource may be shared by several competitive usersConcurrency

Hide that a resource may be shared by several competitive usersReplication

Hide that a resource may be moved to another location while in useRelocation

Hide that a resource may move to another locationMigration

Hide where a resource is locatedLocation

Hide differences in data representation and how a resource is accessedAccess

DescriptionTransparency

Transparency in a D-System

Computadores II / 2004-2005

Scalability Problems

Examples of scalability limitations.

Doing routing based on complete informationCentralized algorithms

A single on-line telephone bookCentralized data

A single server for all usersCentralized services

ExampleConcept

Computadores II / 2004-2005

Multiprocessors (1)
 Multiprocessor dimensions

– Memory: could be shared or be private to each CPU
– Interconnect: could be shared (bus-based) or switched

 A bus-based multiprocessor.

Computadores II / 2004-2005

1.8

Multiprocessors (2)
 A crossbar switch An omega switching

network

Computadores II / 2004-2005

1-9

Homogeneous Multicomputers
 Grid Hypercube

Computadores II / 2004-2005

Distributed Operating Systems
 Minicomputer model (e.g., early networks)

– Each user has local machine
– Local processing but can fetch remote data (files, databases)

 Workstation model (e.g., Sprite)
– Processing can also migrate

 Client-server Model (e.g., V system, world wide web)
– User has local workstation
– Powerful workstations serve as servers (file, print, DB servers)

 Processor pool model (e.g., Amoeba, Plan 9)
– Terminals are Xterms or diskless terminals
– Pool of backend processors handle processing

Computadores II / 2004-2005

Basic DOS Implementations
 Distributed OS

– One OS / Many processors
– Two variantes: Multiprocessor and Multicomputer

 Network-oriented OS
– Many OSs
– Network-level transparency

 Middleware-based OS
– Many OSs
– Appplication-level transparency

Computadores II / 2004-2005

Uniprocessor Operating Systems
 An OS acts as a resource manager or an arbitrator

– Manages CPU, I/O devices, memory

 OS provides a virtual interface that is easier to use than
hardware

 Structure of uniprocessor operating systems
– Monolithic (e.g., MS-DOS, early UNIX)

• One large kernel that handles everything
– Layered design

• Functionality is decomposed into N layers
• Each layer uses services of layer N-1 and implements new

service(s) for layer N+1

Computadores II / 2004-2005

Uniprocessor Operating Systems
 Microkernel architecture

– Small kernel
– user-level servers implement additional functionality

Computadores II / 2004-2005

Distributed Operating System
 Manages resources in a distributed system

– Seamlessly and transparently to the user

 Looks to the user like a centralized OS
– But operates on multiple independent CPUs

 Provides transparency
– Location, migration, concurrency, replication,…

 Presents users with a virtual uniprocessor

Computadores II / 2004-2005

Types of Distributed OSs

Provide
distribution
transparency

Additional layer atop of NOS
implementing general-purpose services

Middleware

Offer local
services to
remote clients

Loosely-coupled operating system for
heterogeneous multicomputers (LAN
and WAN)

NOS

Hide and
manage
hardware
resources

Tightly-coupled operating system for
multi-processors and homogeneous
multicomputers

DOS

Main GoalDescriptionSystem

Computadores II / 2004-2005

Multiprocessor OSs
 Like a uniprocessor operating system
 Manages multiple CPUs transparently to the user
 Two variants

– SMP: Symmetric Multiprocessing
– AMP: Asymmetric Multiprocessing

 Each processor has its own hardware cache
– Maintain consistency of cached data

Computadores II / 2004-2005

Multicomputer OSs

1.14

Distributed OS Services

Distributed applications

Computadores II / 2004-2005

Network Operating System

1-19Distributed applications

Computadores II / 2004-2005

Network Operating System
 Employs a client-server model

– Minimal OS kernel
– Additional functionality as user processes

1-20

Computadores II / 2004-2005

1-22

Middleware-based Systems
 General structure of a distributed system as middleware.

Distributed applications

Middleware

Computadores II / 2004-2005

Comparison between Systems

OpenOpenClosedClosedOpenness

VariesYesModeratelyNoScalability

Per nodePer nodeGlobal, distributedGlobal, centralResource management

Model specificFilesMessagesShared memoryBasis for communication

NNN1Number of copies of OS

NoNoYesYesSame OS on all nodes

HighLowHighVery HighDegree of transparency

Multicomp.Multiproc.

Middleware-
based OS

Network OS

Distributed OS

Item

Computadores II / 2004-2005

Communication in Distributed
Systems

Basic Concepts

Computadores II / 2004-2005

Communication
 Message-oriented Communication
 Remote Procedure Calls

– Transparency but poor for passing references

 Remote Method Invocation
– RMIs are essentially RPCs but specific to remote objects
– System wide references passed as parameters

 Stream-oriented Communication
 Broker-based Middleware

– Maximum Transparency
– Complexity

Computadores II / 2004-2005

Interprocess Communication

 Unstructured communication
– Use shared memory or shared data structures

 Structured communication
– Use explicit messages (IPCs)

 Distributed Systems: both need low-level
communication support (why?)

Computadores II / 2004-2005

2-1

Communication Protocols
 Protocols are agreements/rules on communication
 Protocols could be connection-oriented or

connectionless

Computadores II / 2004-2005

2-2

Layered Protocols
 A typical message as it appears on the network.

Computadores II / 2004-2005

Client-Server TCP

a) Normal operation of TCP.
b) Transactional TCP.

2-4

Computadores II / 2004-2005

2-5

Middleware Protocols
 Middleware: layer that resides between an OS and an

application
– May implement general-purpose protocols that warrant their

own layers

Computadores II / 2004-2005

kernel

client

kernel kernel kernel

file
server

process
server

terminal
server

Client-Server Communication
 Structure: group of servers offering service to clients
 Based on a request/response paradigm
 Techniques:

– Socket, remote procedure calls (RPC), Remote Method
Invocation (RMI), Object Request Brokering (ORB)

Computadores II / 2004-2005

Issues in Client-Server
 Addressing
 Blocking versus non-blocking
 Buffered versus unbuffered
 Reliable versus unreliable
 Server architecture: concurrent versus sequential
 Scalability

Computadores II / 2004-2005

Addressing Issues
 Question: how is the server

located?
 Hard-wired address

– Machine address and process
address are known a priori

 Broadcast-based
– Server chooses address from a

sparse address space
– Client broadcasts request
– Can cache response for future

 Locate address via name
server

user server

user server

user serverNS

Computadores II / 2004-2005

Synchronicity
 Asynchronous communication

– Sender continues immediately after it has submitted the
message

– Need a local buffer at the sending host

 Synchronous communication
– Sender blocks until message is stored in a local buffer at the

receiving host or actually delivered to sending
– Variant: block until receiver processes the message

Computadores II / 2004-2005

Blocking versus Non-blocking
 Blocking communication (synchronous)

– Send blocks until message is actually sent
– Receive blocks until message is actually received

 Non-blocking communication (asynchronous)
– Send returns immediately
– Return does not block either

Computadores II / 2004-2005

Buffering Issues
 Unbuffered communication

– Server must call receive before
client can call send

 Buffered communication
– Client send to a mailbox
– Server receives from a mailbox

user server

user server

Computadores II / 2004-2005

Reliability
 Unreliable channel

– Need acknowledgements (ACKs)
– Applications handle ACKs
– ACKs for both request and reply

 Reliable channel
– Reply acts as ACK for request
– Explicit ACK for response

 Reliable communication on
unreliable channels
– Transport protocol handles lost

messages

request

ACK
reply

ACK

Cl
ie

nt

Se
rv

er

request
reply

ACK

Cl
ie

nt

Se
rv

er

Computadores II / 2004-2005

Server Architecture
 Sequential

– Serve one request at a time
– Can service multiple requests by employing events and

asynchronous communication

 Concurrent
– Server spawns a process or thread to service each request
– Can also use a pre-spawned pool of threads/processes

(apache, RT-CORBA threadpools)

 Thus servers could be
– Pure-sequential, event-based, thread-based, process-based

 Which architecture is most efficient?
– This is application dependent

Computadores II / 2004-2005

Scalability
 How can you scale the server capacity?
 Buy bigger machine!
 Replicate
 Distribute data and/or algorithms
 Ship code instead of data
 Cache

Computadores II / 2004-2005

To Push or Pull ?
 Client-pull architecture

– Clients pull data from servers (by sending requests)
– Example: HTTP
– Pro: stateless servers, failures are each to handle
– Con: limited scalability

 Server-push architecture
– Servers push data to client
– Example: video streaming, stock tickers
– Pro: more scalable
– Con: stateful servers, less resilient to failure

 When/how-often to push or pull?

Computadores II / 2004-2005

Group Communication
 One-to-many communication

– Very useful for distributed applications

 Issues:
– Group characteristics:

• Static/dynamic, open/closed
– Group addressing

• Multicast, broadcast, application-level multicast (unicast)
– Atomicity
– Message ordering
– Scalability

Computadores II / 2004-2005

Putting it all together: Email
 User uses mail client to compose a message
 Mail client connects to mail server
 Mail server looks up address to destination mail server
 Mail server sets up a connection and passes the mail to

destination mail server
 Destination stores mail in input buffer (user mailbox)
 Recipient checks mail at a later time

Computadores II / 2004-2005

Email: Design Considerations
 Structured or unstructured?
 Addressing?
 Blocking/non-blocking?
 Buffered or unbuffered?
 Reliable or unreliable?
 Server architecture
 Scalability
 Push or pull?
 Group communication

Computadores II / 2004-2005

Remote Procedure Call

An example of distribution technology

Computadores II / 2004-2005

Remote Procedure Calls
 Goal: Make distributed computing look like centralized

computing
 Allow remote services to be called as procedures

– Transparency with regard to location, implementation, language

 Issues
– How to pass parameters
– Bindings
– Semantics in face of errors

 Two classes:
– Integrated into programming language
– Separate system service

Computadores II / 2004-2005

Parameter Passing
 Local procedure parameter passing

– Call-by-value
– Call-by-reference: arrays, complex data structures

 Remote procedure calls simulate this through:
– Stubs – proxies
– Flattening – marshalling

 Related issue: global variables are not allowed in RPCs

Computadores II / 2004-2005

Client and Server
 Principle of RPC between a client and server program.

Computadores II / 2004-2005

Stubs
 Client makes procedure call (just like a local procedure

call) to the client stub
 Server is written as a standard procedure
 Stubs take care of packaging arguments and sending

messages
 Packaging parameters is called marshalling
 Stub compiler generates stub automatically from specs

in an Interface Definition Language (IDL)
 Simplifies programmer task

STUBSTUB ServerServer

Server MachineClient Machine

STUBSTUBClientClient

Computadores II / 2004-2005

Steps in a RPC
1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Computadores II / 2004-2005

Example of an RPC

2-8

Computadores II / 2004-2005

Marshalling
 Problem: different machines have different data formats

– Intel: little endian, SPARC: big endian

 Solution: use a standard representation
– Example: external data representation (XDR)

 Problem: how do we pass pointers?
– If it points to a well-defined data structure, pass a copy and the

server stub passes a pointer to the local copy

 What about data structures containing pointers?
– Prohibit
– Chase pointers over network

 Marshalling: transform parameters/results into a byte
stream

Computadores II / 2004-2005

Binding
 Problem: how does a client locate a server?

– Use Bindings

 Server
– Export server interface during initialization
– Send name, version no, unique identifier, handle (address) to

binder

 Client
– First RPC: send message to binder to import server interface
– Binder: check to see if server has exported interface

• Return handle and unique identifier to client

Computadores II / 2004-2005

Binding: Comments
 Exporting and importing incurs overheads
 Binder can be a bottleneck

– Use multiple binders

 Binder can do load balancing

Computadores II / 2004-2005

Failure Semantics
 Client unable to locate server: return error
 Lost request messages: simple timeout mechanisms
 Lost replies: timeout mechanisms

– Make operation idempotent
– Use sequence numbers, mark retransmissions

 Server failures: did failure occur before or after
operation?
– At least once semantics (SUNRPC)
– At most once
– No guarantee
– Exactly once: desirable but difficult to achieve

Computadores II / 2004-2005

Failure Semantics
 Client failure: what happens to the server computation?

– Referred to as an orphan
– Extermination: log at client stub and explicitly kill orphans

• Overhead of maintaining disk logs
– Reincarnation: Divide time into epochs between failures and

delete computations from old epochs
– Gentle reincarnation: upon a new epoch broadcast, try to locate

owner first (delete only if no owner)
– Expiration: give each RPC a fixed quantum T; explicitly request

extensions
• Periodic checks with client during long computations

Computadores II / 2004-2005

Implementation Issues
 Choice of protocol [affects communication costs]

– Use existing protocol (UDP) or design from scratch
– Packet size restrictions
– Reliability in case of multiple packet messages
– Flow control

 Copying costs are dominant overheads
– Need at least 2 copies per message

• From client to NIC and from server NIC to server
– As many as 7 copies

• Stack in stub – message buffer in stub – kernel – NIC – medium
– NIC – kernel – stub – server

– Scatter-gather operations can reduce overheads

Computadores II / 2004-2005

Case Study: SUNRPC
 One of the most widely used RPC systems
 Developed for use with NFS
 Built on top of UDP or TCP

– TCP: stream is divided into records
– UDP: max packet size < 8912 bytes
– UDP: timeout plus limited number of retransmissions
– TCP: return error if connection is terminated by server

 Multiple arguments marshaled into a single structure
 At-least-once semantics if reply received, at-least-zero

semantics if no reply. With UDP tries at-most-once
 Use SUN’s eXternal Data Representation (XDR)

– Big endian order for 32 bit integers, handle arbitrarily large data
structures

Computadores II / 2004-2005

Where to go ?

What to know more on distributed systems ?

Computadores II / 2004-2005

Canonical Problems
 Time ordering and clock synchronization
 Leader election
 Mutual exclusion
 Deadlock detection
 Causality
 Global state and termination detection
 Election algorithms
 Distributed synchronization and mutual exclusion
 Distributed transactions

Computadores II / 2004-2005

More Independence

IIOP(CORBA) orIIOP(CORBA) or
ORPC(DCOM) orORPC(DCOM) or
JRMP(Java/RMI)JRMP(Java/RMI)

ServerServerClientClient

Client
Stub

Server
Stub

Computadores II / 2004-2005

Literature
 Distributed Systems

– Tannenbaum and Van Steen
– Prentice Hall 2001

 Distributed Systems - Concepts and Design
– Coulouris, Dollimore and Kindberg
– Addison Wesley 2000

