
0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 9

design
E d i t o r : R e b e c c a J . W i r f s - B r o c k ! W i r f s - B r o c k A s s o c i a t e s ! r e b e c c a @ w i r f s - b r o c k . c o m

T
here are many ways to understand the na-
ture of a class, but I start by looking at its
name. Aptronyms are names that match a
person’s occupation—Joe Strong is a
weight lifter; Suzie Snow is a ski instruc-
tor. Because I look at a class’s name to sug-

gest its role in a design, I expect class names to be
aptronyms. For example, in Java, a StringTo-
kenizer picks apart segments of a string, and the

ClassLoader loads classes. But
names aren’t always illuminat-
ing. So I also scan a class for in-
tention-revealing method names
that suggest the class’s behav-
ior. Of course, the definitive
source is always the code, but I
shouldn’t have to pore over de-
tails just to get the gist of a class.

In this column, I introduce
several characteristics I ascribe

to classes when trying to understand their na-
ture and purpose. I hope you find these useful
quiddities and not mere quibbles. (I’m both
delighted by and distrustful of a word that has
definitions with opposite meanings. The tech-
nical term for such a beast is autoantonym.)

Role stereotypes
Purposeful oversimplifications, or role

stereotypes from Responsibility-Driven Design
(see R.J. Wirfs-Brock and A. McKean, Object
Design: Roles, Responsibilities and Collabora-
tions, Addison-Wesley, 2003), help me identify
and understand the work that objects do. Fol-
lowing are the stereotypes I find most useful:

! Information holder: an object designed to
know certain information and provide that
information to other objects.

! Structurer: an object that maintains relation-
ships between objects and information about
those relationships. Complex structurers
might pool, collect, and maintain groups of
many objects; simpler structurers maintain
relationships between a few objects. An ex-
ample of a generic structurer is a Java
HashMap, which relates keys to values.

! Service provider: an object that performs
specific work and offers services to others
on demand.

! Controller: an object designed to make de-
cisions and control a complex task.

! Coordinator: an object that doesn’t make
many decisions but, in a rote or mechanical
way, delegates work to other objects. The
Mediator pattern is one example.

! Interfacer: an object that transforms infor-
mation or requests between distinct parts of a
system. The edges of an application contain
user-interfacer objects that interact with the
user and external interfacer objects, which
communicate with external systems. Interfac-
ers also exist between subsystems. The Fa-
cade pattern is an example of a class designed
to simplify interactions and limit clients’ visi-
bility of objects within a subsystem.

A well-defined object ideally supports a
clearly defined purpose. Early in the design
process, role stereotypes help me characterize
initial candidate objects and communicate my

Characterizing Classes
Rebecca J. Wirfs-Brock

Quiddity n. 1. The real nature of a thing; the essence. 2. A hairsplitting distinction; a quibble.
—The American Heritage Dictionary

1 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

ideas. Pushing on an object’s role
stereotype leads me to assign it some
initial responsibilities. I can ask, “What
requests should a service provider han-
dle?” and then restate these requests as
“doing” or “performing” responsibili-
ties on a CRC (class, responsibilities,
and collaborators) card.

Similarly, knowing what events a
controller is handling, I can further de-
scribe how it responds to requests. I
can also ask if it’s doing too much and
should delegate work to others, possi-
bly reconsidering whether it should
even be a controller in the first place.
Reworking a design, I can turn an over-
bearing controller into a coordinator by
redistributing its work to others. I can
shape an object’s character by refining
its responsibilities, so periodically re-
visiting its role stereotype helps me bet-
ter understand an object as it evolves
throughout the design process.

Role stereotypes are also useful when
taking a broad look at an existing de-
sign. What role stereotypes predomi-
nate? How do they interact? Are there
recurring patterns and themes?

Following the design heuristic “make
objects do something with what they
know,” experienced designers often
blend role stereotypes to make certain
objects more intelligent. Their designs
often have

! information holders that compute;
! service providers that cache infor-

mation, using it to improve perfor-
mance or give clients more control
over their operations; and

! carefully crafted structurers that an-
swer intelligent questions about the
objects they organize.

But role stereotypes aren’t limited to de-
signing new objects. I also use them to
dissect design patterns. I gain deeper in-
sight by recognizing the role stereotypes
that pattern elements play. Aha! The
Strategy pattern is just a private service
provider; state objects in the State pat-
tern are one way to delegate behavior
out of a complex controller into a set of
private service providers. Pattern au-
thors might have given participants in-
tention-revealing names, but the mental

exercise of assigning role stereotypes to
them adds zest to the sauce.

Uniqueness
In Domain-Driven Design (Addi-

son-Wesley, 2004), Eric Evans distin-
guishes between entity and value ob-
jects. I often use these characterizations
when modeling classes that represent
domain concepts, but they are useful
elsewhere as well. According to Evans,
an entity object is distinguished by a
thread of continuity and identity. An
entity sometimes has an interesting life
cycle, even changing in form and con-
tent. Consequently, you might need to
add mechanisms to keep track of an
entity’s uniqueness and maintain conti-
nuity as it undergoes these changes.

One simple way to keep track of an
entity is to assign it a unique key. A
simplistic view of what that key should
be might cause problems. Consider my
recently stolen credit card. When the
fraud detection group noticed my card
being misused, they gave me a new
credit card with a new ID number. My
account with the old credit card didn’t
go away when they gave me the new
card with a new ID. My legitimate pur-
chases and credit history had to be as-
sociated with that new card and ID.
This interesting wrinkle in the life cycle
of a credit card account illustrates why
a credit card number isn’t a good way
to uniquely identify my account, al-
though it’s associated with my account.

On the other hand, value objects typ-
ically represent another object’s charac-
teristics—for example, account status,
date opened, and current balance. They
need not be unique, and references to
immutable value objects can be freely
shared within an application. Some de-
signers dismiss value classes as unim-
portant and not worthy of much de-
sign effort. Many times I hear impatient
designers exclaim, “But it’s just an at-
tribute!” Sure, but whenever I can as-
sign a couple of interesting behaviors or
have an inkling that I might want some
wiggle room to change the data struc-
tures that represent the values, I create
distinct value classes. Using program-
ming primitives—such as an integer or
float data types, or pre-existing generic
classes—eliminates the possibility of as-
cribing any application-specific behav-
ior to these value objects.

Quantities
Thinking about value objects leads

me to another handy characterization:
whole values. Ward Cunningham first
described whole-value objects in his
Checks Pattern Language, described in
Pattern Languages of Programming
Design (Addison-Wesley, 1995). Whole
values are a variant of value classes that
represent meaningful quantities in a spe-
cific domain. Examples are classes that
model color, speed, temperature, cur-
rency, time intervals, or trading dates.
Whole-value objects encapsulate a value
and unit of measure and often define be-
haviors for comparison, conversion, or
calculation services on the basis of their
values (for example, what’s the next
trading date?). Typically, whole-value
classes are designed so that the values
aren’t changeable after creation. De-
signed carefully, whole-value classes can
be small, useful design additions.

Use and impact
Classes aren’t designed in isolation.

Whenever I look at a class for “good-
ness” or design fit, I need to understand
its larger design context. I like to charac-
terize classes according to their relative
importance and impact on a design. It’s
one thing to judge the quality of a class
that extends an existing framework class.

I gain deeper insight
by recognizing the

role stereotypes that
pattern elements play.

Aha! The Strategy
Pattern is just a private

service provider.

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 1 1

DESIGN

It’s quite another thing to assess a critical
concept, key abstraction, or suite of
classes that are designed to work together
and provide a framework for extension.

UML stereotyping mechanisms can be
used to annotate classes (as well as other
model elements) with distinguishing
characteristics. Scanning Tom Pender’s
UML Bible (John Wiley & Sons, 2004),
I was intrigued to find focus, auxiliary,
and framework on the list of standard
UML 2.0 stereotypes. (UML stereotypes
are bracketed by guillemets or French
quotation marks, so technically I should
have written «focus», «auxiliary», and
«framework».) Each standard UML
stereotype comes with a brief description:
A focus class defines core logic or control
behavior; an auxiliary class supports a
more central one; and a framework
stereotype tags a package that contains
reusable classes or templates.

However, the UML 2.0 standard
doesn’t enumerate the definitive list of
stereotypes. In fact, only a handful of
UML class or classifier stereotypes ex-
ist in addition to the ones I’ve men-
tioned—and most focus on the level of
abstraction that a class represents. By
intent, UML stereotypes are extensible.
Although predefined standard stereo-
types hold sway among UML-informed
designers, nothing prevents us from
defining new stereotypes to suit our
current design situation.

Notably missing from the official list
were «active» and «abstract» stereo-
types, which I often use when I draw
classes. Technically, other visual cues can
represent these stereotypes, but italic
class names and bold (UML 1.4) or dou-
ble-hatched classes (UML 2.0) that rep-
resent threads of control are too subtle
for my poor eyesight and for many print-
ers to accurately render. It helps to docu-
ment what you mean by a stereotype—a
sentence or two is a good start. Once I’ve
done that, I can judiciously sprinkle
these stereotypes into my design draw-
ings and discussions. But I don’t try to
overwhelm my classes (or fellow design-
ers) by tagging each class with a bevy
of characterizations. If I can squeeze a
characteristic into a class name, I don’t
repeat that characterization with a UML
stereotype on a class diagram. Commu-

nicating the essence means saying or
showing enough and stopping there.

C lass characterization is a key step of
object design. It serves two pur-
poses—to clarify at a glance some

important aspects of a class’s expected
behavior and to communicate its design
intent to others. Depending on the type
of systems you design and build, you’ll

naturally find certain characterizations to
be more compelling than others. Recog-
nizing and choosing effective characteri-
zations is an essential skill that all class
designers should master.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates and an adjunct professor at Oregon Health & Science
University. She is also a board member of the Agile Alliance.

