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Concurrent Systems

Doing many things at the same time
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Characteristics of RTS
 Large and complexLarge and complex
 Concurrent control of separate system components
 Facilities to interact with special purpose hardware.
 Guaranteed response times
 Extreme reliability
 Efficient implementation
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Aim
 To illustrate the requirements for concurrent

programming
 To demonstrate the variety of models for creating

processes
 To show how processes are created in Ada (tasks),

POSIX/C (processes and threads) and Java (threads)
 To lay the foundations for studying inter-process

communication
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Concurrent Programming
 The name given to programming notation and

techniques for expressing potential parallelism and
solving the resulting synchronization and
communication problems

 Implementation of parallelism is a topic in computer
systems (hardware and software) that is essentially
independent of concurrent programming

 Concurrent programming is important because it
provides an abstract setting in which to study
parallelism without getting bogged down in the
implementation details
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Why we need it
 To fully utilise the processor(s)
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Parallelism Between CPU and I/O

CPU

Initiate  I/O
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Interrupt I/O
Routine 
I/O Finished

I/O Device

Process I/O
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Signal Completion

Continue with
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Why we need concurrency

 To allow the expression of potential parallelism so
that more than one computer can be used to solve the
problem

 Consider trying to find the way through a maze
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Sequential Maze Search
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Concurrent Maze Search
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Why we need it
 To model the parallelism in the real world

 Virtually all real-time systems are inherently concurrent
– Physical devices operate in parallel in the real world

 This is, perhaps, the main reason to use concurrency in
control systems
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Process Control
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Air Traffic Control
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Why we need it
 The alternative is to use sequential programming

techniques
– The programmer must construct the system so that it involves

the cyclic execution of a program sequence to handle the
various concurrent activities

– This complicates the programmer's already difficult task and
involves him/her in considerations of structures which are
irrelevant to the control of the activities in hand

– The resulting programs will be more obscure and inelegant
– It makes decomposition of the problem more complex
– Parallel execution of the program on more than one processor

will be much more difficult to achieve
– The placement of code to deal with faults is more problematic
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Terminology
 A concurrent program is a collection of autonomous

sequential processes,

 Processes execute (logically) in parallel

 Each process has a single thread of control
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Implementation
The actual implementation (i.e. execution) of a collection

of processes usually takes one of three forms:

 Multiprogramming
– processes multiplex their executions on a single processor

 Multiprocessing
– processes multiplex their executions on a multiprocessor

system where there is access to shared memory

 Distributed Processing
– processes multiplex their executions on several processors

which do not share memory
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Run-Time Support System
 To execute a concurrent program a Run-time Support

System is Necessary (RTSS)

 The RTSS handles the execution (multiplexing) of the
processes in the processors

 An RTSS has many of the properties of the scheduler in
an operating system, and sits logically between the
hardware and the application software.
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RTSS Structures
 A software structure programmed as part of the

application.
– This is the approach adopted in Modula-2.

 A standard software system linked to the program
object code by the compiler.
– This is normally the structure with Ada programs.

 A separate platform (virtual machine) that executes
applications.
– This is the Java approach

 A hardware structure microcoded into the processor for
efficiency.
– An occam2 program running on the transputer has such a run-

time system.
– The aJile Java processor is another example.
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Processes and Threads
 All operating systems provide processes/tasks
 Processes execute in their own virtual machine (VM)

to avoid interference from other processes
 Recent OSs provide mechanisms for creating threads

within the same virtual machine; threads are sometimes
provided transparently to the OS

 Threads have unrestricted access to their VM
 The programmer and the language must provide the

protection from interference
 Long debate over whether language should define

concurrency or leave it up to the OS:
– Ada and Java provide concurrency
– C, C++ do not (rely on OS for that)
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CP Ideas
CP Allow
 The expression of concurrent

execution through the notion
of process

 Process synchronization
 Inter-process communication

Processes may be
 Independent
 Cooperating
 Competing

Processes differ in
 Structure — static, dynamic
 Level —  nested, flat
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Concurrent Execution

Language Structure Level

Concurrent Pascal static flat

occam2 static nested

Modula dynamic flat

Ada dynamic nested

C/POSIX dynamic flat

Java dynamic nested
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Concurrent Execution
 Granularity

– coarse (Ada, POSIX processes/threads, Java)
– fine (occam2)

 Initialization — parameter passing, IPC
 Termination

– completion of execution of the process body;
– suicide, by execution of a self-terminate statement;
– abortion, through the explicit action of another process;
– occurrence of an untrapped error condition;
– never: processes are assumed to be non-terminating loops;
– when no longer needed.
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Process Hierarchies
 Hierarchies of processes can be created and inter-

process relationships formed
 For any process, a distinction  can be made between

the process (or block) that created it and the process
(or block) which is affected by its termination

 The former relationship is know as parent/child and
has the attribute that the parent may be delayed while
the child is being created and initialized

 The latter relationship is termed guardian/dependent.
A process may be dependent on the guardian process
itself or on an inner block of the guardian

 The guardian is not allowed to exit from a block until all
dependent processes of that block have terminated
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Nested Processes
 A guardian cannot terminate until all its dependents

have terminated
 A program cannot terminate until all its processes have

terminated
 A parent of a process may also be its guardian (e.g.

with languages that allow only static process structures)
 With dynamic nested process structures, the parent and

the guardian may or may not be identical
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Processes and Objects
 Active objects

– undertake spontaneous actions

 Reactive objects
– only perform actions when invoked

 Resources
– reactive but can control order of actions

 Passive
– reactive, but no control over order

 Protected resources
– passive resource controller

 Server
– active resource controller
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Process Representation
 Many program constructs to express concurrence

 Coroutines
 Fork and Join
 Cobegin
 Explicit Process Declaration
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Coroutine Flow Control
Coroutine A Coroutine B Coroutine C

1

resume B

2
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resume A
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8
resume C
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Note
 No return statement — only a resume statement
 The value of the data local to the coroutine persist

between successive calls
 The execution of a coroutine is supended as control

leaves it, only to carry on where it left off when it
resumed

Do coroutines express true parallelism?
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Fork and Join
 The fork specifies that a designated routine should start

executing concurrently with the invoker
 Join allows the invoker to wait for the completion of the

invoked routine
function F return is ...;
procedure P;

 ...
  C:= fork F;
  ...
 J:= join C;

...
end P;

 After the fork, P and F will be executing concurrently. At
the point of the join, P will wait until the F has finished
(if it has not already done so)

 Fork and join notation can be found in Mesa and
UNIX/POSIX
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UNIX Fork Example

for (I=0; I!=10; I++) {

  pid[I] = fork();

}

wait . . .

How many processes are created?
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Cobegin
 The cobegin (or parbegin or par) is a structured way of

denoting the concurrent execution of a collection of
statements:

cobegin
  S1;
  S2;
  .
  .
  Sn
coend

 S1, S2 etc,  execute concurrently
 The statement terminates when S1, S2 etc have terminated
 Each Si may be any statement allowed within the language
 Cobegin can be found in Edison and occam2.
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Explicit Process Declaration
 The structure of a program can be made clearer if

routines state whether they will be executed
concurrently

 Note that this does not say when they will execute

task body Process is
begin
  . . .

end;

 Languages that support explicit process declaration
may have explicit or implicit process/task creation
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Tasks and Ada
 The unit of concurrency in Ada is called a task
 Tasks must be explicitly declared, there is no fork/join

statement, cobegin/coend, etc.
 Tasks may be declared at any program level; they are

created implicitly upon entry to the scope of their
declaration or via the action of an allocator

 Tasks may communicate and synchronise via a variety
of mechanisms:
– rendezvous (a form of synchronised message passing),
– protected units (a form of monitor/conditional critical region),
– and shared variables
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Task Types and Task Objects
 A task can be declared as a type or as a single instance

(anonymous type)
 A task type consists of a specification and a body
 The specification contains

–  the type name
–  an optional discriminant part which defines the parameters that

can be passed to instances of the task type at their creation
time

– a visible part which defines any entries and representation
clauses

–  a private part which defines any hidden entries and
representation clauses
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Task States in Ada
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finalising

activating completed
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terminated

waiting child
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create child task

child task
activation complete

create child task

child task activation complete

exit a master block

dependent tasks

 terminate

waiting dependent
termination

exit a master block
dependent tasks

 terminate

dependent tasks terminate
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Concurrent Execution in POSIX
 Two main mechanisms:

– Coarse grained: fork
– Fine grained: pthreads.

 fork creates a new process
 pthreads are an extension to POSIX to allow threads to

be created
 All threads have attributes (e.g. stack size) that can be

manipulated
 Threads are created using an appropriate attribute

object
 Threads can communicate using POSIX IPC

mechanisms
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typedef ... pthread_t;  /* details not defined */
typedef ... pthread_attr_t;

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

int pthread_attr_setstacksize(..);

int pthread_attr_getstacksize(..);

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, 
void *(*start_routine)(void *), void *arg);

  /* create thread and call the start_routine with the argument */

int pthread_join(pthread_t thread, void **value_ptr);
int pthread_exit(void *value_ptr);
  /* terminate the calling thread and make the pointer value_ptr

     available to any joining thread */
 

Typical C POSIX interface
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Concurrency in Java
 Java has a predefined class java.lang.Thread

which provides the mechanism by which threads
(processes) are created.

 However to avoid all threads having to be child classes
of Thread, it also uses a standard interface

public interface Runnable {
  public abstract void run();
}

 Hence, any class which wishes to express concurrent
execution must implement this interface and provide the
run method
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public class Thread extends Object implements Runnable
{
  public Thread();
  public Thread(Runnable target);

  public void run();
  public native synchronized void start();
  // throws IllegalThreadStateException

  public static Thread currentThread();
  public final void join() throws InterruptedException;
  public final native boolean isAlive();
  public void destroy();
  // throws SecurityException;
  public final void stop();
  // throws SecurityException

…
}

Java Thread Class
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Robot Arm Example

public class UserInterface
{
  public int newSetting (int Dim) { ... }
  ...
}

public class Arm
{
  public void move(int dim, int pos) { ... }
}

UserInterface UI = new UserInterface();

Arm Robot = new Arm();
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Robot Arm Example
public class Control extends Thread
{
  private int dim;

  public Control(int Dimension) // constructor
  {
    super();
    dim = Dimension;
  }

  public void run()
  {
    int position = 0;
    int setting;

    while(true)
    {
       Robot.move(dim, position);
       setting = UI.newSetting(dim);
       position = position + setting;
    }
  }
}
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Robot Arm Example

final int xPlane = 0;  // final indicates a constant
final int yPlane = 1;
final int zPlane = 2;

Control C1 = new Control(xPlane);
Control C2 = new Control(yPlane);
Control C3 = new Control(zPlane);

C1.start();
C2.start();
C3.start();
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Alternative Robot Control
public class Control implements Runnable
{
  private int dim;

  public Control(int Dimension)  // constructor
  {
    dim = Dimension;
  }

  public void run()
  {
    int position = 0;
    int setting;

    while(true)
    {
       Robot.move(dim, position);
       setting = UI.newSetting(dim);
       position = position + setting;
    }
  }
}



Computadores II / 2004-2005

Alternative Robot Control
final int xPlane = 0;
final int yPlane = 1;
final int zPlane = 2;

Control C1 = new Control(xPlane); // no thread created yet
Control C2 = new Control(yPlane);
Control C3 = new Control(zPlane);

// constructors passed a Runnable interface and threads created
Thread X = new Thread(C1); 
Thread Y = new Thread(C2);
Thread Z = new Thread(C2);

X.start(); // thread started
Y.start();
Z.start();
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Java Thread States

deadblocked

non-existing

new

executable

Create thread object 

start

run method exits
stop, destroy
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Points about Java Threads
 Java allows dynamic thread creation
 Java allows arbitrary data to be passed as parameters

during construction
 Java allows thread hierarchies and thread groups to be

created but there is no master or guardian concept
 Java relies on garbage collection  to clean up objects

which can no longer be accessed
 The main program in Java terminates when all its user

threads have terminated (see later)
 One thread can wait for another thread (the target) to

terminate by issuing the join method call on the
target's thread object.

 The isAlive method allows a thread to determine if
another thread has terminated
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A Thread Terminates:
 when it completes execution of its run method either

normally or as the result of an unhandled exception
 via its stop method — the run method is stopped and the

thread class cleans up before terminating the thread
(releases locks and executes any finally clauses)
– the thread object is now eligible for garbage collection.
– if a Throwable object is passed as a parameter to stop, then this

exception is thrown in the target thread; this allows the run method
to exit more gracefully and cleanup after itself

– stop is inherently unsafe as it releases locks on objects and can
leave those objects in inconsistent states;  the method is now
deemed obsolete (deprecated) and should not be used

 via its destroy method — destroy terminates the thread
without any cleanup (not implemented in Sun’s JVM)



Computadores II / 2004-2005

Daemon Threads
 Java threads can be of two types:

– user threads
– daemon threads

 Daemon threads are those threads which provide
general services and typically never terminate

 The setDaemon method must be called before the
thread is started to mark it as daemon

 When all user threads have terminated, daemon
threads can also be terminated and the main program
terminates
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Thread Exceptions
 The IllegalThreadStateException is thrown when:

– the start method is called and the thread has already been started
–  the setDaemon method has been called and the thread has already

been started
 The SecurityException is thrown by the security

manager when:
– a stop or destroy method has been called on a thread for which

the caller does not have the correct permissions for the operation
requested

 The InterruptException is thrown if a thread which has
issued a join method is woken up by the thread being
interrupted rather than the target thread terminating
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T

S

P

A Simple Embedded System

 Overall objective is to keep the temperature and pressure
of some chemical process within well-defined limits
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ADC

ADC

DACScreen

Heater

Thermocouples Pressure 
Transducer

Pump/Valve
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Possible Software Architectures
 A single sequential program is used which ignores

the logical concurrency of T, P and S; no operating
system support is required

 T, P and S are written in a sequential programming
language (either as separate programs or distinct
procedures in the same program) and operating
system primitives are used for program/process
creation and interaction

 A single concurrent program is used which retains
the logical structure of T, P and S; no operating system
support is required although a run-time support system
is needed

Which one is the best approach?
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Disadvantages of Single Sequential

 Temperature and pressure readings must be taken at
the same rate (the use of counters and if statements
may improve the situation)

 But may still be necessary to split up the conversion
procedures, and interleave their actions so as to meet a
required balance of work

 While waiting to read a temperature no attention can be
given to pressure (and viceversa)

 Moreover, a system failure that results in, say, control
never returning from the temperature read, then in
addition to this problem no further calls to read the
pressure  would be taken
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Advantages of Concurrency
 Controller tasks execute concurrently and each

contains an indefinite loop within which the control cycle
is defined

 While one task is suspended waiting for a read the
other may be executing; if they are both suspended a
busy loop is not executed

 The logic of the application is reflected in the code; the
inherent parallelism of the domain is represented by
concurrently executing tasks in the program
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Disadvantages
 Both tasks send data to the screen, but the screen is a

resource that can only sensibly be accessed by one
process at a time

 A third entity is required. This has transposed the
problem from that of concurrent access to a non-
concurrent resource to one of resource control

 It is necessary for controller tasks to pass data to the
screen resource

 The screen must ensure mutual exclusion
 The whole approach requires a run-time support system
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OS vs Language Concurrency
 Should concurrency be in a language or in the OS?
 Arguments for concurrency in the languages:

– It leads to more readable and maintainable programs
– There are many different types of  OSs;  the language

approach makes the program more portable
– An embedded computer may not have any resident OS

 Arguments against concurrency in a language:
– It is easier to compose programs from different languages if

they all use the same OS model
– It may be difficult to implement a language's model of

concurrency efficiently on top of an OS’s model
– OS standards (POSIX, W32) are available

 The Ada/Java philosophy is that the advantages
outweigh the disadvantages
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Summary
 The application domains of most real-time systems are

inherently parallel
 The inclusion of the notion of process within a real-time

programming language makes an enormous difference
to the expressive power and ease of use of the
language

 Without concurrency the software must be constructed
as a single control loop

 The structure of this loop cannot retain the logical
distinction between systems components. It is
particularly difficult to give process-oriented timing and
reliability requirements without the notion of a process
being visible in the code
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Summary Continued
 The use of a concurrent programming language is not

without its costs. In particular, it becomes necessary to
use a run-time support system to manage the
execution of the system processes

 The behaviour of a process is best described in terms
of process states

• non-existing
• created
• initialized
• executable
• waiting dependent termination
• waiting child initialization
• terminated


