
Computadores II / 2004-2005

Concurrent Systems

Doing many things at the same time

Computadores II / 2004-2005

Characteristics of RTS
 Large and complexLarge and complex
 Concurrent control of separate system components
 Facilities to interact with special purpose hardware.
 Guaranteed response times
 Extreme reliability
 Efficient implementation

Computadores II / 2004-2005

Aim
 To illustrate the requirements for concurrent

programming
 To demonstrate the variety of models for creating

processes
 To show how processes are created in Ada (tasks),

POSIX/C (processes and threads) and Java (threads)
 To lay the foundations for studying inter-process

communication

Computadores II / 2004-2005

Concurrent Programming
 The name given to programming notation and

techniques for expressing potential parallelism and
solving the resulting synchronization and
communication problems

 Implementation of parallelism is a topic in computer
systems (hardware and software) that is essentially
independent of concurrent programming

 Concurrent programming is important because it
provides an abstract setting in which to study
parallelism without getting bogged down in the
implementation details

Computadores II / 2004-2005

Why we need it
 To fully utilise the processor(s)

10-7
10-6
10-5
10-4
10-3
10-2
10-1

10 2

10 1

10-8

10-9

R
es

po
ns

e
tim

e
in

 se
co

nd
s

10 0
human tape

floppy
CD

memory

processor

Computadores II / 2004-2005

Parallelism Between CPU and I/O

CPU

Initiate I/O
Operation

Interrupt I/O
Routine
I/O Finished

I/O Device

Process I/O
Request

Signal Completion

Continue with
Outstanding Requests

Computadores II / 2004-2005

Why we need concurrency

 To allow the expression of potential parallelism so
that more than one computer can be used to solve the
problem

 Consider trying to find the way through a maze

Computadores II / 2004-2005

Sequential Maze Search

Computadores II / 2004-2005

Concurrent Maze Search

Computadores II / 2004-2005

Why we need it
 To model the parallelism in the real world

 Virtually all real-time systems are inherently concurrent
– Physical devices operate in parallel in the real world

 This is, perhaps, the main reason to use concurrency in
control systems

Computadores II / 2004-2005

Process Control

Computadores II / 2004-2005

Airline Reservation System
VDU

VDU

VDU

VDU

P P P P

Process

Database

Computadores II / 2004-2005

Air Traffic Control

Computadores II / 2004-2005

Why we need it
 The alternative is to use sequential programming

techniques
– The programmer must construct the system so that it involves

the cyclic execution of a program sequence to handle the
various concurrent activities

– This complicates the programmer's already difficult task and
involves him/her in considerations of structures which are
irrelevant to the control of the activities in hand

– The resulting programs will be more obscure and inelegant
– It makes decomposition of the problem more complex
– Parallel execution of the program on more than one processor

will be much more difficult to achieve
– The placement of code to deal with faults is more problematic

Computadores II / 2004-2005

Terminology
 A concurrent program is a collection of autonomous

sequential processes,

 Processes execute (logically) in parallel

 Each process has a single thread of control

Computadores II / 2004-2005

Implementation
The actual implementation (i.e. execution) of a collection

of processes usually takes one of three forms:

 Multiprogramming
– processes multiplex their executions on a single processor

 Multiprocessing
– processes multiplex their executions on a multiprocessor

system where there is access to shared memory

 Distributed Processing
– processes multiplex their executions on several processors

which do not share memory

Computadores II / 2004-2005

Created

Non-existingNon-existing

Initializing

Executable

Terminated

Process States

Computadores II / 2004-2005

Run-Time Support System
 To execute a concurrent program a Run-time Support

System is Necessary (RTSS)

 The RTSS handles the execution (multiplexing) of the
processes in the processors

 An RTSS has many of the properties of the scheduler in
an operating system, and sits logically between the
hardware and the application software.

Computadores II / 2004-2005

RTSS Structures
 A software structure programmed as part of the

application.
– This is the approach adopted in Modula-2.

 A standard software system linked to the program
object code by the compiler.
– This is normally the structure with Ada programs.

 A separate platform (virtual machine) that executes
applications.
– This is the Java approach

 A hardware structure microcoded into the processor for
efficiency.
– An occam2 program running on the transputer has such a run-

time system.
– The aJile Java processor is another example.

Computadores II / 2004-2005

Processes and Threads
 All operating systems provide processes/tasks
 Processes execute in their own virtual machine (VM)

to avoid interference from other processes
 Recent OSs provide mechanisms for creating threads

within the same virtual machine; threads are sometimes
provided transparently to the OS

 Threads have unrestricted access to their VM
 The programmer and the language must provide the

protection from interference
 Long debate over whether language should define

concurrency or leave it up to the OS:
– Ada and Java provide concurrency
– C, C++ do not (rely on OS for that)

Computadores II / 2004-2005

CP Ideas
CP Allow
 The expression of concurrent

execution through the notion
of process

 Process synchronization
 Inter-process communication

Processes may be
 Independent
 Cooperating
 Competing

Processes differ in
 Structure — static, dynamic
 Level — nested, flat

Computadores II / 2004-2005

Concurrent Execution

Language Structure Level

Concurrent Pascal static flat

occam2 static nested

Modula dynamic flat

Ada dynamic nested

C/POSIX dynamic flat

Java dynamic nested

Computadores II / 2004-2005

Concurrent Execution
 Granularity

– coarse (Ada, POSIX processes/threads, Java)
– fine (occam2)

 Initialization — parameter passing, IPC
 Termination

– completion of execution of the process body;
– suicide, by execution of a self-terminate statement;
– abortion, through the explicit action of another process;
– occurrence of an untrapped error condition;
– never: processes are assumed to be non-terminating loops;
– when no longer needed.

Computadores II / 2004-2005

Process Hierarchies
 Hierarchies of processes can be created and inter-

process relationships formed
 For any process, a distinction can be made between

the process (or block) that created it and the process
(or block) which is affected by its termination

 The former relationship is know as parent/child and
has the attribute that the parent may be delayed while
the child is being created and initialized

 The latter relationship is termed guardian/dependent.
A process may be dependent on the guardian process
itself or on an inner block of the guardian

 The guardian is not allowed to exit from a block until all
dependent processes of that block have terminated

Computadores II / 2004-2005

Nested Processes
 A guardian cannot terminate until all its dependents

have terminated
 A program cannot terminate until all its processes have

terminated
 A parent of a process may also be its guardian (e.g.

with languages that allow only static process structures)
 With dynamic nested process structures, the parent and

the guardian may or may not be identical

Computadores II / 2004-2005

Created

Non-existingNon-existing

Initializing

Executable

Terminated

Process States

Waiting Child
Initialization

Waiting Dependent
Termination

Computadores II / 2004-2005

Processes and Objects
 Active objects

– undertake spontaneous actions

 Reactive objects
– only perform actions when invoked

 Resources
– reactive but can control order of actions

 Passive
– reactive, but no control over order

 Protected resources
– passive resource controller

 Server
– active resource controller

Computadores II / 2004-2005

Process Representation
 Many program constructs to express concurrence

 Coroutines
 Fork and Join
 Cobegin
 Explicit Process Declaration

Computadores II / 2004-2005

Coroutine Flow Control
Coroutine A Coroutine B Coroutine C

1

resume B

2
3 5

resume A

6

6

7

resume B

8
resume C

4

9
resume A

10
11

resume c12

1213

resume B14

15

Computadores II / 2004-2005

Note
 No return statement — only a resume statement
 The value of the data local to the coroutine persist

between successive calls
 The execution of a coroutine is supended as control

leaves it, only to carry on where it left off when it
resumed

Do coroutines express true parallelism?

Computadores II / 2004-2005

Fork and Join
 The fork specifies that a designated routine should start

executing concurrently with the invoker
 Join allows the invoker to wait for the completion of the

invoked routine
function F return is ...;
procedure P;

 ...
 C:= fork F;
 ...
 J:= join C;

...
end P;

 After the fork, P and F will be executing concurrently. At
the point of the join, P will wait until the F has finished
(if it has not already done so)

 Fork and join notation can be found in Mesa and
UNIX/POSIX

Computadores II / 2004-2005

UNIX Fork Example

for (I=0; I!=10; I++) {

 pid[I] = fork();

}

wait . . .

How many processes are created?

Computadores II / 2004-2005

Cobegin
 The cobegin (or parbegin or par) is a structured way of

denoting the concurrent execution of a collection of
statements:

cobegin
 S1;
 S2;
 .
 .
 Sn
coend

 S1, S2 etc, execute concurrently
 The statement terminates when S1, S2 etc have terminated
 Each Si may be any statement allowed within the language
 Cobegin can be found in Edison and occam2.

Computadores II / 2004-2005

Explicit Process Declaration
 The structure of a program can be made clearer if

routines state whether they will be executed
concurrently

 Note that this does not say when they will execute

task body Process is
begin
 . . .

end;

 Languages that support explicit process declaration
may have explicit or implicit process/task creation

Computadores II / 2004-2005

Tasks and Ada
 The unit of concurrency in Ada is called a task
 Tasks must be explicitly declared, there is no fork/join

statement, cobegin/coend, etc.
 Tasks may be declared at any program level; they are

created implicitly upon entry to the scope of their
declaration or via the action of an allocator

 Tasks may communicate and synchronise via a variety
of mechanisms:
– rendezvous (a form of synchronised message passing),
– protected units (a form of monitor/conditional critical region),
– and shared variables

Computadores II / 2004-2005

Task Types and Task Objects
 A task can be declared as a type or as a single instance

(anonymous type)
 A task type consists of a specification and a body
 The specification contains

– the type name
– an optional discriminant part which defines the parameters that

can be passed to instances of the task type at their creation
time

– a visible part which defines any entries and representation
clauses

– a private part which defines any hidden entries and
representation clauses

Computadores II / 2004-2005

Task States in Ada

executable

created

non-existing

finalising

activating completed

non-existing

terminated

waiting child
activation

create child task

child task
activation complete

create child task

child task activation complete

exit a master block

dependent tasks

 terminate

waiting dependent
termination

exit a master block
dependent tasks

 terminate

dependent tasks terminate

Computadores II / 2004-2005

Concurrent Execution in POSIX
 Two main mechanisms:

– Coarse grained: fork
– Fine grained: pthreads.

 fork creates a new process
 pthreads are an extension to POSIX to allow threads to

be created
 All threads have attributes (e.g. stack size) that can be

manipulated
 Threads are created using an appropriate attribute

object
 Threads can communicate using POSIX IPC

mechanisms

Computadores II / 2004-2005

typedef ... pthread_t; /* details not defined */
typedef ... pthread_attr_t;

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

int pthread_attr_setstacksize(..);

int pthread_attr_getstacksize(..);

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg);

 /* create thread and call the start_routine with the argument */

int pthread_join(pthread_t thread, void **value_ptr);
int pthread_exit(void *value_ptr);
 /* terminate the calling thread and make the pointer value_ptr

 available to any joining thread */

Typical C POSIX interface

Computadores II / 2004-2005

Concurrency in Java
 Java has a predefined class java.lang.Thread

which provides the mechanism by which threads
(processes) are created.

 However to avoid all threads having to be child classes
of Thread, it also uses a standard interface

public interface Runnable {
 public abstract void run();
}

 Hence, any class which wishes to express concurrent
execution must implement this interface and provide the
run method

Computadores II / 2004-2005

public class Thread extends Object implements Runnable
{
 public Thread();
 public Thread(Runnable target);

 public void run();
 public native synchronized void start();
 // throws IllegalThreadStateException

 public static Thread currentThread();
 public final void join() throws InterruptedException;
 public final native boolean isAlive();
 public void destroy();
 // throws SecurityException;
 public final void stop();
 // throws SecurityException

…
}

Java Thread Class

Computadores II / 2004-2005

Robot Arm Example

public class UserInterface
{
 public int newSetting (int Dim) { ... }
 ...
}

public class Arm
{
 public void move(int dim, int pos) { ... }
}

UserInterface UI = new UserInterface();

Arm Robot = new Arm();

Computadores II / 2004-2005

Robot Arm Example
public class Control extends Thread
{
 private int dim;

 public Control(int Dimension) // constructor
 {
 super();
 dim = Dimension;
 }

 public void run()
 {
 int position = 0;
 int setting;

 while(true)
 {
 Robot.move(dim, position);
 setting = UI.newSetting(dim);
 position = position + setting;
 }
 }
}

Computadores II / 2004-2005

Robot Arm Example

final int xPlane = 0; // final indicates a constant
final int yPlane = 1;
final int zPlane = 2;

Control C1 = new Control(xPlane);
Control C2 = new Control(yPlane);
Control C3 = new Control(zPlane);

C1.start();
C2.start();
C3.start();

Computadores II / 2004-2005

Alternative Robot Control
public class Control implements Runnable
{
 private int dim;

 public Control(int Dimension) // constructor
 {
 dim = Dimension;
 }

 public void run()
 {
 int position = 0;
 int setting;

 while(true)
 {
 Robot.move(dim, position);
 setting = UI.newSetting(dim);
 position = position + setting;
 }
 }
}

Computadores II / 2004-2005

Alternative Robot Control
final int xPlane = 0;
final int yPlane = 1;
final int zPlane = 2;

Control C1 = new Control(xPlane); // no thread created yet
Control C2 = new Control(yPlane);
Control C3 = new Control(zPlane);

// constructors passed a Runnable interface and threads created
Thread X = new Thread(C1);
Thread Y = new Thread(C2);
Thread Z = new Thread(C2);

X.start(); // thread started
Y.start();
Z.start();

Computadores II / 2004-2005

Java Thread States

deadblocked

non-existing

new

executable

Create thread object

start

run method exits
stop, destroy

Computadores II / 2004-2005

Points about Java Threads
 Java allows dynamic thread creation
 Java allows arbitrary data to be passed as parameters

during construction
 Java allows thread hierarchies and thread groups to be

created but there is no master or guardian concept
 Java relies on garbage collection to clean up objects

which can no longer be accessed
 The main program in Java terminates when all its user

threads have terminated (see later)
 One thread can wait for another thread (the target) to

terminate by issuing the join method call on the
target's thread object.

 The isAlive method allows a thread to determine if
another thread has terminated

Computadores II / 2004-2005

A Thread Terminates:
 when it completes execution of its run method either

normally or as the result of an unhandled exception
 via its stop method — the run method is stopped and the

thread class cleans up before terminating the thread
(releases locks and executes any finally clauses)
– the thread object is now eligible for garbage collection.
– if a Throwable object is passed as a parameter to stop, then this

exception is thrown in the target thread; this allows the run method
to exit more gracefully and cleanup after itself

– stop is inherently unsafe as it releases locks on objects and can
leave those objects in inconsistent states; the method is now
deemed obsolete (deprecated) and should not be used

 via its destroy method — destroy terminates the thread
without any cleanup (not implemented in Sun’s JVM)

Computadores II / 2004-2005

Daemon Threads
 Java threads can be of two types:

– user threads
– daemon threads

 Daemon threads are those threads which provide
general services and typically never terminate

 The setDaemon method must be called before the
thread is started to mark it as daemon

 When all user threads have terminated, daemon
threads can also be terminated and the main program
terminates

Computadores II / 2004-2005

Thread Exceptions
 The IllegalThreadStateException is thrown when:

– the start method is called and the thread has already been started
– the setDaemon method has been called and the thread has already

been started
 The SecurityException is thrown by the security

manager when:
– a stop or destroy method has been called on a thread for which

the caller does not have the correct permissions for the operation
requested

 The InterruptException is thrown if a thread which has
issued a join method is woken up by the thread being
interrupted rather than the target thread terminating

Computadores II / 2004-2005

T

S

P

A Simple Embedded System

 Overall objective is to keep the temperature and pressure
of some chemical process within well-defined limits

Switch

ADC

ADC

DACScreen

Heater

Thermocouples Pressure
Transducer

Pump/Valve

Computadores II / 2004-2005

Possible Software Architectures
 A single sequential program is used which ignores

the logical concurrency of T, P and S; no operating
system support is required

 T, P and S are written in a sequential programming
language (either as separate programs or distinct
procedures in the same program) and operating
system primitives are used for program/process
creation and interaction

 A single concurrent program is used which retains
the logical structure of T, P and S; no operating system
support is required although a run-time support system
is needed

Which one is the best approach?

Computadores II / 2004-2005

Disadvantages of Single Sequential

 Temperature and pressure readings must be taken at
the same rate (the use of counters and if statements
may improve the situation)

 But may still be necessary to split up the conversion
procedures, and interleave their actions so as to meet a
required balance of work

 While waiting to read a temperature no attention can be
given to pressure (and viceversa)

 Moreover, a system failure that results in, say, control
never returning from the temperature read, then in
addition to this problem no further calls to read the
pressure would be taken

Computadores II / 2004-2005

Advantages of Concurrency
 Controller tasks execute concurrently and each

contains an indefinite loop within which the control cycle
is defined

 While one task is suspended waiting for a read the
other may be executing; if they are both suspended a
busy loop is not executed

 The logic of the application is reflected in the code; the
inherent parallelism of the domain is represented by
concurrently executing tasks in the program

Computadores II / 2004-2005

Disadvantages
 Both tasks send data to the screen, but the screen is a

resource that can only sensibly be accessed by one
process at a time

 A third entity is required. This has transposed the
problem from that of concurrent access to a non-
concurrent resource to one of resource control

 It is necessary for controller tasks to pass data to the
screen resource

 The screen must ensure mutual exclusion
 The whole approach requires a run-time support system

Computadores II / 2004-2005

OS vs Language Concurrency
 Should concurrency be in a language or in the OS?
 Arguments for concurrency in the languages:

– It leads to more readable and maintainable programs
– There are many different types of OSs; the language

approach makes the program more portable
– An embedded computer may not have any resident OS

 Arguments against concurrency in a language:
– It is easier to compose programs from different languages if

they all use the same OS model
– It may be difficult to implement a language's model of

concurrency efficiently on top of an OS’s model
– OS standards (POSIX, W32) are available

 The Ada/Java philosophy is that the advantages
outweigh the disadvantages

Computadores II / 2004-2005

Summary
 The application domains of most real-time systems are

inherently parallel
 The inclusion of the notion of process within a real-time

programming language makes an enormous difference
to the expressive power and ease of use of the
language

 Without concurrency the software must be constructed
as a single control loop

 The structure of this loop cannot retain the logical
distinction between systems components. It is
particularly difficult to give process-oriented timing and
reliability requirements without the notion of a process
being visible in the code

Computadores II / 2004-2005

Summary Continued
 The use of a concurrent programming language is not

without its costs. In particular, it becomes necessary to
use a run-time support system to manage the
execution of the system processes

 The behaviour of a process is best described in terms
of process states

• non-existing
• created
• initialized
• executable
• waiting dependent termination
• waiting child initialization
• terminated

