
Computadores II / 2004

Scheduling

Organising work to be done

Computadores II / 2004

Goal

 To understand the role that scheduling and
schedulability analysis plays in predicting that real-
time applications meet their deadlines

Computadores II / 2004

Topics
 Simple process model
 The cyclic executive approach
 Process-based scheduling
 Utilization-based schedulability tests
 Response time analysis for FPS and EDF
 Worst-case execution time

Computadores II / 2004

More Topics
 Sporadic and aperiodic processes
 Process systems with D < T
 Process interactions, blocking and priority ceiling

protocols
 An extendible process model
 Dynamic systems and on-line analysis
 Programming priority-based systems

Computadores II / 2004

Context for Scheduling
 A multitask application that must share resources (CPU

in particular)
 Need of specifying the order in which the tasks are

going to take control of the resource (be executed in the
case of the CPU)

 How to do it? Using a Scheduling Scheme

Computadores II / 2004

Scheduling
 In general, a scheduling scheme provides two

features:

– An algorithm for ordering the use of system resources
• Typically the CPU

– A means of predicting the worst-case behaviour of the
system when the scheduling algorithm is applied

• Typically the longest execution time

 The prediction can then be used to confirm the
temporal requirements of the application

Computadores II / 2004

Simple Process Model
1. The application consists of a fixed set of processes
2. All processes are periodic, with known periods
3. The processes are completely independent of

each other
4. All system's overheads, context-switching times

and so on are ignored (i.e, assumed to have zero
cost)

5. All processes have a deadline equal to their period
(that is, each process must complete before it is
next released)

6. All processes have a fixed worst-case execution
time

Computadores II / 2004

Standard Notation
B

C

D

I

J

N

P

R

T

U

a-z

Worst-case blocking time for the process
Worst-case execution time (WCET) of the process
Deadline of the process
The interference time of the process
Release jitter of the process
Number of processes in the system
Priority assigned to the process
Worst-case response time of the process
Minimum time between process releases (period)
The CPU utilization of each process (equal to C/T)
The names of the processes

Computadores II / 2004

Standard Notation

0 10 20 30 40 50 60 Time

Process a

Process b

Process c

T
C (WCET)

Computadores II / 2004

Cyclic Executives

The simple way

Computadores II / 2004

Cyclic Executives
 One common way of implementing hard real-time

systems is to use a cyclic executive
 Here the design is concurrent but the code is produced

as a collection of sequential procedures (i.e. no real
concurrence)

 Procedures are mapped onto a set of minor cycles that
constitute the complete schedule (or major cycle)

 Minor cycle dictates the minimum cycle time
 Major cycle dictates the maximum cycle time
 Has the advantage of being fully deterministic

Computadores II / 2004

Consider this Process Set

2100e

450d

550c

825b

1025a
CTProcess

Computadores II / 2004

Cyclic Executive

loop
 wait_for_interrupt;
 procedure_a; procedure_b; procedure_c;
 wait_for_interrupt;
 procedure_a; procedure_b; procedure_d; procedure_e;
 wait_for_interrupt;
 procedure_a; procedure_b; procedure_c;
 wait_for_interrupt;
 procedure_a; procedure_b; procedure_d;
end loop;

Computadores II / 2004

Time-line for Process Set

a b c
25ms Interrupt

a b d e a b c

2100e
450d
550c

825b
1025a
CTProcess

a b d
25ms Interrupt 25ms Interrupt 25ms Interrupt

25 ms Minor Cycle

100 ms Major Cycle

Timeline

Computadores II / 2004

Sample Cyclic Executive

loop
 wait_for_interrupt;
 read_sensor; filter_sensor; actuator;
 wait_for_interrupt;
 read_sensor; filter_sensor; display; readkeyboard;
 wait_for_interrupt;
 read_sensor; filter_sensor; actuator;
 wait_for_interrupt;
 read_sensor; filter_sensor; display;
end loop;

Computadores II / 2004

Properties
 No actual processes exist at run-time; each

minor cycle is just a sequence of procedure
calls

 The procedures share a common address
space and can thus pass data between
themselves. This data does not need to be
protected (using a monitor, for example)
because concurrent access is not possible

 All “process” periods must be a multiple of the
minor cycle time

Computadores II / 2004

Problems with Cycle Executives
 Difficulty of incorporating processes with long periods; the

major cycle time is the maximum period that can be
accommodated without secondary schedules

 Sporadic activities are difficult (impossible?) to incorporate
 The cyclic executive is difficult to construct and difficult to

maintain — it is a NP-hard problem
 Any “process” with a sizable computation time will need to

be split into a fixed number of fixed sized procedures (this
may cut across the structure of the code from a software
engineering perspective, and hence may be error-prone)

 More flexible scheduling methods are difficult to support

Computadores II / 2004

Process-Based Scheduling

Using real processes to organise work

Computadores II / 2004

Process-Based Scheduling
 Processes (threads or tasks) are the schedulable

entities
 There are many scheduling schemes with varying

properties

 Three main scheduling approaches
– Fixed-Priority Scheduling (FPS)
– Earliest Deadline First (EDF)
– Value-Based Scheduling (VBS)

Computadores II / 2004

Fixed-Priority Scheduling (FPS)
 This is the most widely used approach and is the main

focus of this lesson
 Each process has a fixed, static, priority which is

computed pre-run-time (at design time)
 The runnable processes are executed in the order

determined by their priority
 In real-time systems, the “priority” of a process is

derived from its temporal requirements, not its
importance to the correct functioning of the system or
its integrity

Computadores II / 2004

Earliest Deadline First (EDF)

 The runnable processes are executed in the order
determined by the absolute deadlines of the processes

 The next process to run being the one with the shortest
(nearest) deadline

 Although it is usual to know the relative deadlines of
each process (e.g. 25ms after release), the absolute
deadlines are computed at run time and hence the
scheme is described as dynamic

Computadores II / 2004

Value-Based Scheduling (VBS)
 If a system can become overloaded then the use of

simple static priorities or deadlines is not sufficient; a
more adaptive scheme is needed

 This often takes the form of assigning additional values
to each process and employing an on-line value-based
scheduling algorithm to decide which process to run
next

Computadores II / 2004

Preemption and Non-preemption
 With priority-based scheduling, a high-priority

process may be released during the execution of a
lower priority one

 Two different alternatives:
– In a preemptive scheme, there will be an immediate

switch to the higher-priority process
– In a non-preemptive scheme, the lower-priority process

will be allowed to complete before the other executes

Computadores II / 2004

Preemption and Non-preemption

0 10 20 30 40 50 60
Time

Process

a

b

c

70 80

5/20

10/40

20/80

Preemption Preemption

Computadores II / 2004

Preemption and Non-preemption
 Preemptive schemes enable higher-priority processes

to be more reactive, and hence they are preferred

 Alternative strategies allow a lower priority process to
continue to execute for a bounded time

 These schemes are known as deferred preemption or
cooperative dispatching

 Other scheduling policies such as EDF and VBS can
also take on a pre-emptive or non pre-emptive form

Computadores II / 2004

FPS and Rate Monotonic Priority

 Each process is assigned a (unique) priority based on
its period; the shorter the period, the higher the priority

 i.e., for two processes i and j,

 This assignment is optimal in the sense that if any
process set can be scheduled using pre-emptive fixed-
priority assignment scheme, then the given process set
can also be scheduled with a rate monotonic
assignment scheme

 Note, priority 1 is the lowest (least) priority

P jPiT jT i >!<

Computadores II / 2004

Example Priority Assignment

Maximum PriorityMinimum Period

 Process Period, T Priority, P
a 25 5
b 60 3
c 42 4
d 105 1
e 75 2

Computadores II / 2004

Schedulability Analysis

Determining whether a set of tasks can be
properly executed

Computadores II / 2004

Schedulability Analysis
 The analytical problem of determining the schedulability

of a set of tasks
 Multiple methods for multiple models of task sets

 We’re going to comment two:
– Utilisation-based analysis
– Response-Time Analysis

 Utilisation-based analysis: simpler but approximate
 Response-Time Analysis: better but complex

Computadores II / 2004

Utilisation-Based Analysis
 For D = T task sets only (Deadline = Period)
 A simple sufficient but not necessary schedulability test

exists

)12(/1

1

!"# $
=

N

N

i i

i
N

T

C
U

!

U " 0.693 as N#$

 N Max U
 1 100.0%
 2 82.8%
 3 78.0%
 4 75.7%
 5 74.3%
10 71.8%

Approaches 69.3% asymptotically

Computadores II / 2004

Process Period ComputationTime Priority Utilization
 T C P U
 a 50 12 1 0.24
 b 40 10 2 0.25
 c 30 10 3 0.33

Process Set A

 The combined utilization is 0.82 (or 82%)
 This is above the threshold for three processes (0.78)

and, hence, this process set fails the utilization test

Computadores II / 2004

Time-line for Process Set A

0 10 20 30 40 50 60
Time

Process

a

b

c

Process Release Time

Process Completion Time
Deadline Met
Process Completion Time
Deadline Missed

Executing

Preempted

Computadores II / 2004

Gantt Chart for Process Set A

c b a c b

0 10 20 30 40 50
Time

Computadores II / 2004

Process Period ComputationTime Priority Utilization
 T C P U

 a 80 32 1 0.400
 b 40 5 2 0.125
 c 16 4 3 0.250

Process Set B

 The combined utilization is 0.775
 This is below the threshold for three processes (0.78)

and, hence, this process set will meet all its deadlines

Computadores II / 2004

Process Period ComputationTime Priority Utilization
 T C P U

 a 80 40 1 0.50
 b 40 10 2 0.25
 c 20 5 3 0.25

Process Set C

 The combined utilization is 1.0
 This is above the threshold for three processes (0.78)

but the process set will meet all its deadlines

Remember that the utilisation criteria is sufficient but not necessary

Computadores II / 2004

Time-line for Process Set C

0 10 20 30 40 50 60

Time

Process

a

b

c

70 80

5/20

10/40

20/80

Preemption Preemption

Computadores II / 2004

The test is said to be sufficient but not necessary

Utilisation-based Tests
 Not exact
 Not general
 But it is O(N)

Computadores II / 2004

 There is also an utilisation test for EDF

 This is a simpler test
 EDF is superior to FPS because it can support higher

utilizations.

1
1

!"
=

N

i

i

i

T

C

Utilization-based Test for EDF

Computadores II / 2004

However, FPS is preferred
 FPS is easier to implement as priorities are static
 EDF is dynamic and requires a more complex run-time

system which will have higher overhead
 It is easier to incorporate processes without deadlines

into FPS (just giving a priority); giving a process an
arbitrary deadline is more artificial

 It is easier to incorporate other factors into the notion of
priority than it is into the notion of deadline

 During overload situations
– FPS is more predictable; Low priority process miss their

deadlines first
– EDF is unpredictable; a domino effect can occur in which a

large number of processes miss deadlines

Computadores II / 2004

Response-Time Analysis

Analising the temporal details of the schedule

Computadores II / 2004

 Here task worst-case response time, Ri, is calculated
first and then checked (trivially) with its deadline

 Ri is calculated using the computing time C and the
interference I from higher priority tasks

iii
ICR +=

R ≤ Dii

Response-Time Analysis

Computadores II / 2004

Interference

0 10 20 30 40 50 60

Process

a

b

70 80

Preemption PreemptionPreemption

Ra
Computation

Interference
Tb

Cb

Deadline

Computadores II / 2004

Calculating Ri

During Ri, each higher priority task j will execute a number
of times:

!
!
!

"

#
#
#

$
=

j

i

T

R
 ReleasesofNumber

Total interference is given by:

j

j

i C
T

R

!
!
!

"

#
#
#

$

The ceiling function gives the smallest integer greater than the fractional
number on which it acts. So the ceiling of 1/3 is 1, of 6/5 is 2, and of 6/3 is 2.

! "

j
ihpj

j

i

ii
C

T

R
CR ! "

"

#
$
$

%
+=

&)(

Response Time Equation
 Hence, the response time of task i is given by:

 Where hp(i) is the set of tasks with priority higher than
task i

 We can solve it using a recurrence formula:

 The set of values is monotonically non
decreasing

 When the solution to the equation has been
found

 must not be greater than (e.g. 0 or)

j
ihpj

j

n

i

i

n

i
C

T

w
Cw ! "

"

#
$
$

%
+=

&

+

)(

1

1+
=

n

i

n

i
ww

,..,...,,,
210 n

iiii
wwww

0

i
w

i
R

i
C

Solving the Equation

Computadores II / 2004

Response Time Algorithm
for i in 1..N loop -- for each process
 n := 0

loop
 calculate new
 if then

 exit value found
 end if
 if then
 exit value not found
 end if
 n := n + 1
 end loop
end loop

i

n

i
Cw =:

1+n

i
w

n

i

n

i
ww =

+1

n

ii
wR =

i

n

i
Tw >

+1

Computadores II / 2004

Process Period ComputationTime Priority
 T C P
 a 7 3 3
 b 12 3 2
 c 20 5 1

Process Set D

3=
a
R

6

63
7

6
3

63
7

3
3

3

2

1

0

=

=!!

"
##

$
+=

=!!

"
##

$
+=

=

b

b

b

b

R

w

w

w

Computadores II / 2004

173
12

14
3

7

14
5

143
12

11
3

7

11
5

113
12

5
3

7

5
5

5

3

2

1

0

=!!

"
##

$
+!!

"
##

$
+=

=!!

"
##

$
+!!

"
##

$
+=

=!!

"
##

$
+!!

"
##

$
+=

=

c

c

c

c

w

w

w

w

20

203
12

20
3

7

20
5

203
12

17
3

7

17
5

5

4

=

=!!

"
##

$
+!!

"
##

$
+=

=!!

"
##

$
+!!

"
##

$
+=

c

c

c

R

w

w

Calculating process c

Computadores II / 2004

Process Period ComputationTime Priority Response time
 T C P R

 a 80 40 1 80
 b 40 10 2 15
 c 20 5 3 5

Revisit: Process Set C

 The combined utilization is 1.0
 This was above the utilisation threshold for three

processes (0.78), therefore it failed the utilisation test
 The response time analysis shows that the process set

will meet all its deadlines

Computadores II / 2004

Response Time Analysis
 Is sufficient and necessary
 If the process set passes the test they will meet all their

deadlines;
 If the process set fail the test then, at run-time, a

process will miss its deadline (unless the computation
time estimations themselves turn out to be pessimistic)

Computadores II / 2004

WCET

Computing the Worst Case Execution Time

Computadores II / 2004

Worst-Case Execution Time
 Worst-Case Execution Time = WCET
 Obtained by either measurement or analysis of a single

process
 Measurement = real process
 Analysis = theoretical calculation

 The problem with measurement is that it is difficult to be
sure when the worst case has been observed

 The drawback of analysis is that an effective model of
the processor (including caches, pipelines, memory
wait states and so on) must be available

Computadores II / 2004

WCET— Finding C
Most analysis techniques involve two distinct activities.

 The first takes the process and decomposes its code
into a directed graph of basic blocks

 These basic blocks represent straight-line code.
 The second component of the analysis takes the

machine code corresponding to a basic block and uses
the processor model to estimate its worst-case
execution time

 Once the times for all the basic blocks are known, the
directed graph can be collapsed

Computadores II / 2004

Need for Semantic Information
for I in 1.. 10 loop
 if Cond then
 -- basic block of cost 100

 else
 -- basic block of cost 10

 end if;
end loop;

 Simple cost 10*100 (+overhead), say 1005.

 But if Cond only true on 3 occasions then cost is 375

Computadores II / 2004

Sporadic and Aperiodic
Processes

Handling processes with an irregular life

Computadores II / 2004

Sporadic Processes
 Sporadic processes have a minimum inter-arrival time
 T is not the period but the minimum (or average)
 They usually also require D<T

 The response time algorithm for fixed priority
scheduling works perfectly for values of D less than T

 It also works perfectly well with any priority ordering

Computadores II / 2004

Hard and Soft Processes
 In many situations the worst-case figures for sporadic

processes are considerably higher than the averages
 Interrupts often arrive in bursts and an abnormal sensor

reading may lead to significant additional computation
 Measuring schedulability with worst-case figures may

lead to very low processor utilizations being observed in
the actual running system

Computadores II / 2004

General Guidelines
Rule 1 — all processes should be schedulable using

average execution times and average arrival rates
Rule 2 — all hard real-time processes should be

schedulable using worst-case execution times and
worst-case arrival rates of all processes (including soft)

 A consequent of Rule 1 is that there may be situations
in which it is not possible to meet all current deadlines

 This condition is known as a transient overload
 Rule 2 ensures that no hard real-time process will miss

its deadline
 If Rule 2 gives rise to unacceptably low utilizations for

“normal execution” then action must be taken to reduce
the worst-case execution times (or arrival rates)

Computadores II / 2004

Aperiodic Processes
 These do not have minimum inter-arrival times
 Can run aperiodic processes at a priority below the

priorities assigned to hard processes, therefore, they
cannot steal, in a pre-emptive system, resources from
the hard processes

 This does not provide adequate support to soft
processes which will often miss their deadlines

 To improve the situation for soft processes, a server
can be employed.

 Servers protect the processing resources needed by
hard processes but otherwise allow soft processes to
run as soon as possible.

Computadores II / 2004

Servers
 Many types of servers:

– DS: Deferrable Server
– SS: Sporadic Server

 POSIX supports Sporadic Servers

Computadores II / 2004

Process systems with D < T

Computadores II / 2004

Process Sets with D < T
 For D = T, Rate Monotonic priority ordering is optimal
 For D < T, Deadline Monotonic priority ordering is

optimal

 Deadline monotonic priority ordering (DMPO) is optimal
in the sense that any process set Q, that is schedulable
by any priority scheme W, is also schedulable by DMPO

jiji
PPDD >!<

Computadores II / 2004

Process Period Deadline ComputationTime Priority Response time
 T D C P R

 a 20 5 3 4 3
 b 15 7 3 3 6
 c 10 10 4 2 10
 d 20 20 3 1 20

D < T Example Process Set

Computadores II / 2004

Process interactions, blocking
and priority ceiling protocols

Complex behavior due to priority-based
scheduling

Computadores II / 2004

Process Interactions
 If a process is suspended waiting for a lower-priority

process to complete some required computation then
the priority model is, in some sense, being undermined

 This happens when the lower priority process cannot
free a resource needed by the higher priority process
because of being displaced from execution by the high
priority process

 It is said to suffer priority inversion
 If a process is waiting for a lower-priority process, it is

said to be blocked

Computadores II / 2004

Priority Inversion
 To illustrate an extreme example of priority inversion,

consider the executions of four periodic processes: a, b, c
and d; and two resources: Q and V

Process Priority Execution Sequence Release Time
 a 1 EQQQQE 0
 b 2 EE 2

 c 3 EVVE 2

 d 4 EEQVE 4

Computadores II / 2004

Example of Priority Inversion
Process

a

b

c

d

0 2 4 6 8 10 12 14 16 18

Executing
Executing with Q locked

Preempted

Executing with V locked
Blocked

Computadores II / 2004

Priority Inheritance
 If process p is blocking process q, then p runs with q's

priority

a

b

c

d

0 2 4 6 8 10 12 14 16 18

Process

a running at c priority

Computadores II / 2004

Calculating Blocking
 If a process has m critical sections that can lead to it

being blocked then the maximum number of times it
can be blocked is m

 If K is the number of critical sections (resources that
can block), the process i has an upper bound on its
blocking given by:

 Usage value is 1/0 (1 if resource k is used by processes
with priorities lower and greater/equal than Pi)

!

Bi = usage(k,i)C(k)
k=1

K

"

Computadores II / 2004

 Response time with blocking and interference

 Expanding interference

 Recurrence relation

Response Time and Blocking

iiii
IBCR ++=

j

ihpj j

i
iii C

T

R
BCR !

" #
#
#

$

%
%
%

&
++=

)(

j
ihpj

j

n

i

ii

n

i
C

T

w
BCw ! "

"

#
$
$

%
++=

&

+

)(

1

Computadores II / 2004

Priority Ceiling Protocols
 Priority inheritance does not solve all problems related

with blocking and leads to very pessimistic evaluations
(due to transitive locking)

 Another alternative are priority ceiling protocols

 Two forms:
– Original ceiling priority protocol
– Immediate ceiling priority protocol

Computadores II / 2004

On a Single Processor
 A high-priority process can be blocked at most once

during its execution by lower-priority processes
 Deadlocks are prevented
 Transitive blocking is prevented
 Mutual exclusive access to resources is ensured (by

the protocol itself)

Computadores II / 2004

OCPP
 Each process has a static default priority assigned

(perhaps by the deadline monotonic scheme)
 Each resource has a static ceiling value defined, this is

the maximum priority of the processes that use it
 A process has a dynamic priority that is the maximum

of its own static priority and any it inherits due to it
blocking higher-priority processes.

 A process can only lock a resource if its dynamic
priority is higher than the ceiling of any currently locked
resource (excluding any that it has already locked itself)

)(),(max
1

kCikusageB
k

k
i

=
=

Computadores II / 2004

OCPP Inheritance

a

b

c

d

0 2 4 6 8 10 12 14 16 18

Process

1 1

3

3

4 4

4 4

4 4 4

3 3 3

2 2

11

Computadores II / 2004

ICPP
 Each process has a static default priority assigned

(perhaps by the deadline monotonic scheme).
 Each resource has a static ceiling value defined, this is

the maximum priority of the processes that use it.
 A process has a dynamic priority that is the maximum

of its own static priority and the ceiling values of any
resources it has locked

 As a consequence, a process will only suffer a block at
the very beginning of its execution

 Once the process starts actually executing, all the
resources it needs must be free; if they were not, then
some process would have an equal or higher priority
and the process's execution would be postponed

Computadores II / 2004

ICPP Inheritance

a

b

c

d

0 2 4 6 8 10 12 14 16 18

Process

1 4 4 4 4 1

Computadores II / 2004

OCPP versus ICPP
 Although the worst-case behaviour of the two ceiling

schemes is identical (from a scheduling view point),
there are some points of difference:
– ICCP is easier to implement than the original (OCPP) as

blocking relationships need not be monitored
– ICPP leads to less context switches as blocking is prior to first

execution
– ICPP requires more priority movements as this happens with all

resource usage
– OCPP changes priority only if an actual block has occurred

 Note that ICPP is called Priority Protect Protocol in
POSIX and Priority Ceiling Emulation in Real-Time Java

Computadores II / 2004

An extendible process model

Computadores II / 2004

An Extendible Process Model
So far:
 Deadlines can be less than period (D<T)
 Sporadic and aperiodic processes, as well as periodic

processes, can be supported
 Process interactions are possible, with the resulting

blocking being factored into the response time equations

Computadores II / 2004

Extensions
 Cooperative Scheduling
 Release Jitter
 Arbitrary Deadlines
 Fault Tolerance
 Offsets
 Optimal Priority Assignment

Computadores II / 2004

Cooperative Scheduling
 True preemptive behaviour is not always acceptable for

safety-critical systems
 Cooperative or deferred preemption splits processes

into slots
 Mutual exclusion is via non-preemption
 The use of deferred preemption has two important

advantages
– It increases the schedulability of the system, and it can lead to

lower values of C
– With deferred preemption, no interference can occur during the

last slot of execution.

Computadores II / 2004

Cooperative Scheduling
 Let the execution time of the final block be

 When this converges that is, , the response
time is given by:

i
F

j
ihpj

j

n

i

iiMAX

n

i
C

T

w
FCBw ! "

"

#
$
$

%
+&+=

'

+

)(

1

1+
=

n

i

n

i
ww

i

n

ii
FwR +=

Computadores II / 2004

Release Jitter
 A key issue for distributed systems
 Consider the release of a sporadic process on a

different processor by a periodic process, l, with a
period of 20

Time

l

t t+15 t+20

First execution l finishes at R

Second execution of l finishes after C

Release sporadic process at time 0, 5, 25, 45

Computadores II / 2004

Release Jitter
 Sporadic is released at 0, T-J, 2T-J, 3T-J
 Examination of the derivation of the schedulability

equation implies that process i will suffer
– one interference from process s if
– two interfernces if
– three interference if

 This can be represented in the response time equations

 If response time is to be measured relative to the real
release time then the jitter value must be added

),0[JTR
i

!"

)2,[JTJTR
i

!!"

)3,2[JTJTR
i

!!"

j
ihpj

j

ji

iii
C

T

JR
BCR ! "

"

#
$
$

% +
++=

&)(

ii

periodic

i
JRR +=

Computadores II / 2004

Arbitrary Deadlines
 To cater for situations where D (and hence potentially

R) > T

 The number of releases is bounded by the lowest value
of q for which the following relation is true:

 The worst-case response time is then the maximum
value found for each q:

j

ihpj j

n

i

ii

n

i
C

T

qw
CqBqw !

"

+

#
#

$
%
%

&
+++=

)(

1)(
)1()(

i

n

ii
qTqwqR !=)()(

ii
TqR !)(

)(max
,...2,1,0

qRR
i

q
i

=
=

Computadores II / 2004

Arbitrary Deadlines
 When formulation is combined with the effect of release

jitter, two alterations to the above analysis must be
made

 First, the interference factor must be increased if any
higher priority processes suffers release jitter:

 The other change involves the process itself. If it can
suffer release jitter then two consecutive windows could
overlap if response time plus jitter is greater than
period.

j

ihpj j

j

n

i

ii

n

i C
T

Jqw
CqBqw !

"

+

#
#
#

$

%
%
%

& +
+++=

)(

1
)(

)1()(

ii

n

ii JqTqwqR +!=)()(

Computadores II / 2004

Fault Tolerance
 Fault tolerance via either forward or backward error

recovery always results in extra computation
 This could be an exception handler or a recovery block.
 In a real-time fault tolerant system, deadlines should

still be met even when a certain level of faults occur
 This level of fault tolerance is know as the fault model
 If the extra computation time that results from an error

in process i is

 where hep(i) is set of processes with priority equal to
or higher than i

f

i
C

f

k
ihepk

j
ihpj

j

i

iii
CC

T

R
BCR max

)()(!!
+"

"

#
$
$

%
++= &

Computadores II / 2004

Fault Tolerance
 If F is the number of faults allows

 If there is a minimum arrival interval

f

k
ihepk

j
ihpj

j

i

iii
FCC

T

R
BCR max

)()(!!
+"

"

#
$
$

%
++= &

f
T

!
!

"

#

$
$

%

&

'
'
'

(

)
)
)

*
+

'
'
'

(

)
)
)

*
++=

++
, f

k

f

i

ihepk

j

ihpj j

i
iii C

T

R
C

T

R
BCR max

)()(

Computadores II / 2004

Offsets
 So far assumed all processes share a common release

time (critical instant)
Process T D C R

 a 8 5 4 4

 b 20 10 4 8

 c 20 12 4 16

 With offsets
Process T D C O R

 a 8 5 4 0 4

 b 20 10 4 0 8

 c 20 12 4 10 8

Arbitrary offsets are
not amenable to
analysis

Computadores II / 2004

Non-Optimal Analysis
 In most realistic systems, process periods are not

arbitrary but are likely to be related to one another
 As in the example just illustrated, two processes have a

common period. In these situations it is ease to give
one an offset (of T/2) and to analyse the resulting
system using a transformation technique that removes
the offset — and, hence, critical instant analysis applies.

 In the example, processes b and c (having the offset of
10) are replaced by a single notional process with
period 10, computation time 4, deadline 10 but no offset

Computadores II / 2004

Non-Optimal Analysis
 This notional process has two important properties.

– If it is schedulable (when sharing a critical instant with all other
processes) then the two real process will meet their deadlines
when one is given the half period offset

– If all lower priority processes are schedulable when suffering
interference from the notional process (and all other high-
priority processes) then they will remain schedulable when the
notional process is replaced by the two real process (one with
the offset).

 These properties follow from the observation that the
notional process always uses more (or equal) CPU time
than the two real process
Process T D C O R
 a 8 5 4 0 4
 n 10 10 4 0 8

Computadores II / 2004

Notional Process Parameters

),(

),(

),(

22

ban

ban

ban

ba

n

PPMaxP

DDMinD

CCMaxC

TT
T

=

=

=

==

Can be extended to more than two processes

Computadores II / 2004

Priority Assignment
Theorem
 If process p is assigned the lowest priority and is feasible then, if a

feasible priority ordering exists for the complete process set, an
ordering exists with process p assigned the lowest priority

procedure Assign_Pri (Set : in out Process_Set; N : Natural;
 Ok : out Boolean) is
begin
 for K in 1..N loop
 for Next in K..N loop
 Swap(Set, K, Next);
 Process_Test(Set, K, Ok);
 exit when Ok;
 end loop;
 exit when not Ok; -- failed to find a schedulable process
 end loop;
end Assign_Pri;

Computadores II / 2004

Dynamic systems and on-line
analysis

Computadores II / 2004

Dynamic Systems
 There are dynamic soft real-time applications in which

arrival patterns and computation times are not known a
priori

 Although some level of off-line analysis may still be
applicable, this can no longer be complete and hence
some form of on-line analysis is required

 The main task of an on-line scheduling scheme is to
manage any overload that is likely to occur due to the
dynamics of the system's environment

 EDF is a dynamic scheduling scheme that is an optimal
 During transient overloads EDF performs very badly. It is

possible to get a cascade effect in which each process
misses its deadline but uses sufficient resources to result
in the next process also missing its deadline.

Computadores II / 2004

Admission Schemes
 To counter this detrimental domino effect many on-line

schemes have two mechanisms:
– an admissions control module that limits the number of

processes that are allowed to compete for the processors, and
– an EDF dispatching routine for those processes that are

admitted

 An ideal admissions algorithm prevents the processors
getting overloaded so that the EDF routine works
effectively

Computadores II / 2004

Values
 If some processes are to be admitted, whilst others

rejected, the relative importance of each process must
be known

 This is usually achieved by assigning value
 Values can be classified

– Static: the process always has the same value whenever it is
released.

– Dynamic: the process's value can only be computed at the time
the process is released (because it is dependent on either
environmental factors or the current state of the system)

– Adaptive: here the dynamic nature of the system is such that
the value of the process will change during its execution

 To assign static values requires the domain specialists
to articulate their understanding of the desirable
behaviour of the system

Computadores II / 2004

Programming priority-based
systems

Examples of real-time scheduling

Computadores II / 2004

Programming with Priorities
 Ada
 POSIX
 Real-Time Java

Computadores II / 2004

Ada: Real-Time Annex
 Ada 95 has a flexible model:

– base and active priorities
– priority ceiling locking
– various dispatching policies using active priority
– dynamic priorities

 An implementation must support a range of Priority of at least 30
and at least one distinct Interrupt_Priority

subtype Any_Priority is Integer
 range Implementation-Defined;

subtype Priority is Any_Priority range
 Any_Priority'First .. Implementation-Defined;
subtype Interrupt_Priority is Any_Priority range
 Priority'Last + 1 .. Any_Priority'Last;

Default_Priority : constant Priority :=
 (Priority'First + Priority'Last)/2;

Computadores II / 2004

POSIX
 POSIX supports priority-based scheduling, and has options

to support priority inheritance and ceiling protocols
 Priorities may be set dynamically
 Within the priority-based facilities, there are four policies:

– FIFO: a process/thread runs until it completes or it is blocked
– Round-Robin: a process/thread runs until it completes or it is blocked

or its time quantum has expired
– Sporadic Server: a process/thread runs as a sporadic server
– OTHER: an implementation-defined

 For each policy, there is a minimum range of priorities that
must be supported; 32 for FIFO and round-robin

 The scheduling policy can be set on a per process and a per
thread basis

Computadores II / 2004

POSIX
 Threads may be created with a system contention

option, in which case they compete with other system
threads according to their policy and priority

 Alternatively, threads can be created with a process
contention option where they must compete with other
threads (created with a process contention) in the
parent process
– It is unspecified how such threads are scheduled relative to

threads in other processes or to threads with global contention

 A specific implementation must decide which to support

Computadores II / 2004

Sporadic Server
 A sporadic server assigns a limited amount of CPU

capacity to handle events, has a replenishment period,
a budget, and two priorities

 The server runs at a high priority when it has some
budget left and a low one when its budget is exhausted

 When a server runs at the high priority, the amount of
execution time it consumes is subtracted from its budget

 The amount of budget consumed is replenished at the
time the server was activated plus the replenishment
period

 When its budget reaches zero, the server's priority is
set to the low value

Computadores II / 2004

Other Facilities
POSIX allows:

 priority inheritance to be associated with mutexes
(priority protected protocol = ICPP)

 message queues to be priority ordered
 functions for dynamically getting and setting a thread's

priority
 threads to indicate whether their attributes should be

inherited by any child thread they create

Computadores II / 2004

RT Java Scheduling
 There are two entities in Real-Time Java which can be

scheduled:
– RealtimeThreads (and NoHeapRealtimeThread)
– AsynEventHandler (and BoundAsyncEventHandler)

 Objects which are to be scheduled must
– implement the Schedulable interface
– specify their

• SchedulingParameters

• ReleaseParameters

• MemoryParameters

Computadores II / 2004

Real-Time Java
 Real-Time Java implementations are required to support

at least 28 real-time priority levels
 As with Ada and POSIX, the larger the integer value, the

higher the priority
 Non real-time threads are given priority levels below the

minimum real-time priority
 Note, scheduling parameters are bound to threads at

thread creation time; if the parameter objects are changed,
they have an immediate impact on the associated thread

 Like Ada and Real-Time POSIX, Real-Time Java supports
a pre-emptive priority-based dispatching policy

 Unlike Ada and RT POSIX, RT Java does not require a
preempted thread to be placed at the head of the run
queue associated with its priority level

Computadores II / 2004

The Schedulable Interface
public interface Schedulable extends java.lang.Runnable
{

 public void addToFeasibility();
 public void removeFromFeasibility();

 public MemoryParameters getMemoryParameters();
 public void setMemoryParameters(MemoryParameters memory);

 public ReleaseParameters getReleaseParameters();
 public void setReleaseParameters(ReleaseParameters release);

 public SchedulingParameters getSchedulingParameters();
 public void setSchedulingParameters(
 SchedulingParameters scheduling);

 public Scheduler getScheduler();
 public void setScheduler(Scheduler scheduler);
}

Computadores II / 2004

Scheduling Parameters
public abstract class SchedulingParameters
{ public SchedulingParameters(); }

public class PriorityParameters extends SchedulingParameters
{
 public PriorityParameters(int priority);

 public int getPriority(); // at least 28 priority levels
 public void setPriority(int priority) throws
 IllegalArgumentException;
 ...
}

public class ImportanceParameters extends PriorityParameters
{
 public ImportanceParameters(int priority, int importance);
 public int getImportance();
 public void setImportance(int importance);
 ...
}

Computadores II / 2004

RT Java: Scheduler
 Real-Time Java supports a high-level scheduler whose

goals are:
– to decide whether to admit new schedulable objects according

to the resources available and a feasibility algorithm, and
– to set the priority of the schedulable objects according to the

priority assignment algorithm associated with the feasibility
algorithm

 Hence, whilst Ada and Real-Time POSIX focus on
static off-line schedulability analysis, Real-Time Java
addresses more dynamic systems with the potential for
on-line analysis

Computadores II / 2004

The Scheduler
public abstract class Scheduler
{

 public Scheduler();
 protected abstract void addToFeasibility(Schedulable s);
 protected abstract void removeFromFeasibility(Schedulable s);

 public abstract boolean isFeasible();
 // checks the current set of schedulable objects

 public boolean changeIfFeasible(Schedulable schedulable,
 ReleaseParameters release, MemoryParameters memory);

 public static Scheduler getDefaultScheduler();
 public static void setDefaultScheduler(Scheduler scheduler);

 public abstract java.lang.String getPolicyName();
}

Computadores II / 2004

The Scheduler
 The Scheduler is an abstract class
 The isFeasible method considers only the set of

schedulable objects that have been added to its
feasibility list (via the addToFeasibility and
removeFromFeasibility methods)

 The method changeIfFeasible checks to see if its
set of objects is still feasible if the given object has its
release and memory parameters changed

 If it is, the parameters are changed
 Static methods allow the default scheduler to be

queried or set
 RT Java does not require an implementation to provide

an on-line feasibility algorithm

Computadores II / 2004

The Priority Scheduler
class PriorityScheduler extends Scheduler
{

 public PriorityScheduler()

 protected void addToFeasibility(Schedulable s);
 ...

 public void fireSchedulable(Schedulable schedulable);

 public int getMaxPriority();
 public int getMinPriority();
 public int getNormPriority();

 public static PriorityScheduler instance();
 ...

}

Standard preemptive priority-based scheduling

Computadores II / 2004

Other Facilities
 Priority inheritance and ICCP (called priority ceiling

emulation)
 Support for aperiodic threads in the form of processing

groups; a group of aperiodic threads can be linked
together and assigned characteristics which aid the
feasibility analysis

Computadores II / 2004

Summary
 A scheduling scheme defines an algorithm for resource

sharing and a means of predicting the worst-case
behaviour of an application when that form of resource
sharing is used.

 With a cyclic executive, the application code must be
packed into a fixed number of minor cycles such that the
cyclic execution of the sequence of minor cycles (the
major cycle) will enable all system deadlines to be met

 The cyclic executive approach has major drawbacks
many of which are solved by priority-based systems

 Simple utilization-based schedulability tests are not
exact

Computadores II / 2004

Summary
 Response time analysis is flexible and caters for:

– Periodic and sporadic processes
– Blocking caused by IPC
– Cooperative scheduling
– Arbitrary deadlines
– Release jitter
– Fault tolerance
– Offsets

 Ada, RT POSIX and RT Java support preemptive
priority-based scheduling

 Ada and RT POSIX focus on static off-line
schedulability analysis, RT Java addresses more
dynamic systems with the potential for on-line analysis

