
Computadores II / 2004-2005

Synchronization and
Communication

 Making processes/threads work together

Comptadores II / 2004-2005

Objectives
 To understand the requirements for communication and

synchronisation based on shared variables
 To briefly review semaphores, monitors and conditional

critical regions
 To understand various alternatives like POSIX

mutexes, Java synchronized methods or Ada 95
protected objects

Comptadores II / 2004-2005

Process Cooperation
 The correct behaviour of a concurrent program

depends on synchronisation and communication
between its processes

 Synchronisation: the satisfaction of constraints on the
interleaving of the actions of processes (e.g. an action
by one process only occurring after an action by
another)

 Communication: the passing of information from one
process to another
– Concepts are linked since communication requires

synchronisation, and synchronisation can be considered as
contentless communication.

– Data communication is usually based upon either shared
variables or message passing.

Comptadores II / 2004-2005

Shared Variable Communication

Process A
Process B

Comptadores II / 2004-2005

Shared Variable Communication
 Examples: busy waiting, semaphores and monitors
 Unrestricted use of shared variables is unreliable and

unsafe due to multiple update problems
 Consider two processes updating a shared variable, X,

with the assignment: X:= X+1
– load the value of X into some register
– increment the value in the register by 1 and
– store the value in the register back to X

 As the three operations are not indivisible, two
processes simultaneously updating the variable could
follow an interleaving that would produce an incorrect
result

Shared Resource Communication

task body Helicopter is

 Next: Coordinates;

begin

 loop

 Compute_New_Cordinates(Next);

 Shared_Cordinates := Next;

 end loop

end;

task body Police_Car is

begin

 loop

 Plot(Shared_Cordinates);

 end loop;

end;

type Coordinates is

 record

 X : Integer;

 Y : Integer;

 end record;

Shared_Cordinate: Coordinates;

 Shared_Cordinates := Next;

Plot(Shared_Cordinates);

Comptadores II / 2004-2005

1,1

2,2

3,3

4,4

5,5

6,6

...

Villain's Escape

Route

(seen by helicopter)

Police Car’s

Pursuit Route

X = 0

Y = 0

X = 1

Y = 0

X = 1

Y = 1

11
11

22
22

X = 2

Y = 1

X = 2

Y = 2

X = 3

Y = 2

X = 3

Y = 3

3

X = 4

Y = 3

3
33

4

X = 4

Y = 4

4

X = 5

Y = 4
44

5
54

Villain
Escapes!

1,1

2.2

3,3

4,4

4,5

Shared Resource Communication

Comptadores II / 2004-2005

Avoiding Interference
 The parts of a process that access shared variables

must be executed indivisibly with respect to each
other

 These parts are called critical sections
 The required protection is called mutual exclusion

Comptadores II / 2004-2005

Mutual Exclusion
 A sequence of statements that must appear to be

executed indivisibly is called a critical section
 The synchronisation required to protect a critical section

is known as mutual exclusion
 Atomicity is assumed to be present at the memory

level. If one process is executing X:= 5, simultaneously
with another executing X:= 6, the result will be either 5
or 6 (not some other value)

 If two processes are updating a structured object, this
atomicity will only apply at the single word element level

Comptadores II / 2004-2005

Condition Synchronisation
 Condition synchronisation is needed when a process

wishes to perform an operation that can only sensibly,
or safely, be performed if another process has itself
taken some action or is in some defined state

 E.g. a bounded buffer has 2 condition synchronisation:
– the producer processes must not attempt to deposit data onto

the buffer if the buffer is full
– the consumer processes cannot be allowed to extract objects

from the buffer if the buffer is empty

head tail

Is mutual
exclusion
necessary?

Comptadores II / 2004-2005

Busy Waiting
 One way to implement synchronisation is to have

processes set and check shared variables that are
acting as flags (spinlocks)

 This approach works well for condition synchronisation
but no simple method for mutual exclusion exists

 Some possibilities
– One flag (fails)
– Two flags (fails)
– Peterson’s algoritm

Comptadores II / 2004-2005

Problems with busy waiting
 Busy wait algorithms are in general inefficient; they

involve processes using up processing cycles when
they cannot perform useful work

 Even on a multiprocessor system they can give rise to
excessive traffic on the memory bus or network (if
distributed)

 If not properly done:
– Can fail to provide mutual exclusion
– Can produce livelocks

Comptadores II / 2004-2005

Simple algorithm
process P1

 loop

 flag1 = up;

 while flag2 = up do

 null

 end;

 <critical section>

 Flag1:= down

 <non-critical section>

 end

end P1;

Comptadores II / 2004-2005

Peterson’s algorithm
process P1

 loop

 flag1:=up;

 turn:=2;

 while (flag2 = up and turn = 2) do

 null

 end;

 <critical section>

 Flag1:=down

 <non-critical section>

 end

end P1

Comptadores II / 2004-2005

Semaphores
 A semaphore is a non-negative integer variable that

apart from initialization can only be acted upon by two
procedures P (or WAIT) and V (or SIGNAL)

 WAIT(S) If the value of S > 0 then decrement its
value by one; otherwise delay the process until S > 0
(and then decrement its value).

 SIGNAL(S) Increment the value of S by one.
 WAIT and SIGNAL are atomic (indivisible). Two

processes both executing WAIT operations on the
same semaphore cannot interfere with each other and
cannot fail during the execution of a semaphore
operation

Comptadores II / 2004-2005

process P1;
 (* waiting process *)

 statement X;

 wait (consyn)
 statement Y;

end P1;

process P2;
 (* signalling proc *)

 statement A;

 signal (consyn)
 statement B;

end P2;

var consyn : semaphore (* init 0 *)

In what order will the statements execute?

Condition synchronisation

Comptadores II / 2004-2005

Mutual Exclusion

process P2;
 statement A;
 wait (mutex);
 statement B;
 signal (mutex);
 statement C;
end P2;

process P1;
 statement X
 wait (mutex);
 statement Y
 signal (mutex);
 statement Z
end P1;

(* mutual exclusion *)
var mutex : semaphore; (* initially 1 *)

In what order will the statements execute?

Comptadores II / 2004-2005

Process States

Created

Non-existingNon-existing

Initializing

Executable

Terminated

Waiting Child
Initialization

Waiting Dependent
Termination

Suspended

Comptadores II / 2004-2005

type Sem is ...;
X : Sem := 1; Y : Sem := 1;

task B;
task body B is
begin

...

Wait(Y);

Wait(X);

...

end B;

task A;
task body A is
begin

...

Wait(X);

Wait(Y);

...

end A;

Deadlock
 Two processes are deadlocked if each is holding a

resource while waiting for a resource held by the other

Comptadores II / 2004-2005

Livelock
 Two processes are livelocked if each is executing but

neither is able to make progress.
type Flag is (Up, Down);
Flag1 : Flag := Up;

task B;
task body B is
begin
 ...

 while Flag1 = Up loop
 null;
 end loop;
 ...

end A;

task A;
task body A is
begin
 ...

 while Flag1 = Up loop
 null;
 end loop;
 ...

end A;

Comptadores II / 2004-2005

Starvation
 Indefinite postponement (also called starvation or

lockout) happens when a set of processes does not
have livelocks nor deadlocks but there are processes
that never gain access to some resources (typically due
to scarcity and priority policies)

 This is not a very hard problem (adding more resources
solves the problem)

Comptadores II / 2004-2005

Liveness
 A system is said to have the liveness property if it does

not have deadlocks, livelocks nor lockouts
 In a system that possess liveness, any process that

wants to perform some action will eventually perform it
 In particular, access to any critical section is

guaranteed in finite time

Comptadores II / 2004-2005

Binary and quantity semaphores
 A general semaphore is a non-negative integer; its

value can rise to any supported positive number
 A binary semaphore only takes the value 0 and 1; the

signalling of a semaphore which has the value 1 has no
effect - the semaphore retains the value 1

 A general semaphore can be implemented by two
binary semaphores and an integer. Try it!

 With a quantity semaphore the amount to be
decremented by WAIT (and incremented by SIGNAL) is
given as a parameter; e.g. WAIT (S, i)

Comptadores II / 2004-2005

Criticisms of semaphores
 Semaphore are an elegant low-level synchronisation

primitive, however, their use is error-prone
 If a semaphore is omitted or misplaced, the entire

program is in way to collapse. Mutual exclusion may not
be assured and deadlocks may appear just when the
software is dealing with a rare but critical event

 A more structured synchronisation primitive is required
 No high-level concurrent programming language relies

entirely on semaphores; they are important historically
but are arguably not adequate for the real-time domain

Comptadores II / 2004-2005

Monitors
 A more sophisticated coordination structure are

monitors
 Monitors provide encapsulation, and efficient condition

synchronisation by condition variables
 The critical sections are written as procedures and are

encapsulated together into a single module
 All variables that must be accessed under mutual

exclusion are hidden inside the module
 All procedure calls into the module are guaranteed to

be mutually exclusive
 Only the operations are visible outside the monitor

Comptadores II / 2004-2005

POSIX Semaphores and Mutexes

 Provide the equivalent of a semaphores and monitors for
communication and synchronisation between
processes/threads

 Mutexes and condition variables have associated attribute
objects

 Example attributes:
– allow sharing of mutexes and condition variables between processes
– set/get priority ceiling
– set/get the clock used for timeouts

typedef ... pthread_mutex_t;

typedef ... pthread_mutexattr_t;

typedef ... pthread_cond_t;

typedef ... pthread_condattr_t;

int pthread_mutex_init(pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);

 /* initialises a mutex with certain attributes */

int pthread_mutex_destroy(pthread_mutex_t *mutex);
 /* destroys a mutex */

 /* undefined behaviour if the mutex is locked */

int pthread_cond_init(pthread_cond_t *cond,
 const pthread_condattr_t *attr);

 /* initialises a condition variable with attributes */

int pthread_cond_destroy(pthread_cond_t *cond);
 /* destroys a condition variable */

 /* undefined, if threads are waiting on the variable */

int pthread_mutex_lock(pthread_mutex_t *mutex);
 /* lock the mutex; if locked already suspend calling thread */

 /* the owner of the mutex is the thread which locked it */

int pthread_mutex_trylock(pthread_mutex_t *mutex);
 /* as lock but gives an error if mutex is already locked */

int pthread_mutex_timedlock(pthread_mutex_t *mutex,
 const struct timespec *abstime);

 /* as lock but gives an error if mutex cannot be obtained */

 /* by the timeout */

int pthread_mutex_unlock(pthread_mutex_t *mutex);
 /* unlocks the mutex if called by the owning thread */

 /* undefined behaviour if calling thread is not the owner */

 /* undefined behaviour if the mutex is not locked } */

 /* when successful, a blocked thread is released */

int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);

 /* called by thread which owns a locked mutex */

 /* undefined behaviour if the mutex is not locked */

 /* atomically blocks the caller on the cond variable and */

 /* releases the lock on mutex */

 /* a successful return indicates the mutex has been locked */

int pthread_cond_timedwait(pthread_cond_t *cond,
 pthread_mutex_t *mutex, const struct timespec *abstime);

 /* the same as pthread_cond_wait, except that a error is */

 /* returned if the timeout expires */

int pthread_cond_signal(pthread_cond_t *cond);
 /* unblocks at least one blocked thread */
 /* no effect if no threads are blocked */

int pthread_cond_broadcast(pthread_cond_t *cond);
 /* unblocks all blocked threads */
 /* no effect if no threads are blocked */

 /*all unblocked threads automatically contend for */

 /* the associated mutex */

All functions return 0 if successful
(as usual in C/POSIX)

Comptadores II / 2004-2005

Criticisms of Monitors
 The monitor gives a structured and elegant solution to

mutual exclusion problems such as the bounded buffer
 It does not, however, deal well with condition

synchronization — requiring low-level condition
variables

 All the criticisms surrounding the use of semaphores
apply equally to condition variables

Comptadores II / 2004-2005

Ada Protected Objects
 Mechanism for monitor implementation in Ada
 Data and operations are encapsulated
 Operations have automatic mutual exclusion
 Guards can be placed on operations for condition

synchronization

Comptadores II / 2004-2005

Synchronized Methods ad Blocks
 Java provides a mechanism by which monitors can be

implemented in the context of classes and objects
 There is a lock associated with each object which

cannot be accessed directly by the application

 There are two mechanisms to use the lock by means of
the word synchronized :
– as method modifier
– in block synchronization

 Object
Lock

Comptadores II / 2004-2005

Synchronized methods
 When a method is labeled with the synchronized

modifier, access to the method can only proceed once
the lock associated with the object has been obtained

 Hence synchronized methods have mutually exclusive
access to the data encapsulated by the object, if that
data is only accessed by other synchronized methods

 Non-synchronized methods do not require the lock and,
therefore, can be called at any time

Comptadores II / 2004-2005

Example
public class SharedInteger
{
 private int theData;

 public SharedInteger(int initialValue)
 { theData = initialValue;}

 public synchronized int read()
 { return theData; };

 public synchronized void write(int newValue)
 { theData = newValue; };

 public synchronized void incrementBy(int by)
 { theData = theData + by };
}

SharedInteger myData = new SharedInteger(42);

Comptadores II / 2004-2005

Block Synchronization
 Provides the second mechanism for synchronization
 Any block can be labeled as synchronized

syncronyzed(HeliOne) {
 motor.start();

radio.start();
}

 The synchronized keyword takes as a parameter an
object whose lock it needs to obtain before it can
continue

Comptadores II / 2004-2005

Identity of mechanisms
 Hence synchronized methods are effectively

implementable as:

 public int read()

 {

 synchronized(this) {

 return theData;

 }

 }

 Where this is the Java mechanism for obtaining the
current object

Comptadores II / 2004-2005

Warning
 Used in its full generality, the synchronized block can

undermine one of the advantages of monitor-like
mechanisms, that of encapsulating synchronization
constraints associate with an object into a single place
in the program

 This is because it is not possible to understand the
synchronization associated with a particular object by
just looking at the object itself when other objects can
name that object in a synchronized statement.

 However with careful use, this facility augments the
basic model and allows more expressive
synchronization constraints to be programmed

Comptadores II / 2004-2005

Waiting and Notifying
 To obtain conditional synchronization requires the methods

provided in the predefined object class:

public void wait() throws InterruptedException;

 // also throws IllegalMonitorStateException

public void notify();

 // throws IllegalMonitorStateException

public void notifyAll();

 // throws IllegalMonitorStateException

 These methods should be used only from within methods
which hold the object lock

 If called without the lock, the exception IllegalMonitor-
StateException is thrown

Comptadores II / 2004-2005

Waiting and Notifying
 The wait method always blocks the calling thread and

releases the lock associated with the object
 The notify method wakes up one waiting thread; the

one woken is not defined by the Java language
 Notify does not release the lock; hence the woken

thread must wait until it can obtain the lock before
proceeding

 To wake up all waiting threads requires use of the
notifyAll method

 If no thread is waiting, then notify and notifyAll
have no effect

Comptadores II / 2004-2005

Thread Interruption
 A waiting thread can also be awoken if it is interrupted

by another thread
 In this case the InterruptedException is thrown

Comptadores II / 2004-2005

Summary
 critical section — code that must be executed under

mutual exclusion
 producer-consumer system — two or more processes

exchanging data via a finite buffer
 busy waiting — a process continually checking a

condition to see if it is now able to proceed
 livelock — an error condition in which one or more

processes are prohibited from progressing whilst using
up processing cycles

 deadlock — a collection of suspended processes that
cannot proceed

 starvation — a process being unable to proceed as
resources are not made available

Comptadores II / 2004-2005

Summary
 semaphore — a non-negative integer that can only be

acted upon by WAIT and SIGNAL atomic procedures
 A more structured primitive are monitors
 Suspension in a monitor is achieved using condition

variable
 POSIX mutexes and condition variables give monitors

with a procedural interface
 Ada’s protected objects give structured mutual

exclusion and high-level synchronization via barriers
 Java’s synchronized methods provide monitors within

an object-oriented framework

