Requirements Engineering: A Roadmap

Bashar Nuseibeh Steve Easterbrook
Department of Computing Department of Computer Science
Imperial College University of Toronto
180 Queen’s Gate 6 King's College Road
London SW7 2BZ, U.K. Toronto, Ontario M5S 3H5, Canada
Email: ban@doc.ic.ac.uk Email: sme@cs.toronto.edu
ABSTRACT eliciting requirements,
This paper presents an overview of the field of software « modellingandanalysingrequirements,
systems requirements engineering (RE). It describes the « communicatingequirements,
main areas of RE practice, and highlights some key open - agreeingrequirements, and

research issues for the future. « evolvingrequirements

Section 9 discusses how these different activities may be
1 Introduction integrated into a single development process. We conclude

The primary measure of success of a software system is th&ith @ summary of the state of the art in RE, and offer our
degree to which it meets the purpose for which it was View of the key challenges for future RE research.
intended. Broadly speakingpftware systems requirements > Egundations

engineeringRE) is the process of discovering that purpose, gefore discussing RE activities in more detail, it is worth
by identifying stakeholders and their needs, and gyamining the role of RE in software and systems
documenting these in a form that is amenable to ana|ys'sengineering, and the many disciplines upon which it draws.

communication, and subsequent implementation. There are e [83] provides one of the clearest definitions of RE:
a number of inherent difficulties in this process.

Stakeholders (including paying customers, users and ‘Requirements engineering is the branch of software
developers) may be numerous and distributed. Their goals ~€ngineering concerned with the real-world goals for,
may vary and conflict, depending on their perspectives of {lsjn;tlls?c?scgfﬁcaer;gefjonv?/ittrr?lqﬁeo?efe%zmasﬁpsyg;emz'sg
the environment in which they work and the tasks they wish factors to precise specifications of software behavior

to accomplish. Their goals may not be explicit or may be 4pq to their evolution over time and across software
difficult to articulate, and, inevitably, satisfaction of these families.”

goals may be constrained by a variety of factors outside_ . o) L
their control. This definition is attractive for a number of reasons. First, it

highlights the importance of “real-world goals” that
In this paper we present an overview of current research inmotivate the development of a software system. These
RE, presented in terms of the main activities that constituterepresent the ‘why’ as well as the ‘what’ of a system.
the field. While these activities are described independentlySecond, it refers to “precise specifications”. These provide
and in a particular order, in practice, they are actually the basis foranalysingrequirementsyalidating that they
interleaved, iterative, and may span the entire softwareare indeed what stakeholders wanhéfiningwhat designers
systems development life cycle. Section 2 outlines thehave to build, andrerifyingthat they have done so correctly
disciplines that provide the foundations for effective RE, upon delivery. Finally, the definition refers to
while Section 3 briefly describes the context and specifications’ “evolution over time and across software
background needed in order to begin the RE processfamilies”, emphasising the reality of a changing world and
Sections 4 through 8 describe the core RE activities: the need to reuse partial specifications, as engineers often

do in other branches of engineering.

It has been argued that requiremermsgineeringis a
misnomer. Typical textbook definitions of engineering refer
to the creation of cost-effective solutions to practical
problems by applying scientific knowledge [74]. Therefore,
the use of the ternrengineeringin RE serves as a reminder
that RE is an important part of an engineering process,
being the part concerned with anchoring development
activites to a real-world problem, so that the

appropriateness and cost-effectiveness of the solution camlevelopment life cycle [12; 81]. RE also encompasses work
then be analysed. It also refers to the idea that specification®n systems analysis, traditionally found in the information
themselves need to be engineered, and RE represents systems world [68].

series of engineering decisions that lead from recognition of
a problem to be solved to a detailed specification of that
problem.

The context in which RE takes place is usually a human
activity system, and the problem owners are people.
Engagement in an RE process presupposes that some new
Note that the focus of Zave’s definition is ogoftware computer-based system could be useful, but such a system
engineering. In reality, software cannot function in isolation will change the activities that it supports. Therefore, RE
from the system in which it is embedded, and hence RE haseeds to be sensitive to how people perceive and
to encompass a systems level view. We therefore prefer taunderstand the world around them, how they interact, and
characterise RE as a branch sfstems engineerinfy6], how the sociology of the workplace affects their actions.
whose ultimate goal is to deliver some systems behaviour toRE draws on the cognitive and social sciences to provide
its stakeholders. The special consideration tbaftware both theoretical grounding and practical techniques for
systems requirements engineerihgs received is largely eliciting and modelling requirements:

due to the abstract and invisible nature of software, and the,
vast range and variety of problems that admit to software
solutions.

Cognitive psychologyprovides an understanding of the
difficulties people may have in describing their needs [62]. For
example, problem domain experts often have large amounts of
tacit knowledge that is not amenable to introspection; hence
their answers to questions posed by requirements analysts may
not match their behaviour. Also, the requirements engineer may
need to model users’ understanding of software user atesf,
rather than relying solely on implementers’ preferences.

< Anthropologyprovides a methodological approach to observing
human activities that helps to develop a richer understanding of
how computer systems may help or hinder those activities [29].
For example, the techniques of ethnomethodology [30] have
been applied in RE to develop observational techniques for
analysing collaborative work and team interaction.

Sociology provides an understanding of the political and
cultural changes caused by computerisation. Introduction of a
new computer system changes the nature of the work carried
out within an organisation, may affect the structure and
communication paths within that organisation, and may even
change the original needs that it was built to satisfy [46]. A
requirements gathering exercise can therefore become
politicised. Approaches to RE that address this issue include the
“Scandanavian” approach, which aims to involve in the
requirements definition process those most affected by the

Whether viewed at the systems level or the software level,
RE is a multi-disciplinary, human-centred process. The
tools and techniques used in RE draw upon a variety of
disciplines, and the requirements engineer may be expected
to master skills from a number of different disciplines.

In the context of software developmewrpmputer science
plays a particularly important role. Theoretical computer
science provides the framework to assess the feasibility of
requirements, while practical computer science provides the
tools by which software solutions are developed. Although
software engineering still lacks a mature science of*
software behaviour on which to draw, requirements
engineers need such a science in order to understand how to
specify the required behaviour of software.

Since software is a formal description, analysis of its
behaviour is amenable to formal reasonihggic provides

a vehicle for performing such analysis [1]. In RE, logic can
be used to improve the rigour of the analysis performed,

and to make the reasoning steps explicit. Formal description

techniques have received considerable attention in RE,

research, but have not yet been widely adopted into RE

practice. Since RE must span the gap between the informal

world of stakeholder needs, and the formal world of
software behaviour, the key question over the use of formal

outcomes [36].

Linguistics is important because RE is largelybaut

communication. Linguistic analyses have changed the way in
which the English language is used in specifications, for
instance to avoid ambiguity and to improve understandability.
Tools from linguistics can also be used in requirements

methods is notvhetherto formalise, butwhento formalise elicitation, for instance to analyse communication patterns
[60]. Different logics may be used to express different Within an organisation [11].
aspects of a required system. For example, temporal logidrinally, there is an important philosophical element in RE.
can be used to describe timing information, deontic logic to RE is concerned with interpreting and understanding
describe permissions and obligations, and linear logic tostakeholder terminology, concepts, viewpoints and goals.
describe resources and their use. A further advantage oHence, RE must concern itself with an understanding of
specification languages grounded in logic is that they arebeliefs of stakeholderspistemology the question of what
potentially amenable to automated reasoning and analysis. is observable in the world phenomenology and the
uestion of what can be agreed on as objectively true
;?ontolog)). Such issues become important whenever one
wishes to talk about validating requirements, especially
where stakeholders may have divergent goals and
incompatible belief systems. They also become important

In the systems engineering context, an understanding an
application of systems theory and practice is also relevan
to RE [76]. This includes work on characterising systems,
identifying their boundaries and managing their

when selecting a modelling technique, because the choicel Eliciting Requirements

of technique affects the set of phenomena that can beThe elicitation of requirements is perhaps the activity most
modelled, and may even restrict what a requirementsoften regarded as the first step in the RE process. The term
engineer is capable of observing. “elicitation” is preferred to “capture”, to avoid the
suggestion that requirements are out there to be collected
. L simply by asking the right questions [29]. Information
RE is often regarded as a front-end activity in the software gathered during requirements elicitation often has to be

zﬁitci?ﬁ'sh itdiivizgwegltsoptrr?gizss.e t-[gtsrelsui?eemngL?!ychgze;ianterpreted, analysed, modelled and validated before the
9 Y q grequirements engineer can feel confident that a complete

gugrgtigﬁ\;glroggnrsgtﬁ?nn: i\g;/;‘oa;zerRaE Sﬁtimag?; bgr?gn't%nough set of requirements of a system have been collected.
P ' ' play P Therefore, requirements elicitation is closely related to

Nevertheless, the bulk of the effor of RE doss oo carly ST RE aCiNites ~ (0 a great extent, the-eliiation

in the Iifetimé of a project, motivated by the evidence that technique use_d Is driven by the c_:h0|ce of quelllng

requirements errors suc,h as misunderstood or omittedSCheme’ and vice versa. many _modellmg_ schemes imply the
. ' . .) . _"use of particular kinds of elicitation techniques.

requirements, are more expensive to fix later in project

lifecycles [8; 56]. 4.1 Requirements to elicit

ane of the most important goals of elicitation is to find out

) ! .) What problem needs to be solved, and hence identify system
Finkelstein [24] categorises such preparatiorastextand boundaries These boundaries define, at a high level, where

ggﬁgﬂgogislﬂrﬁgg trigstt’RlltE v\\,/\;aass o;t;?ortlr;i dca;g:: athz;[)eFiliiicthe fir_1al delive_red system wiI_I _fit into the cu_rrent

customer, who could sign off a requirements specification operational enwro_nment. Identifying and agreeing a

However ’ RE is actually performed in a variety of contexts system's bqundqnes_ affects all subsequent elicitation

including’ market-driven product development and’ efforts. The identification of stakeholt_jers and user classes,
. . of goals and tasks, and of scenarios and use cases all

development for a specific customer with the eventual d .

)) ; epend on how the boundaries are chosen.

intention of developing a broader market. The type of

product will also affect the choice of method: RE for Identifying stakeholders- individuals or organisations who

information systems is very different from RE for stand to gain or lose from the success or failure of a system

embedded control systems, which is different again from— is also critical. Stakeholders include customers or clients

RE for generic services such as networking and operatinglwho pay for the system), developers (who design,

systems. construct and maintain the system), and users (who interact

For groundwork, some assessment of a project’s feasibilit with the system to get their work done). For interactive
9 ' broj ysa/stems, users play a central role in the elicitation process,

and associated risks needs to be undertaken, and RE playsas usability can only be defined in terms of the target user

crucial role in making such an assessment. It is often .
g opulation. Users themselves are not homogeneous, and

Feoasssilt?illﬁ t?roenit'n::;?sgrsjicgif;%?}shizrﬁzuljifeﬁlsn:gcnqgagart of the elicitation process is to identify the needs of
y P P 4 ' different user classes, such as novice users, expert users,

also important that conflicts between high-level goals of an : .

o . ; occasional users, disabled users, and so on [73].
envisioned system surface early, in order to establish a
system’s concept of operation and boundaries. Of courseGoals denote the objectives a system must meet. Eliciting
risk should be re-evaluated regularly throughout the high level goals early in the development process is crucial.
development lifetime of a system [58], since changes in theHowever, goal-oriented requirements elicitation [15] is an
environment can change the associated development risks. activity that continues as development proceeds, as high-
level goals (such as business goals) are refined into lower-
level goals (such as technical goals that are eventually
gperationalised in a system). Eliciting goals focuses the
requirements engineer on the problem domain and the
needs of the stakeholders, rather than on possible solutions
to those problems.

3 Context and Groundwork

Before a project can be started, some preparation is neede

Groundwork also includes the identification of a suitable
process for RE, and the selection of methods and technique
for the various RE activities. We use the tepmocesshere

to denote an instance of a process model, which is an
abstract description of how to conduct a collection of
activities, describing the behaviour of one or more agents
and their management of resourcesteghniqueprescribes It is often the case that users find it difficult to articulate
how to perform one particular activity - and, if necessary, their requirements. To this end, a requirements engineer can
how to describe the product of that activity in a particular resort to eliciting information about thdasks users
notation. A method provides a prescription for how to currently perform and those that they might want to
perform a collection of activities, focusing on how a related perform [42]. These tasks can often be representedse

set of techniques can be integrated, and providing guidanceasesthat can be used to describe the outwardly visible
on their use. requirements of systems [72]. More specifically, the

requirements engineer may choose a particular path througln the early 1990’s paralleled their introduction as part of a
a use case, acenariq in order to better understand some revolution in cognitive science and human-computer
aspect of using a system [41]. interaction, where they reflected a blistering attack on the
42 Elicitation techniques attgmpt to build disembodied modgls of cogn_ition [57]_. In
The choice of elicitation technique depends on the time andthe'r. _extreme formg,, the two sides are incompatible:
resources available to the requirements engineer, and Oyadmonal and cognitive apprpaches are based on the use of
course, the kind of information that needs to be elicit,ed. We abstracted merIs .tha.u are mdependent of context, whilst
distingl,Jishanumber of classes of elicitation technique: the contextuall|sts insist that con'gext 'S paramount, and
' completely resist any attempt to build generalisable models
« Traditional techniquesnclude a broad class of generic data of the phenomena they observe. However, it does seem that
gathering techniques. These include the use of questionnaireshe advantages of these alternative approaches are
and surveys, interviews, and analysis of existing documentationcomplementary, and recent work has focussed on the

such as organisational charts, process models or standards, ar‘(ﬁhestion of whether an integration is possible [63; 80].
user or other manuals of existing systems. '

. Group elicitation techniquesaim to foster stakeholder 4-3 The elicitation process _ _
agreement and buy-in, while exploiting team dynamics to elicit With & plethora of elicitation techniques available to the
a richer understanding of needs. They include brainstormingrequirements engineer, some guidance on their use is
and focus groups, as well as RAD/JAD workshops (using needed. Methods provide one way of delivering such
consensus-building workshops with an unbiased facilitator) guidance. Each method itself has its strengths and
[52]. weaknesses, and is normally best suited for use in particular

» Prototypinghas been used for elicitation where there is a great application domains. For example, the Inquiry Cycle [64]
deal of uncertainty about the requirements, or where earlyand CREWS [51] provide alternative methods for eliciting

feedback from stakeholders is needed [17]. Prototyping can alsorequirements using use cases and scenarios.
be readily combined with other techniques, for instance by] .
using a prototype to provoke discussion in a group elicitation Of course, in some circumstances a full-blown method may

technique, or as the basis for a questionnaire or think-aloudbe neither required nor necessary. Instead, the requirements
protocol. engineer needs simply to select the appropriate technique or

« Model-driven techniquesrovide a specific model of the type of ~ teéchniques most suitable for the elicitation process in hand.
information to be gathered, and use this model to drive the In such situations, technique-selection guidance is more
elicitation process. These include goal-based methods, such aappropriate than a rigid method [52].

KAOS [79] and I* [14], and scenario-based methods such as . . .
CREWS [51]. 5 Modelling and Analysing Requirements

» Cognitive techniqueinclude a series of techniques originally Modelling — the _constructlt_)n of _abstract descrlptlon_s _the_lt
developed for knowledge acquisition for knowledge-based &ré amenable to interpretation —is a fundamental activity in
systems [75]. Such techniques inclugeotocol analysis(in RE. So much so that a number of RE textbooks (e.g., [18;
which an expert thinks aloud while performing a task, to 81]) focus almost entirely on modelling methods and their
provide the observer with insights into the cognitive processesassociated analysis techniques. Models can be used to
used to perform the task)addering (using probes to elicit represent a whole range of products of the RE process.
structure and content of stakeholder knowledge)d sorting Moreover, many modelling approaches are used as
(asking stakeholders to sort cards in grougach of which has gjicitation tools, where the modelling notation and partial

name of some domain entity)epertory grids(constructing an .
attribute matrix for entities, by asking stakeholders for attributes models produced are used as drivers to prompt further

applicable to entities and values for cells in each entity). information gathering.

« Contextual techniquesmerged in the 1990’s as an alternative The key question to ask for any modelling approach is
to both traditional and cognitive techniques [30]. These include “what is it good for?”, and the answer should always be in
the use of ethnographic techniques such as participantterms of the kind of analysis and reasoning it offers. We
observation. They also include ethnomethodogy and gyggest below some general categories of RE modelling
conversation analysis, both of which apply fine grained analysis 5) 5r5aches, and give some example techniques under each
to identify patterns in conversation and interaction [80]. category. We then suggest some analysis techniques that

To some extent, there is a fundamental methodologicalcan pe used to generate useful information from the models
disagreement between the proponents of contextual oduced.

techniques on the one hand, and the traditional and

cognitive techniques on the other. Contextual approaches-1 Enterprise Modelling _
are based on the premise that local context is vital for The context of most RE activities and software systems is
understanding social and organisational behaviour, and thé" organisationin which development takes place or in
observer must be immersed in this local context in order towhich a system will operate. Enterprise modelling and
experience how participants create their own social@nalysis deals with understanding an organisation’s
structures. The emergence of contextual techniques in REStructure; the business rules that affect its operation; the

goals, tasks and responsibilities of its constituent membersgdomain provides an abstract description of the world in
and the data that it needs, generates and manipulates. which an envisioned system will operate. Building explicit
Pomain models provides two key advantages: they permit

Enterprise modeII|n_g.|s often used to capture the PUTPOSE Olyetailed reasoning about (and therefore validation of) what
a system, by describing the behaviour of the organisation in.

which that system will operate [47]. This behaviour can be 'S assumed about Fhe domain, anql .they prov[de
; o o pportunities for requirements reuse within a domain.
expressed in terms of organisational objectives or goals an

) omain-specific models have also been shown to be
associated tasks and resources [82]. Others prefer to mode . - :
L : ; essential for building automated tools, because they permit

an enterprise in terms of its business rules, workflows and

the services that it will provide [33] tractable reasoning over a closed world model of the system
P ' interacting with its environment; e.g., [67].

Modelling goals is particulgrly useful in RE. High-level 5.5 Modelling Non-Functional Requirements (NFRs)
business goals can be refined repeatedly as part of th?\lon-functional requirements (also known aguality

elicitation process, leading to requirements that can then be_~ . e)
. . requirementp are generally more difficult to express in a
operationalised [15].

measurable way, making them more difficult to analyse. In
5.2 Data Modelling. particular, NFRs tend to be properties of a system as a
Large computer-based systems, especially informationwhole, and hence cannot be verified for individual
systems use and generate large volumes of informationcomponents. Recent work by both researchers [14] and
This information needs to be understood, manipulated andpractitioners [69] has investigated how to model NFRs and
managed. Careful decisions need to be made about whaio express them in a form that is measurable or testable.
information the system will need to represent, and how theThere also is a growing body of research concerned with
information held by the system corresponds to the realparticular kinds of NFRs, such as safety [49; 55], security
world phenomena being represented. Data modelling[13], reliability [19], and usability [42].

provides the opportunity to address these issues in RE
Traditionally, Entity-Relationship-Attribute (ERA)
modelling is used for this type of modelling and analysis.
However, object-oriented modelling, using class and object
hierarchies, are increasingly supplanting ERA techniques.

5.6 Analysing Requirements Models

A primary benefit of modelling requirements is the
opportunity this provides for analysing them. Analysis
techniques that have been investigated in RE include
requirements animation [32], automated reasoning (e.g.,
5.3 Behavioural Modelling analogical and case-based reasoning [54] and knowledge-
Modelling requirements often involves modelling the based critiquing [23]), consistency checking (e.g., model
dynamic or functional behaviour of stakeholders and checking [37]), and a variety of techniques for validation
systems, both existing and required. The distinction and verification (V&V) that we discuss in Section 7.

between modelling an existing system, and modelling a
future system is an important one, and is often blurred byRE . | f di . q e
the use of the same modelling techniques for both. Early IS not only & process of discovering an speC|fy|_ng
structured analysis methods suggested that one should staffauirements, it is also a process of facilitating effectlve
by modelling how the work is currently carried out (the communication of these requirements among different

current physical system), analyse this to determine thestakeholders. The way in Wh'Ch. requwements are

essential functionality (the current logical system), and documented plays an |mport§1nt role in ensuring that they
finally build of model of how the new system ought to can be read, analysed, (re-written, and validated.

operate (the new logical system). Explicitly constructing all The focus of requirements documentation research is often
three models may be overkill, but it is nevertheless useful toon specification languages and notations, with a variety of
distinguish which of these is being modelled. formal, semi-formal and informal languages suggested for
this purpose [18; 81]. From logic [3] to natural language

[2], different languages have been shown to have different
expressive and reasoning capabilities.

6 Communicating Requirements

A wide range of modelling methods are available, from
structured to object-oriented methods, and from soft to
formal methods. These methods provide different levels of
precision and are amenable to different kinds of analysis.What is increasingly recognised as crucial, however, is

Formal methods (for example, based on Z) can be difficult requirements managementthe ability, not only to write

to construct, but are also amenable to automated analysigequirements but also to do so in a form that is readable and
[71]. On the other hand, soft methods provid&h traceable by many, in order to manage their evolution over

representations [63] that non-technical stakeholders findtime. One attempt to achieve readability has been the

appealing, but are often difficult to check automatically. development of a variety of documentation standards that
provide guidelines for structuring requirements documents

[78]. However, some authors, such as Kovitz [44], argue

that standards or templates cannot in themselves provide a

5.4 Domain Modelling.
A significant proportion of the RE process is about
developing domain descriptions[40]. A model of the

general structuring mechanism for requirements. Rather, havith the problem of validating scientific knowledge. Many
argues that the structure has to be developed for therequirements engineers adopt a logical positivist approach —
particular context or problem in hand. Nevertheless, it is essentially the belief that there is an objective world that
often the case that projects with rigid contractual constraintscan be modelled by building a consistent body of
demand conformance to standards. Kovitz suggests som&nowledge grounded in empirical observation. In RE, this
heuristics for focusing on the small details of writing view says that the requirements describe some objective
requirements documentation, which can improve the qualityproblem that exists in the world, and that validation is the
of the requirements documentation, regardless of the formatask of making sufficient empirical observations to check
in which requirements are expressed. that this problem has been captured correctly. Popper’s
observations on the limitations of empirical observation
apply here : that scientific theories can never be proved
correct through observation, they can only be refuted [61].
For RE, this view suggests that validation shouttbjat the
same stance that software testers take: it should devise
experiments to attempt to refute the current statement of
requirements. Jackson [39] argues that descriptions used in
RE should be refutable — those that are not refutable are
vague, and should only be treatedrasgh sketches

Requirements traceability (RT) is another major factor that
determines how easy it is to read, navigate, query and
change requirements documentation. Gotel [31] defines
requirements traceability as “the ability to describe and
follow the life of a requirement in both forwards and
backwards direction (i.e., from its origins, through its
development and specification, to its subsequent
deployment and use, and through all periods of on-going
refinement and iteration in any of these phases)”. RT lies at
the heart of requirements management practice in that it carLogical positivism was severely criticised in the latter part
provide a rationale for requirements and is the basis forof the twentieth century [5]. For example, Kuhn [45]
tools that analyse the consequences and impact of chang@bserved that science tends to move through paradigm
Providing RT in requirements documentation is a means ofshifts, where the dominant paradigm determines the nature
achieving integrity and completeness of that of current scientific theories. This leads to the realisation
documentation, and has an important role to play inthat observation is not value-free, rather it is theory-driven,
managing change, which will be discussed in Section 8. and is biased by the current paradigm. For requirements
. . engineers, the methods and tools they use dominate the way
7 Agr_eelng ReqUIrer_n_ents . .. that they see and describe problems. In the extreme case,
As requirements are elicited and modelled, maintaining inis shifts the problem of validating requirements

agreement with all stakeholders can be a problem, qaements to a problem of convincing stakeholders that the
especially where stakeholders have divergent goals. Recal hosen representation for requirements models is
that _vahdatlon |sdthe grcl)cesls_ _ofdestabl_|§h|ng that the appropriate. Jackson captures this perspective through his
requirements and models elicited provide an accurateiyengification ofproblem frame$39]. If stakeholders do not
account of stakeholder requirements. Explicitly describing ,q 06 with the choice of problem frame, it is unlikely that
the. requirements is a necessary precond|t|or_1 not only forthey will ever agree with any statement of the requirements.
validating requirements, but also for resolving conflicts Ethnomethodologists attempt to avoid the problem
between stakeholders. altogether, by refusing to impose modelling constructs on
Technigues such as inspection and formal analysis tend tdhe stakeholders [30]. By discarding traditional problem
concentrate on the coherence of the requirementsanalysis tools, thgy _seek to apply value-free_observatlons of
descriptions: are they consistent, and are they structurallystakeholder —activities, and therefore circumvent the
complete? The formal method SCR [35] illustrates this requirements validation issue altogether.

approach. The SCiR tool prpwdes autgmated checking that“I'he second essential difficulty in requirements validation
the formal model is syntactically consistent and Complete'centres on the problem of disagreement among

In contrast, techniques such as prototyping, specificationgayenolders. Recent approaches that explicitly model
animation, and theduse of_shcer:]arloslare Igearet;jl toV"I";”d%takeholders' goal hierarchies make the problem clear:
testmgla c;])rrespolr Ence with the free;] wor b:oro ehm. ﬁrstakeholders may have goals that conflict with one another
exakmﬁ (";d ave a dt € aspects bo the pro dgm that t e[79]. Requirements negotiation attempts to resolve conflicts
stakeholders regard as important been covered: between stakeholders without necessarily weakening

Requirements validation is difficult for two reasons. The satisfaction of each stakeholder’s goals. Early approaches to
first reason is philosophical in nature, and concerns therequirements negotiation focused on modelling each
question of truth and what is knowable. The second reasorstakeholder’s contribution separately rather than trying to
is social, and concerns the difficulty of reaching agreementfit their contributions into a single consistent model [20]
among different stakeholders with conflicting goals. We and on the importance of establishing common ground [70].
will briefly examine each of these in turn. Boehm introduced the win-win approach [7] in which the
win conditions for each stakeholder are identified, and the

We can compare the problem of validating requirementsgogare process is managed and measured to ensure that

all the win conditions are satisfied, through negotiation operational environment. In software engineering, it has
among the stakeholders. been demonstrated that focusing change on program code

The theory underlying these negotiation models is the sameIeaOIS to a loss of structure and maintainability [4]. Thus,

in each case: identify the most important goals of eacheach proposed change needs to be evaluated in terms of

articinant. and ensure these goals are met. This approach existing requirements and architecture so that the trade-off
P pant, . 9 ‘ ppro 5etween the cost and benefit of making a change can be
used in other RE techniques to promote agreement, withou

. - o . assessed.

necessarily making the goals explicit [43]. For example, in
Quality Function Deployment (QFD) [34], matrices are Finally, the development of software systeproduct
constructed to compare functional requirements with onefamilies has become an increasingly important form of
another and rate their importance, but without explicitly development activity. For this purpose, there is a need to
identifying stakeholder goals. develop a range of software products that share similar
requirements and architectural characteristics, yet differ in
certain key requirements. The process of identifyauge
requirementsn order to develop architectures that are (a)

We have described some essential difficulties in agreeing
and validating requirements. These difficulties are

e Y 2 b of contexua eses Meliabie n e resence of change, and (o) bl cnough
P . %e customised and adapted to changing requirements, is one

political and social milieu in which the introduction of a
of the key research issues in software engineering [27].
new computer system changes the nature of work and the

organisations [46]. 9 Integrated Requirements Engineering
RE is a multi-disciplinary activity, deploying a variety of

guccss\,/s?tlj\lnngoiv?/gféregngtgtris alwavs evolve as thetechniques and tools at different stages of development and
: ; . y Y for different kinds of application domains. Methods provide
environment in which these systems operate changes an

stakeholder requirements change. Therefor@naging systemqtic approach to comb_ining. different techniques
changeis a fundamental activity in RE [9] gnd notations, andpethod engineering[10] plays an

' important role in designing the RE process to be deployed
Changes to requirements documentation need to bdor a particular problem or domain. Methods provide
managed. Minimally, this involves providing techniques heuristics and guidelines for the requirements engineer to
and tools for configuration management and version controldeploy the appropriate notation or modelling technique at
[22], and exploiting traceability links to monitor and control different stages of the process.
the impact of changes in different parts of the

. . . A variety of approaches have been suggested to manage
documentation. Typical changes to requirements y bp 99 g

e : . . ; and integrate different RE activities and products. Jacskon,
s_p_emflcatlons mcludt_e adding or deleting requwements, andfor example, uses problem frames to structure different
fixing errors. Requirements are added in response tokinds of elementary and composite problems [39]. His
changing stakeholder needs, or because they were missed Q‘rgument is that identifying well-understood problems

Ejhe_mma(lj ana|1Iy3|s. Requwe:cnents ﬁ.l‘e deleteddusualrlly(;)nllyo]crers the possibility of selecting corresponding,
uring development, to forestall cost and sche ueappropriate,weII—understood,solutions.

overruns, a practice known asquirements scrubbin{g].
In any case, managing inconsistency [28] in requirementsAn alternative approach to organising, selecting and
specifications as they evolve is a major challenge. tailoring multiple methods is through the use of multiple
Inconsistencies arise both as a result of mistakes, andPerspectives or views of requirements [16; 26]. This
because of conflicts between requirements. Eachapproach can facilitate requirements partitioning and

inconsistency implies that some action is needed, to identifySubsequent modelling and analysis. For example, a
the cause and seek a resolution [38]. viewpoint can be treated as an encapsulation of an

. o o individual technique, with a defined notation, a set of
While traceability links help to scope the possible impact of 5¢tions that can be performed on that notation, and a set of

change, they do not support automated reasoning aboufyes for consistency relationships with other viewpoints. In
change, because the links carry little semantic information. yis way, the design and integration of multiple methods

One attempt to address this problem is the ViewPointS¢an he supported as a process of creating and tailoring
framework, in which consistency relationships between viewpoint templates [59].

chunks (‘viewpoints’) of a specification are expressed

operationally, so that automated support for propagation offinally, to enable effective management of an integrated
change becomes possible [21]. RE process, automated tool support is essential.

. .)] Requirements management tools, such as DOORS [65],
Managing changing requirements is not only a process ofRequisite Pro [66], Cradle [77], and others, provide
managing documentation, it is also a process of recognising:apabilities for documenting requirements, managing their

change through continued requirements elicitation, re-change, and integrating them in different ways depending
evaluation of risk, and evaluation of systems in their on project needs.

10 A Requirements Engineering Roadmap

This paper has set out a roadmap, and we feel that no
roadmap is complete without a big arrow labelled “you are
here™. By way of providing such a marker, we will
summarise the important developments in RE during the
last decade, and give our predictions about what will be
important in RE research for the coming decade.

The 1990’s saw several important and radical shifts in the?2:

understanding of RE. By the early 1990’s, RE had emerged
as a field of study in its own right, as withessed by the
emergence of two series of international meetings — the
IEEE sponsored conference and symposium, held in
alternating years — and the establishment of an international
journal published by Springer [48]. By the late 1990’s, the
field had grown enough to support a large number of

additional smaller meetings and workshops in various 3,

countries.

During this period, we can discern the emergence of three
radical new ideas that challenged and overturned the
orthodox views of RE. These three ideas are closely
interconnected:

» The idea that modelling and analysis cannot be performed
adequately in isolation from the organisational and social
context in which any new system will have to operate. This
view emphasised the use of contextualised enquiry techniques,

including ethnomethodology and participant observation [29; 5.

63].

» The notion that RE shouldchot focus on specifying the
functionality of a new system, but instead should concentrate on
modelling indicative and optative properties of #@vironment
[84]2 Only by describing the environment, and expressing what
the new system must achieve in that environment, we can

capture the system’s purpose, and reason about whether a givef.

design will meet that purpose. This notion has been
accompanied by a shift in emphasis away from modelling
information flow and system state, and towards modelling
stakeholders’ goals [15] and scenarios that illustrate how goals
are (or can be) achieved [51].

* The idea that the attempt to build consistent and complete
requirements models is futile, and that RE has to take seriously
the need to analyse and resolve conflicting requirements, to
support stakeholder negotiation, and to reason with models that
contain inconsistencies [28].

Having identified these trends from the past decade, we

now turn our attention to the future. We believe the

following represent major challenges for RE in the years
ahead:

behaviour of the software. Such techniques must take into
account the need to deal with inconsistent, incomplete, and
evolving models. We expect such approaches will better support
areas where RE has been weak in the past, including the
specification of the expectations that a software component has
of its environment. This facilitates migration of software
components to different software and hardware environments,
and the adaptation of products into product families.

Bridging the gap between requirements elicitation approaches
based on contextual enquiry and more formal specification and
analysis techniques. Contextual approaches, such as those based
on ethnographic techniques, provide a rich understanding of the
organisational context for a new software system, but do not
map well onto existing techniques for formally modelling the
current and desired properties of problem domains. This
includes the incorporation of a wider variety of media, such as
video and audio, into behavioural modelling techniques.

Richer models for capturing and analysing non-functional
requirements. These are also known as the “ilities” and have
defied a clear characterisation for decades [50].

Better understanding of the impact of software architectural

choices on the prioritisation and evolution of requirements.

While work in software architectures has concentrated on how
to express software architectures and reason about their
behavioural properties, there is still an open question about how
to analyse what impact a particular architectural choice has on
the ability to satisfy current and future requirements, and

variations in requirements across a product family [27].

Reuse of requirements models. We expect that in many domains
of application, we will see the development of reference models
for specifying requirements, so that the effort of developing
requirements models from scratch is reduced. This will help
move many software projects from being creative design to
being normal design [50], and will facilitate the selection of
commercial off-the-shelf (COTS) software [25; 53].

Multidisciplinary training for requirements practitioners. In this
paper, we have used the term “requirements engineer” to refer
to any development participant who applies the techniques
described in the paper to elicit, specify, and analyse
requirements. While many organisations do not even employ
such a person, the skills that such a person or group should
possess is a matter of critical importance. The requirements
engineer must possess both the social skills to interact with a
variety of stakeholders, including potentially non-technical
customers, and the technical skills to interact with systems
designers and developers.

Many delivered systems do not meet their customers’
requirements due, at least partly, to ineffective RE. RE is
often treated as a time-consuming, bureaucratic and
contractual process. This attitude is changing as RE is

increasingly recognised as a critically important activity in
1. Development of new techniques for formally modelling and any systems engineering process. The novelty of many
analysing properties of the environment, as opposed to thespftware applications, the speed with which they need to be
developed, and the degree to which they are expected to

change, all play a role in determining how the systems

1 Sadly, this is an infeasible requirement for most portable road maps!

development process should be conducted. The demand for

2 Indicativedescriptions express things that are currently true (and will be better, faster, and more usable software systems will

true irrespective of the introduction of a new system), wioifgative
descriptions express the things that we wish the new system to mak
true [84].

econtinue, and RE will therefore continue to evolve in order
to deal with different development scenarios. We believe

that effective RE will continue to play a key role in

determining the success or failure of projects, and in

determining the quality of systems that are delivered.

AcknowledgementsThanks to Dan Berry, Anthony Finkelstein,
Olly Gotel, Sophia Guerra, and Axel van Lamsweerde for their [20]

feedback on earlier drafts of this paper. This work was partially

funded by the UK EPSRC projects MISE (GR/L 55964) and
VOICI (GR/M 38582).

References

(1]

(2]

8]
E)

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Abramsky, S., Gabbay, D. & Maibaum, T. (Ed.). (199Randbook
of Logic in Computer Science Vol 1: Background: Mathematical
Structures Clarendon Press.

Ambriola, V. & Gervasi, V. (1997). Processing Natural Language
Requirementsl2th International Conference on Automated Software
Engineering Lake Tahoe, USA, 3-5 November 1997, pp. 36-45.

Antoniou, G. (1998). The role of nonmonotonic representations in
requirements engineeringinternational Journal of Software
Engineering and Knowledge Engineerjrg(3): 385-399.

Bennett, K. H. & Rajlich, V. T. (2000). Software Maintenance and
Evolution.In this volume

Blum, B. I. (1996).Beyond Programming: To a New Era of Design
Oxford: Oxford University Press.

Boehm, B. (1991). Software Risk Management: Principles and
Practices|EEE Software8(1): 32-41.

Boehm, B., Bose, P., Horowitz, E. & Lee, M. J. (1995).

Requirements Negotiation and Renegotiation Aids: A Theory-W
Based Spiral ApproactL7th International Conference on Software

Engineering (ICSE-17)Seattle, USA, 23-30 April 1995, pp. 243-

254.

Boehm, B. W. (1981)Software Engineering Economidsnglewood
Cliffs, NJ: Prentice-Hall.

Bohner, S. A. & Arnold, R. S. (Ed.). (1996)Software Change
Impact Analysis IEEE Computer Society Press.

Brinkkemper, S. & Joosten, S. (1996). Editorial: Method Engineering
and Meta-modellinglnformation and Software Technolgg$8(4):
259.

Burg, J. F. M. (1997).Linguistic Instruments in Requirements
Engineering Amsterdam: I0S Press.

Carter, R., Martin, J., Mayblin, B. & Munday, M. (19843ystems,
Management and Change: A Graphic Guitlendon: Paul Chapman
Publishing/Harper and Row.

Chung, L. (1993). Dealing with Security Requirements During the
Development of Information System5th International Conference
on Advanced Information Systems Engineering (CAISE'B3jis,
France, 1993, pp. 234-251.

Chung, L., Nixon, B., Yu, E. & Mylopoulos, J. (2000Non-
Functional Requirements in Software EngineeriBgston: Kluwer
Academic Publishers.

Dardenne, A., Lamsweerde, A. v. & Fickas, S. (1993). Goal-Directed
Requirements AcquisitiorScience of Computer Programmin20:
3-50.

Darke, P. & Shanks, G. (1996). Stakeholder Viewpoints in
Requirements Definition: A Framework for Understanding
Viewpoint Development ApproachefRequirements Engineering
1(2): 88-105.

Davis, A. (1992). Operational Prototyping: A New Development
Approach.Software 9(5): 70-78.

Davis, A. (1993).Software Requirements: Objects, Functions and
StatesPrentice Hall.

[19]

[21]

[22]
(23]

[24]

[29]

[26]

[27]

(28]

[29]

(30]

(31

[32]

[33]

[34]

(35]

(36]
(37]

(38]

del Gobbo, D., Napolitano, M., Callahan, J. & Cukic, B. (1998.).
Experience in Developing System Requirements Specification for a
Sensor Failure Detection and Identification ScherBed High-
Assurance Systems Engineering Sympaositfashington, DC, USA,
13-14 November 1998.

Easterbrook, S. M. (1991). Resolving Conflicts Between Domain
Descriptions with Computer-Supported Negotiatioknowledge
Acquisition: An International JournaB: 255-289.

Easterbrook, S. M. & Nuseibeh, B. A. (1995). Managing
Inconsistencies in an Evolving SpecificatiorSecond |EEE

Symposium on Requirements EngineerMark, UK, March 27-29,

pp. 48-55.

Estublier, J. (2000). Software Configuration Management: A
Roadmapin this volume

Fickas, S. & Nagarajan, P. (1988). Critiquing Software
Specifications: a knowledge based approdERE Software5(6).

Finkelstein, A. (1993). Requirements Engineering: an overviw
Asia-Pacific Software Engineering Conference (APSEC'%8kyo,
Japan, 1993.

Finkelstein, A., Ryan, M. & Spanoudakis, G. (1996). Software
Package Requirements and Procurenthtinternational Workshop
on Software Specification and design (IWSSD-8ghloss Velen,
Germany, pp. 141-146.

Finkelstein, A. & Sommerville, 1. (1996). The Viewpoints FAQ:
Editorial - Viewpoints in Requirements Engineerin§oftware
Engineering Journall1(1): 2-4.

Garlan, D. (2000). Software Architecture: A Roadmdp. this
volume

Ghezzi, C. & Nuseibeh, B.1098). Guest Editorial - Managing
Inconsistency in Software Developmeftransactions on Software
Engineering 24(11): 906-907.

Goguen, J. & Jirotka, M. (Ed.). (1994Requirements Engineering:
Social and Technical Issuglsondon: Academic Press.

Goguen, J. & Linde, C. (1993). Techniques for Requirements
Elicitation. 1st IEEE International Symposium on Requirements
Engineering (RE'93)San Diego, USA, 4-6th January 1993, pp. 152-
164.

Gotel, O. & Finkelstein, A. (1994). An Analysis of the Requirements
Traceability Problemlst International Conference on Requirements
Engineering (ICRE'94)Colorado Springs, April 1994, pp. 94-101.

Gravell, A. & Henderson, P. (1996). Executing Formal
Specifications Need Not Be HarmfulEE Software Engineering
Journal 11(2): 104-110.

Greenspan, S. & Feblowitz, M. (1993). Requirements Engineering
Using the SOS Paradigmlst International Symposium on
Requirements Engineering (RE'93an Diego, USA, 4-6 January
1993, pp. 260-263.

Hauser, J. R. & Clausing, D. (1988). The House of Qualithe
Harvard Business Revig@): 63-73.

Heitmeyer, C. L., Jeffords, R. D. & Labaw, B. G. (1996). Automated
Consistency Checking of Requirements SpecificatiohSEE
Transactions on Software Engineering and Methodo)&g$): 231-
261.

Holtzblatt, K. & Beyer, H. R. (1995). Requirements Gathering: The
Human FactorCommunications of the ACN88(5): 31-32.

Holzmann, G. J. (1997). The Model Checker Spinansactions on
Software Engineering23(5): 279-295.

Hunter, A. & Nuseibeh, B. (1998). Managing Inconsistent
Specifications: Reasoning, Analysis and Acti#fCM Transactions
on Software Engineering and Methodolo@y4): 335-367.

[39] Jackson, M. (1995)Software Requirements and Specifications: A [61] Popper, K. R. (1963)Conjectures and Refutations: The Growth of

[40]

[41]

[42]
[43]

[44]

Lexicon of Practice, Principles and Prejudicésldison Wesley.

Jackson, M. & Zave, P. (1993). Domain Descriptionsst
International Symposium on Requirements Engineering (RE28)
Diego, USA, 4-6 January 1993, pp. 56-64.

Jarke, M. & Kurki-Suonio, R. (1998). Guest Editorial - Special issue
on Scenario ManagementlEEE Transactions on Software
Engineering 24(12).

Johnson, P. (1992Human-Computer Interaction: psychology, task
analysis and software engineerindcGraw-Hill.

Karlsson, J. & Ryan, K. (1997). Prioritizing Requirements Using a
Cost-Value ApproacHEEE Software67-74.

Kovitz, B. L. (1999).Practical Software Requirements: A Manual of

[62]

[63]

[64]
[65]

[66]

Contents & StyleManning.

Kuhn, T. S. (1962)The Structure of Scientific Revolutiondrbana:
University of Chicago Press.

[45]

[46]
Software EvolutionProceedings of the IEEEB8(9): 1060-1076.
[47]
Teleological Approach to Requirements Engineeritmgernational

Journal of Intelligent and Cooperative Information Systedd):
45-79.

Loucopoulos, P. & Potts, C. (Ed.). (199&equirements Engineering
Journal Springer Verlag.

(48]

[49]
(1998). Safety Analysis of Requirements for a Product Fan3ify.

IEEE International Conference on Requirements Engineering (ICRE

'98), Colorado Springs, USA, 6-10 April 1998, pp. 24-31.

[50]
Engineering: A Roadmayn this volume

[51]
Validating RequirementsAutomated Software Engineering(4):
419-446.

[52]
Requirements AcquisitionSoftware Engineering Journall1(3):
183-192.

(53]
Commercial Off-The-Shelf Package SelectitFEE Software15(2):
46-56.

[54]
Specifications Through AnalogyCommunications of the ACM
34(5): 55-64.

[55]

S. D. (1997).

159.
[56]
Error Cause-Effect RelationshipsTransactions on Software
Engineering 17(8): 830-838.
[57]
Introduction to the Special Issue on Situated Acti@ognitive
Sciencel7(1): 1-6.
Nuseibeh, B. (1997). Ariane 5: Who Dunnif2EE Software 14(3):
15-16.

(58]

[59]
Views in Requirements SpecificationlEEE Transactions on
Software Engineering?0(10): 760-773.

[60] Parnas, D. (2000). When to formalisBersonal Communication
(Email), 17 February 2000.

Lutz, R., Helmer, G., Moseman, M., Statezni, D. & Tockey, S.

Maibaum, T. S. E. (2000). Mathematical Foundations of Software

Maiden, N. (1998). CREWS-SAVRE: Scenarios for Acquiring and

Maiden, N. & Rugg, G. (1996). ACRE: Selecting Methods For

Maiden, N. A. M. & Ncube, C. (1998). Acquiring Requirements for

Maiden, N. A. M. & Sutcliffe, A. G. (1992). Exploiting Reusable

Nakajo, T. & Kume, H. (1991). A Case History Analysis of Software

Norman, D. A. (1993). Cognition in the Head and in the World: An

Nuseibeh, B., Kramer, J. & Finkelstein, A. C. W. (1994). A
Framework for Expressing the Relationships Between Multiple

[67]

Lehman, M. M. (1980). Programs, Life Cycles, and Laws of [68]

Loucopoulos, P. & Kavakli, E. (1995). Enterprise Modelling and the [69]

[70]

[71]

[72]

(73]

[74]
[75]

[76]

e~
:‘.

[78]

Modugno, F., Leveson, N. G., Reese, J. D., Partridge, K. & Sandys, [79]
Integrating Safety Analysis of Requirements
Specifications3rd IEEE International Symposium on Requirements
Engineering (RE'97)Annapolis, USA, 6-10 January 1997, pp. 148-

[80]

(81]

[82]

[83]

(84]

Scientific KnowledgeNew York: Basic Books.

Posner, M. I. (Ed.). (1993Foundations of Cognitive SciencMIT
Press.

Potts, C. (1997). Requirements Models in Cont8xdl International
Symposium on Requirements Engineering (REAdhapolis, USA,
6-10 January 1997, pp. 102-104.

Potts, C., Takahashi, K. & Anton, A. (1993). Inquiry-based
requirements AnalysisSEEE Software11(2): 21-32.

Quality Systems and Software (1999). DOORS
<http://mww.gss.co.uk/>
Rational Corporation (1999). Requisite Pro

<http://www.rational.com>

Reubenstein, H. B. & Waters, R. C. (1991). The Requirements
Apprentice: Automated Assistance for Requirements Acquisition.
IEEE Transactions on Software Engineeriig(3): 226-240.

Robertson, S. & Robertson, J. (1994Jhe Complete Systems
Analysis: The Workbook, The Textbook, the Answigosset House.

Robertson, S. & Robertson, J. (1998)astering the Requirements
Process Addison-Wesley.

Robinson, W. N. & Volkov, S. (1998). Supporting the Negotiation
Life-Cycle. Communications of the ACM1(5): 95-102.

Saaltink, M. (1997). The Z/EVES SysteniSth International
Conference on the Z Formal Method (ZUM3eading, UK, April
1997, LNCS 1212, pp. 72-88.

Schneider, G. & Winters, J. (1998)pplying Use Cases: a practical
guide Addison-Wesley.

Sharp, H., Finkelstein, A. & Galal, G. (1999). Stakeholder
Identification in the Requirements Engineering Proc&¥srkshop

on Requirements Engineering Processes (REP'99) - DEXA'99
Florence, Italy, 1-3 September 1999, pp. 387-391.

Shaw, M. (1990). Prospects for an Engineering Discipline of
Software |EEE Software7(6): 15-24.

Shaw, M. & Gaines, B. (1996). Requirements AcquisitiSoftware
Engineering Journal11(3): 149-165.

Stevens, R., Brook, P., Jackson, K. & Arnold, S. (199Bystems
Engineering: Coping with ComplexitfPrentice Hall Europe.

Structured Software Ltd (1999). CRADLE

<http://www.threesl.com/>

Thayer, R. & Dorfman, M. (Ed.). (1997)Software Requirements
Engineering(2nd Edition). IEEE Computer Society Press.

van Lamsweerde, A., Darimont, R. & Letier, E. (1998). Managing
conflicts in goal-driven requirements engineeringlEEE
Transactions on Software Engineerjrgfi(11): 908-926.

Viller, S. & Sommerville, I. (1999). Social Analysis in the
Requirements Engineering Process: from ethnography to mettiod.
International Symposium on Requirements Engineering (RE'99)
Limerick, Ireland, 7-11th June 1999.

Wieringa, R. J. (1996)Requirements Engineering: Frameworks for
UnderstandingWiley.

Yu, E. (1997). Towards Modelling and Reasoning Support for Early-
Phase Requirements Engineering3rd |EEE International
Symposium on Requirements Engineering (REAi@hapolis, USA,
6-10 January 1997, pp. 226-235.

Zave, P. (1997). Classification of Research Efforts in Requirements
EngineeringACM Computing Survey29(4): 315-321.

Zave, P. & Jackson, M. (1997). Four dark corners of requirements
engineering. ACM Transactions on Software Engineering and
Methodology6(1): 1-30.

Systems

