
Computadores II / 2005-2006

Programming in the large

Engineering complex software systems

Computadores II / 2005-2006 / L4 Programming in the Large

Characteristics of RT Systems
 Large and Complex
 Concurrent control of system components
 Facilities for hardware control
 Extremely reliable and safe
 Real-time facilities
 Efficiency of execution

Computadores II / 2005-2006 / L4 Programming in the Large

Aim
 Review of language support for programming in the

large
 Illustrate the use of modules/packages to aid

decomposition and abstraction
 Separate compilation
 Modules and separate compilation in C
 Child packages and OOP in Ada 95
 OOP and Java

Computadores II / 2005-2006 / L4 Programming in the Large

Decomposition and Abstraction
 Decomposition — the systematic breakdown of a

complex system into smaller and smaller parts until
components are isolated that can be understood and
engineered by individuals and small groups
TOP DOWN DESIGN

 Abstraction — Allows detailed consideration of
components to be postponed yet enables the essential
part of the component to be specified
BOTTOM UP DESIGN

Computadores II / 2005-2006 / L4 Programming in the Large

Modules
 A collection of logically related objects and operations
 Encapsulation — the technique of isolating a system

function within a module with a precise specification of
the interface
– information hiding
– separate compilation
– abstract data types

 How should large systems be decomposed into
modules?

The answer to this is at the heart of all Software Engineering!

Computadores II / 2005-2006 / L4 Programming in the Large

Information Hiding
 A module structure supports reduced visibility by

allowing information to be hidden inside its body
 The specification and body of a module can be given

separately
 Ideally, the specification should be compilable without

the body being written
 E.g in Ada, there is a package specification and a

package body; formal relationship; compile time errors
 In C, modules are not so well formalised. Typically,

programmers use a separate .h file to contain the
interface to a module and a .c file for the body. No
formal relationship. Errors caught at link time

 Modules are not first class language entities

Computadores II / 2005-2006 / L4 Programming in the Large

Information Hiding
 Java has interfaces and the concept of package
 There is no language syntax to represent the

specification and body of a package
 A package is a directory where related classes are

stored
 To add a class to the directory, simply put the package

name (path name) at the beginning of the source file

Computadores II / 2005-2006 / L4 Programming in the Large

Abstract data types
 A module can define both a type and the operations on

the type.
 The details of the type must be hidden from the user.
 As modules are not first class, the type must be

declared and instances of the type passed as a
parameter to the operation.

 To ensure the user is not aware of the details of the
type, it is either defined to be private (as in Ada) or
always passed as a pointer (as you would do in C). An
incomplete declaration of the type is given in the .h file.

Computadores II / 2005-2006 / L4 Programming in the Large

Queue Example in Ada
package Queuemod is
 type Queue is limited private;
 procedure Create (Q : in out Queue);
 function Empty (Q : Queue) return Boolean;
 procedure Insert (Q : in out Queue; E : Element);
 procedure Remove (Q : in out Queue; E : out Element);
private
 -- none of the following declarations are externally visible
 type Queuenode;
 type Queueptr is access Queuenode;
 type Queuenode is
 record
 Contents : Processid; Next : Queueptr;
 end record;
 type Queue is
 record
 Front : Queueptr; Back : Queueptr;
 end record;
end Queuemod;

Computadores II / 2005-2006 / L4 Programming in the Large

Queue Example in C
 From a header file:

typedef struct queue_t *queue_ptr_t;

queue_ptr_t create();

int empty(queue_ptr_t Q);

void insertE(queue_ptr_t Q, element E);

void removeE(queue_ptr_t Q, element *E);

Computadores II / 2005-2006 / L4 Programming in the Large

Object-Oriented Programming
 OOP has:

– type extensibility (inheritance)
– automatic object initialisation (constructors)
– automatic object finalisation (destructors)
– run-time dispatching of operations (polymorphism)

 Ada 95 supports the above through tagged types and
class-wide programming

 Java supports OOP though the use of classes

Computadores II / 2005-2006 / L4 Programming in the Large

OOP and Ada
 Based on type extensions (tagged types) and dynamic

polymorphism (class-wide types)

type A is record … end record; -- normal record type

type EA is tagged record … end record; -- tagged type

procedure Op1(E : EA; Other_Param : Param);
 -- primitive operation

 procedure Op2(E : EA; Other_Param : Param);
 -- primitive operation

Computadores II / 2005-2006 / L4 Programming in the Large

Ada and OOP

type EEA is new EA with record … end record;
-- inherit OP1

procedure Op2(E : EEA; Other_Param : Param);
-- override Op2

procedure Op3(E : EEA; Other_Param : Param);
-- add new primitive operation

type EEEA is new EA with record … end record;
...

type EAE is new EA with record … end record;
...

type EAEE is new EAE with record … end record;
...

Computadores II / 2005-2006 / L4 Programming in the Large

Ada and OOP

EA

EEA

EEEA

EAE

EAEE

Type Hierarchy routed at EA
called EA’Class

Computadores II / 2005-2006 / L4 Programming in the Large

OOP and Java
 Based on the class construct
 Each class encapsulates data (instance variables) and

operations on the data (methods including constructor
methods)

 Each class can belong to a package
 It may be local to the package or visible to other

packages (in which case it is labelled public)
 Other class modifiers are abstract and final
 Similarly, methods and instance variables have

modifiers as being
– public (visible outside the class)
– protected (visible only within package or in a subclass)
– private (visible only to the class)

Computadores II / 2005-2006 / L4 Programming in the Large

Java Example
import somepackage.Element; // import element type
package queues; // package name

class QueueNode // class local to package
{
 Element data;
 QueueNode next;
}

public class Queue // class available from outside the package
{

 QueueNode front, back; // instance variables

 public Queue() // public constructor
 {
 front = null;
 back = null;
 }

Computadores II / 2005-2006 / L4 Programming in the Large

Java Example
 public void insert(Element E) // visible method
 {
 QueueNode newNode = new QueueNode();

 newNode.data = E; newNode.next = null;
 if(empty()) {front = newNode;}
 else { back.next = newNode; }
 back = newNode;
 }

 public Element remove() //visible method
 {
 if(!empty()) { Element tmpE = front.data;
 front = front.next; if(empty)) back = null; }
 // garbage collection will free up the QueueNode object
 return tmpE;
 }

 public boolean empty() // visible method
 { return (front == null); }
}

Computadores II / 2005-2006 / L4 Programming in the Large

Inheritance and Java
package coordinate;
public class Coordinate // Java is case sensitive
{
 float X, Y;

 public Coordinate(float initial_X, float initial_Y) // constructor
 { X = initial_X;
 Y = initial_Y; }

 public void set(float F1, float F2)
 { X = F1;
 Y = F2; }

 public float getX()
 { return X; }

 public float getY()
 { return Y; }

 public void plot() {
 // plot a two D point}
}

Computadores II / 2005-2006 / L4 Programming in the Large

Inheritance and Java
package coordinate;
public class ThreeDimension extends Coordinate {
 // subclass of Coordinate

 float Z; // new field

 public ThreeDimension(float initialX, float initialY,
 float initialZ) // constructor
 { super(initialX, initialY); // call superclass constructor
 Z = initialZ;
 }

 public void set(float F1, float F2, float F3) //new method
 { super.set(F1, F2); // call superclass set
 Z = F3;
 }

 public float getZ() // new method
 { return Z;}

 public void plot() {//overridden method
 /* plot a three D point */}
}

Computadores II / 2005-2006 / L4 Programming in the Large

Inheritance and Java
 Method calls are dispatching
{
 Coordinate A = new Coordinate(0f, 0f);
 A.plot();
}

would plot a two dimension coordinate; where as

{
 Coordinate A = new Coordinate(0f, 0f);
 ThreeDimension B = new ThreeDimension(0f, 0f, 0f);

 A = B;
 A.plot();
}

will plot a three D coordinate even though A was originally declared to be of type
Coordinate. This is because A and B are reference types. By assigning B to A
only the reference has changed not the object itself.

Computadores II / 2005-2006 / L4 Programming in the Large

The Object Class
 All classes are implicit subclasses of the Object class

public class Object {
 ...
 public boolean equals(Object obj);

 // methods to support monitors
 public final void wait()throws IllegalMonitorStateException,
 InterruptedException;
 public final void wait(long millis)throws
 IllegalMonitorStateException, InterruptedException;
 public final void wait(long millis, int nanos) throws
 IllegalMonitorStateException, InterruptedException;
 public final void notify() throws IllegalMonitorStateException;
 public final void notifyAll() throws IllegalMonitorStateException;

 //override for finalization
 protected void finalize()
 throws Throwable;
}

Computadores II / 2005-2006 / L4 Programming in the Large

Interfaces in Java
 Interfaces in Java augment classes to increase the

reusability of code (compare with Ada’s generics)
 An interface is a special form of class that defines the

specification of a set of methods and constants
 They are by definition abstract so no instances of

interfaces can be declared
 Instead, one or more classes can implement an

interface, and objects implementing interfaces can be
passed as arguments to methods by defining the
parameter to be of the interface type

 Interfaces allow relationships to be constructed
between classes outside of the class hierarchy

Computadores II / 2005-2006 / L4 Programming in the Large

Interface Example
package interfaceExamples;

public interface Ordered {
 boolean lessThan (Ordered O);
}

 lessThan takes as a parameter any object that
implements the Ordered interface

Computadores II / 2005-2006 / L4 Programming in the Large

Interface Example
import interfaceExamples.*;
class ComplexNumber implements Ordered {
 protected float realPart;
 protected float imagPart;

 public boolean lessThan(Ordered O) // interface implementation
 {
 ComplexNumber CN = (ComplexNumber) O; // cast the parameter

 if((realPart*realPart + imagPart*imagPart) <
 (CN.getReal()*CN.getReal() + CN.getImag()*CN.getImag()))
 { return true; }
 return false;
 }

 public ComplexNumber (float I, float J) // constructor
 { realPart = I; imagPart = J; }

 public float getReal() { return realPart;}

 public float getImag() { return imagPart; }

}

Computadores II / 2005-2006 / L4 Programming in the Large

Interface Example
package interfaceExamples;
public class ArraySort
{
 public static void sort (Ordered oa[], int size) //sort method
 {
 Ordered tmp;
 int pos;

 for (int i = 0; i < size - 1; i++) {
 pos = i;
 for (int j = i + 1; j < size; j++) {
 if (oa[j].lessThan(oa[pos])) {
 pos = j;
 }
 }
 tmp = oa[pos];
 oa[pos] = oa[i];
 oa[i] = tmp;
 }
 }

Computadores II / 2005-2006 / L4 Programming in the Large

Interface Example

 public static Ordered largest(Ordered oa[], int size)
 // largest method
 {
 Ordered tmp;
 int pos;

 pos = 0;
 for (int i = 1; i < size; i++) { // assumes size >=1
 if (! oa[i].lessThan(oa[pos])) {
 pos = i;
 }
 }
 return oa[pos];
 }
}

Computadores II / 2005-2006 / L4 Programming in the Large

Interface Example
{

 ComplexNumber arrayComplex[] = { // say
 new ComplexNumber(6f,1f),
 new ComplexNumber(1f, 1f),
 new ComplexNumber(3f,1f),
 new ComplexNumber(1f, 0f),
 new ComplexNumber(7f,1f),
 new ComplexNumber(1f, 8f),
 new ComplexNumber(10f,1f),
 new ComplexNumber(1f, 7f)
 };
 // array unsorted
 ArraySort.sort(arrayComplex, 8);
 // array sorted
}

Computadores II / 2005-2006 / L4 Programming in the Large

Summary
 Modules support: information hiding, separate compilation and abstract

data types
 Ada and C have a static module structure
 C informally supports modules; Java has a dynamic module structure

called a class
 Both packages in Ada (and Java) and classes in Java have well-defined

specifications which act as the interface between the module and the rest
of the program

 Separate compilation enables libraries of precompiled components to be
constructed

 The decomposition of a large program into modules is the essence of
programming in the large

 The use of abstract data types or object-oriented programming, provides
one of the main tools programmers can use to manage large software
systems

