
Computadores II / 2004-2005

Synchronization and
Communication

 Making processes/threads work together

Comptadores II / 2004-2005

Objectives
 To understand the requirements for communication and

synchronisation based on shared variables
 To briefly review semaphores, monitors and conditional

critical regions
 To understand various alternatives like POSIX

mutexes, Java synchronized methods or Ada 95
protected objects

Comptadores II / 2004-2005

Process Cooperation
 The correct behaviour of a concurrent program

depends on synchronisation and communication
between its processes

 Synchronisation: the satisfaction of constraints on the
interleaving of the actions of processes (e.g. an action
by one process only occurring after an action by
another)

 Communication: the passing of information from one
process to another
– Concepts are linked since communication requires

synchronisation, and synchronisation can be considered as
contentless communication.

– Data communication is usually based upon either shared
variables or message passing.

Comptadores II / 2004-2005

Shared Variable Communication

Process A
Process B

Comptadores II / 2004-2005

Shared Variable Communication
 Examples: busy waiting, semaphores and monitors
 Unrestricted use of shared variables is unreliable and

unsafe due to multiple update problems
 Consider two processes updating a shared variable, X,

with the assignment: X:= X+1
– load the value of X into some register
– increment the value in the register by 1 and
– store the value in the register back to X

 As the three operations are not indivisible, two
processes simultaneously updating the variable could
follow an interleaving that would produce an incorrect
result

Shared Resource Communication

task body Helicopter is

 Next: Coordinates;

begin

 loop

 Compute_New_Cordinates(Next);

 Shared_Cordinates := Next;

 end loop

end;

task body Police_Car is

begin

 loop

 Plot(Shared_Cordinates);

 end loop;

end;

type Coordinates is

 record

 X : Integer;

 Y : Integer;

 end record;

Shared_Cordinate: Coordinates;

 Shared_Cordinates := Next;

Plot(Shared_Cordinates);

Comptadores II / 2004-2005

1,1

2,2

3,3

4,4

5,5

6,6

...

Villain's Escape

Route

(seen by helicopter)

Police Car’s

Pursuit Route

X = 0

Y = 0

X = 1

Y = 0

X = 1

Y = 1

11
11

22
22

X = 2

Y = 1

X = 2

Y = 2

X = 3

Y = 2

X = 3

Y = 3

3

X = 4

Y = 3

3
33

4

X = 4

Y = 4

4

X = 5

Y = 4
44

5
54

Villain
Escapes!

1,1

2.2

3,3

4,4

4,5

Shared Resource Communication

Comptadores II / 2004-2005

Avoiding Interference
 The parts of a process that access shared variables

must be executed indivisibly with respect to each
other

 These parts are called critical sections
 The required protection is called mutual exclusion

Comptadores II / 2004-2005

Mutual Exclusion
 A sequence of statements that must appear to be

executed indivisibly is called a critical section
 The synchronisation required to protect a critical section

is known as mutual exclusion
 Atomicity is assumed to be present at the memory

level. If one process is executing X:= 5, simultaneously
with another executing X:= 6, the result will be either 5
or 6 (not some other value)

 If two processes are updating a structured object, this
atomicity will only apply at the single word element level

Comptadores II / 2004-2005

Condition Synchronisation
 Condition synchronisation is needed when a process

wishes to perform an operation that can only sensibly,
or safely, be performed if another process has itself
taken some action or is in some defined state

 E.g. a bounded buffer has 2 condition synchronisation:
– the producer processes must not attempt to deposit data onto

the buffer if the buffer is full
– the consumer processes cannot be allowed to extract objects

from the buffer if the buffer is empty

head tail

Is mutual
exclusion
necessary?

Comptadores II / 2004-2005

Busy Waiting
 One way to implement synchronisation is to have

processes set and check shared variables that are
acting as flags (spinlocks)

 This approach works well for condition synchronisation
but no simple method for mutual exclusion exists

 Some possibilities
– One flag (fails)
– Two flags (fails)
– Peterson’s algoritm

Comptadores II / 2004-2005

Problems with busy waiting
 Busy wait algorithms are in general inefficient; they

involve processes using up processing cycles when
they cannot perform useful work

 Even on a multiprocessor system they can give rise to
excessive traffic on the memory bus or network (if
distributed)

 If not properly done:
– Can fail to provide mutual exclusion
– Can produce livelocks

Comptadores II / 2004-2005

Simple algorithm
process P1

 loop

 flag1 = up;

 while flag2 = up do

 null

 end;

 <critical section>

 Flag1:= down

 <non-critical section>

 end

end P1;

Comptadores II / 2004-2005

Peterson’s algorithm
process P1

 loop

 flag1:=up;

 turn:=2;

 while (flag2 = up and turn = 2) do

 null

 end;

 <critical section>

 Flag1:=down

 <non-critical section>

 end

end P1

Comptadores II / 2004-2005

Semaphores
 A semaphore is a non-negative integer variable that

apart from initialization can only be acted upon by two
procedures P (or WAIT) and V (or SIGNAL)

 WAIT(S) If the value of S > 0 then decrement its
value by one; otherwise delay the process until S > 0
(and then decrement its value).

 SIGNAL(S) Increment the value of S by one.
 WAIT and SIGNAL are atomic (indivisible). Two

processes both executing WAIT operations on the
same semaphore cannot interfere with each other and
cannot fail during the execution of a semaphore
operation

Comptadores II / 2004-2005

process P1;
 (* waiting process *)

 statement X;

 wait (consyn)
 statement Y;

end P1;

process P2;
 (* signalling proc *)

 statement A;

 signal (consyn)
 statement B;

end P2;

var consyn : semaphore (* init 0 *)

In what order will the statements execute?

Condition synchronisation

Comptadores II / 2004-2005

Mutual Exclusion

process P2;
 statement A;
 wait (mutex);
 statement B;
 signal (mutex);
 statement C;
end P2;

process P1;
 statement X
 wait (mutex);
 statement Y
 signal (mutex);
 statement Z
end P1;

(* mutual exclusion *)
var mutex : semaphore; (* initially 1 *)

In what order will the statements execute?

Comptadores II / 2004-2005

Process States

Created

Non-existingNon-existing

Initializing

Executable

Terminated

Waiting Child
Initialization

Waiting Dependent
Termination

Suspended

Comptadores II / 2004-2005

type Sem is ...;
X : Sem := 1; Y : Sem := 1;

task B;
task body B is
begin

...

Wait(Y);

Wait(X);

...

end B;

task A;
task body A is
begin

...

Wait(X);

Wait(Y);

...

end A;

Deadlock
 Two processes are deadlocked if each is holding a

resource while waiting for a resource held by the other

Comptadores II / 2004-2005

Livelock
 Two processes are livelocked if each is executing but

neither is able to make progress.
type Flag is (Up, Down);
Flag1 : Flag := Up;

task B;
task body B is
begin
 ...

 while Flag1 = Up loop
 null;
 end loop;
 ...

end A;

task A;
task body A is
begin
 ...

 while Flag1 = Up loop
 null;
 end loop;
 ...

end A;

Comptadores II / 2004-2005

Starvation
 Indefinite postponement (also called starvation or

lockout) happens when a set of processes does not
have livelocks nor deadlocks but there are processes
that never gain access to some resources (typically due
to scarcity and priority policies)

 This is not a very hard problem (adding more resources
solves the problem)

Comptadores II / 2004-2005

Liveness
 A system is said to have the liveness property if it does

not have deadlocks, livelocks nor lockouts
 In a system that possess liveness, any process that

wants to perform some action will eventually perform it
 In particular, access to any critical section is

guaranteed in finite time

Comptadores II / 2004-2005

Binary and quantity semaphores
 A general semaphore is a non-negative integer; its

value can rise to any supported positive number
 A binary semaphore only takes the value 0 and 1; the

signalling of a semaphore which has the value 1 has no
effect - the semaphore retains the value 1

 A general semaphore can be implemented by two
binary semaphores and an integer. Try it!

 With a quantity semaphore the amount to be
decremented by WAIT (and incremented by SIGNAL) is
given as a parameter; e.g. WAIT (S, i)

Comptadores II / 2004-2005

Criticisms of semaphores
 Semaphore are an elegant low-level synchronisation

primitive, however, their use is error-prone
 If a semaphore is omitted or misplaced, the entire

program is in way to collapse. Mutual exclusion may not
be assured and deadlocks may appear just when the
software is dealing with a rare but critical event

 A more structured synchronisation primitive is required
 No high-level concurrent programming language relies

entirely on semaphores; they are important historically
but are arguably not adequate for the real-time domain

Comptadores II / 2004-2005

Monitors
 A more sophisticated coordination structure are

monitors
 Monitors provide encapsulation, and efficient condition

synchronisation by condition variables
 The critical sections are written as procedures and are

encapsulated together into a single module
 All variables that must be accessed under mutual

exclusion are hidden inside the module
 All procedure calls into the module are guaranteed to

be mutually exclusive
 Only the operations are visible outside the monitor

Comptadores II / 2004-2005

POSIX Semaphores and Mutexes

 Provide the equivalent of a semaphores and monitors for
communication and synchronisation between
processes/threads

 Mutexes and condition variables have associated attribute
objects

 Example attributes:
– allow sharing of mutexes and condition variables between processes
– set/get priority ceiling
– set/get the clock used for timeouts

typedef ... pthread_mutex_t;

typedef ... pthread_mutexattr_t;

typedef ... pthread_cond_t;

typedef ... pthread_condattr_t;

int pthread_mutex_init(pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);

 /* initialises a mutex with certain attributes */

int pthread_mutex_destroy(pthread_mutex_t *mutex);
 /* destroys a mutex */

 /* undefined behaviour if the mutex is locked */

int pthread_cond_init(pthread_cond_t *cond,
 const pthread_condattr_t *attr);

 /* initialises a condition variable with attributes */

int pthread_cond_destroy(pthread_cond_t *cond);
 /* destroys a condition variable */

 /* undefined, if threads are waiting on the variable */

int pthread_mutex_lock(pthread_mutex_t *mutex);
 /* lock the mutex; if locked already suspend calling thread */

 /* the owner of the mutex is the thread which locked it */

int pthread_mutex_trylock(pthread_mutex_t *mutex);
 /* as lock but gives an error if mutex is already locked */

int pthread_mutex_timedlock(pthread_mutex_t *mutex,
 const struct timespec *abstime);

 /* as lock but gives an error if mutex cannot be obtained */

 /* by the timeout */

int pthread_mutex_unlock(pthread_mutex_t *mutex);
 /* unlocks the mutex if called by the owning thread */

 /* undefined behaviour if calling thread is not the owner */

 /* undefined behaviour if the mutex is not locked } */

 /* when successful, a blocked thread is released */

int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);

 /* called by thread which owns a locked mutex */

 /* undefined behaviour if the mutex is not locked */

 /* atomically blocks the caller on the cond variable and */

 /* releases the lock on mutex */

 /* a successful return indicates the mutex has been locked */

int pthread_cond_timedwait(pthread_cond_t *cond,
 pthread_mutex_t *mutex, const struct timespec *abstime);

 /* the same as pthread_cond_wait, except that a error is */

 /* returned if the timeout expires */

int pthread_cond_signal(pthread_cond_t *cond);
 /* unblocks at least one blocked thread */
 /* no effect if no threads are blocked */

int pthread_cond_broadcast(pthread_cond_t *cond);
 /* unblocks all blocked threads */
 /* no effect if no threads are blocked */

 /*all unblocked threads automatically contend for */

 /* the associated mutex */

All functions return 0 if successful
(as usual in C/POSIX)

Comptadores II / 2004-2005

Criticisms of Monitors
 The monitor gives a structured and elegant solution to

mutual exclusion problems such as the bounded buffer
 It does not, however, deal well with condition

synchronization — requiring low-level condition
variables

 All the criticisms surrounding the use of semaphores
apply equally to condition variables

Comptadores II / 2004-2005

Ada Protected Objects
 Mechanism for monitor implementation in Ada
 Data and operations are encapsulated
 Operations have automatic mutual exclusion
 Guards can be placed on operations for condition

synchronization

Comptadores II / 2004-2005

Synchronized Methods ad Blocks
 Java provides a mechanism by which monitors can be

implemented in the context of classes and objects
 There is a lock associated with each object which

cannot be accessed directly by the application

 There are two mechanisms to use the lock by means of
the word synchronized :
– as method modifier
– in block synchronization

 Object
Lock

Comptadores II / 2004-2005

Synchronized methods
 When a method is labeled with the synchronized

modifier, access to the method can only proceed once
the lock associated with the object has been obtained

 Hence synchronized methods have mutually exclusive
access to the data encapsulated by the object, if that
data is only accessed by other synchronized methods

 Non-synchronized methods do not require the lock and,
therefore, can be called at any time

Comptadores II / 2004-2005

Example
public class SharedInteger
{
 private int theData;

 public SharedInteger(int initialValue)
 { theData = initialValue;}

 public synchronized int read()
 { return theData; };

 public synchronized void write(int newValue)
 { theData = newValue; };

 public synchronized void incrementBy(int by)
 { theData = theData + by };
}

SharedInteger myData = new SharedInteger(42);

Comptadores II / 2004-2005

Block Synchronization
 Provides the second mechanism for synchronization
 Any block can be labeled as synchronized

syncronyzed(HeliOne) {
 motor.start();

radio.start();
}

 The synchronized keyword takes as a parameter an
object whose lock it needs to obtain before it can
continue

Comptadores II / 2004-2005

Identity of mechanisms
 Hence synchronized methods are effectively

implementable as:

 public int read()

 {

 synchronized(this) {

 return theData;

 }

 }

 Where this is the Java mechanism for obtaining the
current object

Comptadores II / 2004-2005

Warning
 Used in its full generality, the synchronized block can

undermine one of the advantages of monitor-like
mechanisms, that of encapsulating synchronization
constraints associate with an object into a single place
in the program

 This is because it is not possible to understand the
synchronization associated with a particular object by
just looking at the object itself when other objects can
name that object in a synchronized statement.

 However with careful use, this facility augments the
basic model and allows more expressive
synchronization constraints to be programmed

Comptadores II / 2004-2005

Waiting and Notifying
 To obtain conditional synchronization requires the methods

provided in the predefined object class:

public void wait() throws InterruptedException;

 // also throws IllegalMonitorStateException

public void notify();

 // throws IllegalMonitorStateException

public void notifyAll();

 // throws IllegalMonitorStateException

 These methods should be used only from within methods
which hold the object lock

 If called without the lock, the exception IllegalMonitor-
StateException is thrown

Comptadores II / 2004-2005

Waiting and Notifying
 The wait method always blocks the calling thread and

releases the lock associated with the object
 The notify method wakes up one waiting thread; the

one woken is not defined by the Java language
 Notify does not release the lock; hence the woken

thread must wait until it can obtain the lock before
proceeding

 To wake up all waiting threads requires use of the
notifyAll method

 If no thread is waiting, then notify and notifyAll
have no effect

Comptadores II / 2004-2005

Thread Interruption
 A waiting thread can also be awoken if it is interrupted

by another thread
 In this case the InterruptedException is thrown

Comptadores II / 2004-2005

Summary
 critical section — code that must be executed under

mutual exclusion
 producer-consumer system — two or more processes

exchanging data via a finite buffer
 busy waiting — a process continually checking a

condition to see if it is now able to proceed
 livelock — an error condition in which one or more

processes are prohibited from progressing whilst using
up processing cycles

 deadlock — a collection of suspended processes that
cannot proceed

 starvation — a process being unable to proceed as
resources are not made available

Comptadores II / 2004-2005

Summary
 semaphore — a non-negative integer that can only be

acted upon by WAIT and SIGNAL atomic procedures
 A more structured primitive are monitors
 Suspension in a monitor is achieved using condition

variable
 POSIX mutexes and condition variables give monitors

with a procedural interface
 Ada’s protected objects give structured mutual

exclusion and high-level synchronization via barriers
 Java’s synchronized methods provide monitors within

an object-oriented framework

