Synchronization and
Communication

Making processes/threads work together

Computadores |l / 2004-2005

Objectives

m To understand the requirements for communication and
synchronisation based on shared variables

m To briefly review semaphores, monitors and conditional
critical regions

m To understand various alternatives like POSIX
mutexes, Java synchronized methods or Ada 95
protected objects

Comptadores Il / 2004-2005

Process Cooperation

m The correct behaviour of a concurrent program
depends on synchronisation and communication
between its processes

m Synchronisation: the satisfaction of constraints on the
interleaving of the actions of processes (e.g. an action
by one process only occurring after an action by
another)

m Communication: the passing of information from one
process to another

— Concepts are linked since communication requires
synchronisation, and synchronisation can be considered as
contentless communication.

— Data communication is usually based upon either shared
variables or message passing.

Comptadores Il / 2004-2005

Shared Variable Communication

{ Process A M Process B J

~—

Shared Variable Communication

m Examples: busy waiting, semaphores and monitors

m Unrestricted use of shared variables is unreliable and
unsafe due to multiple update problems

m Consider two processes updating a shared variable, X,
with the assignment: X:= X+1
— load the value of X into some register
— increment the value in the register by 1 and
— store the value in the register back to X

m As the three operations are not indivisible, two
processes simultaneously updating the variable could
follow an interleaving that would produce an incorrect

result

Comptadores Il / 2004-2005

Shared Resource Communication

type Coordinates is
record
X : Integer;
Y : Integer;

end record;

Shared Cordinate: Coordinates;

task body Helicopter is

Next: Coordinates;

begin
loop
Compute New Cordinates (Next);
Shared Cordinates := Next;
end loop

end;

task body Police Car is
begin

loop
Plot (Shared Cordinates);

end loop;

end;

Shared Resource Communication

X=35
Y =4
4
5
1,1
2,2 1,1
3,3 2.2

3,3

: Villain 3

Villain's Escape Police Car’s

Route E S C ap e S ! Pursuit Route

(seen by helicopter)

Comptadores Il / 2004-2005

Avoiding Interference

m The parts of a process that access shared variables
must be executed indivisibly with respect to each
other

m These parts are called critical sections
m The required protection is called mutual exclusion

Comptadores Il / 2004-2005

Mutual Exclusion

m A sequence of statements that must appear to be
executed indivisibly is called a critical section

m The synchronisation required to protect a critical section
IS kKnown as mutual exclusion

m Atomicity is assumed to be present at the memory
level. If one process is executing X:= 5, simultaneously
with another executing X:= 6, the result will be either 5
or 6 (not some other value)

m |f two processes are updating a structured object, this
atomicity will only apply at the single word element level

Comptadores Il / 2004-2005

Condition Synchronisation

m Condition synchronisation is needed when a process
wishes to perform an operation that can only sensibly,
or safely, be performed if another process has itself
taken some action or is in some defined state

m E.g. a bounded buffer has 2 condition synchronisation:

— the producer processes must not attempt to deposit data onto
the buffer if the buffer is full

— the consumer processes cannot be allowed to extract objects
from the buffer if the buffer is empty

Is mutual
T T exclusion

necessary?

head tail

Comptadores Il / 2004-2005

Busy Waiting

m One way to implement synchronisation is to have
processes set and check shared variables that are
acting as flags (spinlocks)

m This approach works well for condition synchronisation
but no simple method for mutual exclusion exists

m Some possibilities
— One flag (fails)
— Two flags (fails)
— Peterson’s algoritm

Comptadores Il / 2004-2005

Problems with busy waiting

m Busy wait algorithms are in general inefficient; they
Involve processes using up processing cycles when
they cannot perform useful work

m Even on a multiprocessor system they can give rise to
excessive traffic on the memory bus or network (if
distributed)

m If not properly done:
— Can fail to provide mutual exclusion
— Can produce livelocks

Comptadores Il / 2004-2005

Simple algorithm

process Pl

loop
flagl = up;
while flag2 = up do
null
end;

<critical section>
Flagl:= down
<non-critical section>
end
end P1;

Comptadores Il / 2004-2005

Peterson’s algorithm

process Pl

loop
flagl:=up;
turn:=2;

while (flag2 = up and turn = 2) do
null
end;
<critical section>
Flagl:=down
<non-critical section>
end

end Pl

Comptadores Il / 2004-2005

Semaphores

m A semaphore is a non-negative integer variable that
apart from initialization can only be acted upon by two
procedures P (or WAIT) and V (or SIGNAL)

m WAIT(S) Ifthe value of S > 0 then decrement its
value by one; otherwise delay the process until S > 0
(and then decrement its value).

m SIGNAL(S) Increment the value of S by one.

m WAIT and SIGNAL are atomic (indivisible). Two
processes both executing WAIT operations on the
same semaphore cannot interfere with each other and
cannot fail during the execution of a semaphore
operation

Comptadores Il / 2004-2005

Condition synchronisation

var consyn : semaphore (* init 0 *)
process Pl; process P2;
(* waliting process *) (* signalling proc ¥*)
statement X; statement A;
wait (consyn) signal (consyn)
statement Y; statement B;
end P1; end P2;

In what order will the statements execute?

Comptadores Il / 2004-2005

Mutual Exclusion

var mutex :

(* mutual exclusion *)

semaphore;

(* initially 1 *)

process Pl;
statement X
wait (mutex);
statement Y
signal (mutex);
statement 7%
end P1;

process P2;
statement A;
wait (mutex);
statement B;
signal (mutex);
statement C;
end P2;

In what order will the statements execute?

Comptadores Il / 2004-2005

Process States

Initialization

[Non—existing} [Non—existing}
i A
[Created }

N
Initializing }[Terminated]

I !

[Waiting Chﬂﬂ<

Comptadores Il / 2004-2005

P[Executable Waiting Dependent]

Termination

Suspended J

Deadlock

m Two processes are deadlocked if each is holding a
resource while waiting for a resource held by the other

type Sem is ...;

X : Sem := 1, Y : Sem := 1;
task A; task B;
task body A is task body B is
begin begin
Wait (X) ; Wait (Y) ;
Wait (Y) ; Wait (X) ;
end A; end B;

Comptadores Il / 2004-2005

Livelock

m Two processes are livelocked if each is executing but
neither is able to make progress.

type Flag is (Up, Down);

Flagl : Flag := Up;

task A; task B;
task body A is task body B is
begin begin

while Flagl = Up loop while Flagl = Up loop

null; null;

end loop; end loop;

end A; end A;

Comptadores Il / 2004-2005

Starvation

m Indefinite postponement (also called starvation or
lockout) happens when a set of processes does not
have livelocks nor deadlocks but there are processes
that never gain access to some resources (typically due
to scarcity and priority policies)

m This is not a very hard problem (adding more resources
solves the problem)

Comptadores Il / 2004-2005

Liveness

m A system is said to have the liveness property if it does
not have deadlocks, livelocks nor lockouts

m |In a system that possess liveness, any process that
wants to perform some action will eventually perform it

m [n particular, access to any critical section is
guaranteed in finite time

Comptadores Il / 2004-2005

Binary and quantity semaphores

m A general semaphore is a non-negative integer; its
value can rise to any supported positive number

m A binary semaphore only takes the value 0 and 1; the
signalling of a semaphore which has the value 1 has no
effect - the semaphore retains the value 1

m A general semaphore can be implemented by two
binary semaphores and an integer. Try it!

m With a quantity semaphore the amount to be
decremented by WAIT (and incremented by SIGNAL) is
given as a parameter; e.g. WAIT (S, i)

Comptadores Il / 2004-2005

Criticisms of semaphores

m Semaphore are an elegant low-level synchronisation
primitive, however, their use is error-prone

m |f a semaphore is omitted or misplaced, the entire
program is in way to collapse. Mutual exclusion may not
be assured and deadlocks may appear just when the
software is dealing with a rare but critical event

m A more structured synchronisation primitive is required

m No high-level concurrent programming language relies
entirely on semaphores; they are important historically
but are arguably not adequate for the real-time domain

Comptadores Il / 2004-2005

Monitors

A more sophisticated coordination structure are
monitors

Monitors provide encapsulation, and efficient condition
synchronisation by condition variables

The critical sections are written as procedures and are
encapsulated together into a single module

All variables that must be accessed under mutual
exclusion are hidden inside the module

All procedure calls into the module are guaranteed to
be mutually exclusive

Only the operations are visible outside the monitor

Comptadores Il / 2004-2005

POSIX Semaphores and Mutexes

m Provide the equivalent of a semaphores and monitors for
communication and synchronisation between
processes/threads

m Mutexes and condition variables have associated attribute

objects

m Example attributes:
— allow sharing of mutexes and condition variables between processes

— set/get priority ceiling

— set/get the clock used for timeouts

Comptadores Il / 2004-2005

typedef ...
typedef ...
typedef ...
typedef ...

pthread mutex t;
pthread mutexattr t;
pthread cond t;
pthread condattr t;

int pthread mutex init (pthread mutex t *mutex,
const pthread mutexattr t *attr);

/* initialises a mutex with certain attributes */

int pthread mutex destroy (pthread mutex t *mutex);
/* destroys a mutex */

/* undefined Dbehaviour i1f the mutex is locked */

int pthread cond init(pthread cond t *cond,
const pthread condattr t *attr);

/* initialises a condition wvariable with attributes */

int pthread cond destroy (pthread cond t *cond);
/* destroys a condition wvariable */

/* undefined, if threads are waiting on the wvariable */

int pthread mutex lock (pthread mutex t *mutex);
/* lock the mutex; if locked already suspend calling thread */
/* the owner of the mutex is the thread which locked it */

int pthread mutex trylock (pthread mutex t *mutex);
/* as lock but gives an error if mutex is already locked */

int pthread mutex timedlock (pthread mutex t *mutex,
const struct timespec *abstime);
/* as lock but gives an error if mutex cannot be obtained */
/* by the timeout */

int pthread mutex unlock (pthread mutex t *mutex);
/* unlocks the mutex if called by the owning thread */
/* undefined behaviour if calling thread is not the owner */
/* undefined behaviour if the mutex is not locked } */

/* when successful, a blocked thread i1s released */

int pthread cond wait (pthread cond t *cond,

/*
/*
/*
/*
/*

pthread mutex t *mutex);
called by thread which owns a locked mutex */
undefined behaviour if the mutex is not locked */
atomically blocks the caller on the cond variable and */
releases the lock on mutex */

a successful return indicates the mutex has been locked */

int pthread cond timedwait (pthread cond t *cond,

/*

pthread mutex t *mutex, const struct timespec *abstime);

the same as pthread cond wait, except that a error is */

/* returned 1f the timeout expires */

int pthread cond signal (pthread cond t *cond);
/* unblocks at least one blocked thread */

/* no effect i1f no threads are blocked */

int pthread cond broadcast (pthread cond t *cond);
/* unblocks all blocked threads */

/* no effect 1f no threads are blocked */

/*all unblocked threads automatically contend for */

/* the associated mutex */

All functions return 0 if successful
(as usual 1n C/POSIX)

Criticisms of Monitors

m The monitor gives a structured and elegant solution to
mutual exclusion problems such as the bounded buffer

m It does not, however, deal well with condition
synchronization — requiring low-level condition
variables

m All the criticisms surrounding the use of semaphores
apply equally to condition variables

Comptadores Il / 2004-2005

Ada Protected Objects

Mechanism for monitor implementation in Ada
Data and operations are encapsulated
Operations have automatic mutual exclusion

Guards can be placed on operations for condition
synchronization

Comptadores Il / 2004-2005

Synchronized Methods ad Blocks

m Java provides a mechanism by which monitors can be
implemented in the context of classes and objects

m There is a lock associated with each object which
cannot be accessed directly by the application

m There are two mechanisms to use the lock by means of
the word synchronized:

— as method modifier
— in block synchronization

Lock

Object

Comptadores Il / 2004-2005

Synchronized methods

m When a method is labeled with the synchronized

modifier, access to the method can only proceed once
the lock associated with the object has been obtained

m Hence synchronized methods have mutually exclusive
access to the data encapsulated by the object, if that
data is only accessed by other synchronized methods

m Non-synchronized methods do not require the lock and,
therefore, can be called at any time

Comptadores Il / 2004-2005

Example

public class SharedInteger

{

}

private int theData;

public SharedInteger (int initialValue)
{ theData = initialValue;}

public synchronized int read()
{ return theData; };

public synchronized void write (int newValue)
{ theData = newValue; };

public synchronized void incrementBy (int by)
{ theData = theData + by };

SharedInteger myData = new SharedInteger (42);

Comptadores Il / 2004-2005

Block Synchronization

m Provides the second mechanism for synchronization
m Any block can be labeled as synchronized

syncronyzed (HeliOne) {
motor.start () ;

radio.start () ;

m The synchronized keyword takes as a parameter an
object whose lock it needs to obtain before it can
continue

Comptadores Il / 2004-2005

ldentity of mechanisms

m Hence synchronized methods are effectively
Implementable as:

public 1nt read()
{
synchronized (this) {

return theData;

m Where this is the Java mechanism for obtaining the
current object

Comptadores Il / 2004-2005

Warning

m Used in its full generality, the synchronized block can
undermine one of the advantages of monitor-like
mechanisms, that of encapsulating synchronization
constraints associate with an object into a single place
In the program

m This is because it is not possible to understand the
synchronization associated with a particular object by
just looking at the object itself when other objects can
name that object in a synchronized statement.

m However with careful use, this facility augments the
basic model and allows more expressive
synchronization constraints to be programmed

Comptadores Il / 2004-2005

Waiting and Notifying

m To obtain conditional synchronization requires the methods
provided in the predefined object class:

public void wait () throws InterruptedException;

// also throws IllegalMonitorStateException
public void notify ()

// throws IllegalMonitorStateException
public void notifyAll();

// throws IllegalMonitorStateException

m These methods should be used only from within methods
which hold the object lock

m If called without the lock, the exception 111egalMonitor-
StateException IS thrown

Comptadores Il / 2004-2005

Waiting and Notifying

m The wait method always blocks the calling thread and
releases the lock associated with the object

m The notify method wakes up one waiting thread; the
one woken is not defined by the Java language

m Notify does not release the lock; hence the woken

thread must wait until it can obtain the lock before
proceeding

m To wake up all waiting threads requires use of the
notifyAll method

m |f no thread is waiting, then notify and notifyAll
have no effect

Comptadores Il / 2004-2005

Thread Interruption

m A waiting thread can also be awoken if it is interrupted
by another thread

m In this case the InterruptedException is thrown

Comptadores Il / 2004-2005

Summary

m critical section — code that must be executed under
mutual exclusion

m producer-consumer system — two or more processes
exchanging data via a finite buffer

m busy waiting — a process continually checking a
condition to see if it is now able to proceed

m livelock — an error condition in which one or more
processes are prohibited from progressing whilst using
up processing cycles

m deadlock — a collection of suspended processes that
cannot proceed

m starvation — a process being unable to proceed as
resources are not made available

Comptadores Il / 2004-2005

Summary

m semaphore — a non-negative integer that can only be
acted upon by WAIT and SIGNAL atomic procedures

m A more structured primitive are monitors

m Suspension in a monitor is achieved using condition
variable

m POSIX mutexes and condition variables give monitors
with a procedural interface

m Ada’s protected objects give structured mutual
exclusion and high-level synchronization via barriers

m Java’s synchronized methods provide monitors within
an object-oriented framework

Comptadores Il / 2004-2005

