
1

A Pattern Schema for Complex Controllers
Ricardo Sanz, Adolfo Yela and Rafael Chinchilla

Autonomous Systems Laboratory
Universidad Polit́ecnica de Madrid

Jośe Gutíerrez Abascal 2
28006 Madrid, Spain

ricardo.sanz@etsii.upm.es

Abstract— Modern control systems are very complex applica-
tions that pose special difficulties to systems designers. Design
patterns are common in the field of automatic control but in
most cases they are restricted to small subfields of application.
In this paper we propose a pattern schema with two particular
properties: i) it deals with some issues very relevant to control
designers and ii) it is generic enough to gather under the same
umbrella an heterogeneous collection of patterns ranging from
basic, elementary control components to plant-wide systems. This
schema is being used in the implementation of a pattern language
for the Integrated Control Architecture project.

I. I NTRODUCTION

This paper presents apattern schemaproposed for the
documentation of design patterns in complex control systems.
This schema is being used to document design patterns to
be supported by theIntegrated Control Architecture(ICa)
technology [1].

ICa is an ongoing development project that tries to provide
methods and tools to address the construction of complex
control systems in an effective way. Complex control systems
are in most cases software-intensive applications that use
advanced software technologies and have requirements that
go well beyond the knowledge of single disciplines.

ICa is based on the use of control components and domain
specific architectures. All them are deployed over real-time
middleware based on OMG specifications.

The purpose of this paper is to present this pattern schema
and justify its structure under the umbrella of the intended
purpose: the transfer of design knowledge between control
systems designers and implementors.

II. COMPLEXITY IN SOFTWARE-INTENSIVE

CONTROL SYSTEMS

There is an unavoidable tendency in control systems con-
struction that lead us to extreme software complexity [2].
Software complexity is common to other fields with software
intensive applications, but in the field of control systems there
is an overlapping of complexity factors that make the situation
harder.

As an example of a complex control application, the
RiskMan system for emergency handling in chemical plants
[3] deploys expert system technology for human decision
support, fuzzy filtering engines to enhance raw plant data,
neural-network models of process units, real-time databases

and legacy control applications as a collection of distributed
real-time agents over middleware running atop heterogeneous
computing platforms. This amounts for millions lines of mul-
tilanguage code.

There is progressive awareness in the control engineering
field on the need of having a deep knowledge about computing
systems. Control engineers must master computer and software
technologies to be able to build systems that meet complex
requirements.

In many cases, control engineers do develop their own
software tools and methods to deal with the special aspects
of advanced controllers.

Some of these aspects that induce controller complexity are:
Real-time: Meeting deadlines is always a problem, and pro-

viding guarantees about it is extremely difficult, specially
when modern systems are based on a enormous amount
of software (development tools, operating systems, vir-
tual machines, network protocols, middleware,etc.) and
hardware (processors, networks, intelligent devices,etc.).

Embedded: Running within limited resources is hard and
could be harder due to the use of complex software
development tools. Fortunately advances in hardware
platforms provide some hope for us.

Fault-tolerant: Real-time control systems should demon-
strate good behavior under faults. This is critical in
some situations/plants where potential damage in case of
malfunction is enormous.

Distributed: Present day control systems are inherently dis-
tributed over heterogeneous platforms and networks.
They run on several interacting computers with varying
hardware, operating systems and networking software.

Intelligent: Artificial intelligence is commonly used in solv-
ing ill-posed problems in control systems. This means
that in many cases it is necessary the integration of third
party AI tools in an, otherwise, real-time application.

Large: Many times, these systems (distributed, fault-tolerant,
intelligent, etc.) are composed by zillions of lines of code
if they meet real world requirements.

Integrated: Even when developed in pieces, using hetero-
geneous tools, in different time scales and by different
people, all these system components should constitute a
single, cohesive application in order to be fully functional
and manageable.

Open: In many cases plant controllers do interoperate with
alien systems to interchange state information and/or

control actions.
Heterogeneous:Real systems run on heterogeneous plat-

forms that are old legacy platforms or new state of the
art hardware/software toys.

Ten years ago research on control systems software was
mostly focused on just one of these topics. Today, even the
simplest real controller falls in several of these categories.

III. T HE INTEGRATED CONTROL APPROACH

The ICa approach to this problem is the use of real-time
reusable object-oriented components [4] deployed over real-
time middleware [5] using an architecture-centric development
process [6], [7], [8], [9]. The basic tool for design documen-
tation and architecture specification is thedesign pattern.

Patterns are a critical technology for adequate design knowl-
edge transfer between complex system stakeholders. Patterns
can be used to document many design aspects of a systems.
While most of the work in this field has been devoted to
basic software design patterns in object systems [10], [11],
[12], there are many other developments in distribution [13],
[14], hardware [15] or even bad practices [16]. There are also
scattered works related with the use of patterns in real time
systems [17], [18], [19], [20], [21], [22].

IV. CLASSICAL PATTERN SCHEMATA

To make patterns reusable, adequate descriptions for them
should be available. Authors present their patterns in ways
suitable for their intended use. They are known as pattern
schemata, pattern forms, pattern templates, etc. Examples of
these schemata can be found in the literature [11] [23] [13].

In the Patterns FAQ maintained by Doug Lea, he proposes
this format based on Alexander’s work:

IF you find yourself in CONTEXT
for example in EXAMPLE
with a PROBLEM
entailing some FORCES

THEN for some REASONS
apply a DESIGN RULE
to construct a SOLUTION
leading you to a NEW CONTEX

and OTHER PATTERNS

The pattern schema used by Buschmannet al. in their
architectural patterns book [12] is composed of the following
sections:

1) Name: The name of the pattern.
2) Also known as: Aliases.
3) Example: Example of use.
4) Context: When to use it.
5) Problem: Problem to solve.
6) Solution: Solution proposed to the problem.
7) Structure: How solution is achieved.
8) Dynamics: Behavior of the entities involved.
9) Implementation: Sample implementation.

10) Example resolved: Example with solution applied.
11) Variants: Patterns that share structure.
12) Known Uses: Examples of real use.

13) Consequences: What would you expect to happen.
14) See also: Related patterns.

If you want to write a pattern describing a design solution, all
you need to do is to adequately fill the relevant sections for
your pattern.1

V. A PATTERN LANGUAGE

A pattern language is a collection of interrelated patterns
that can be used to describe or design a system [23]. The
objective of the Integrated Control Pattern Language (ICa PL
for short) is to provide an extensible framework to express
control application designs (mostly architecture in the domain
of complex controllers).

It is not intended as a general pattern language for software
architecture description even when most of the software pat-
terns are generic enough to be applied in other domains. ICa
PL offers a collection of patterns to address common problems
in the implementation of advanced controllers for complex
systems. This means that while the patterns are generic to be
reusable they must be specific to concrete problems or tasks
that appear in this type of systems.

VI. IC A PATTERN SCHEMA

This section contains the pattern description structure (the
pattern schema) that was built to provide easy conceptual un-
derstanding by control designers and immediate applicability
of the pattern.

Obviously not all sections of this schema are equally
applicable to all possible patterns, mainly because patterns
usually refer to different architectural levels. In specific cases,
some sections can disappear and other new sections can appear
for specific to address concrete issues related with that class
of patterns.

Name The name of the pattern. Names are important if
things named are going to be reused, inter-changed and
discussed. Their name should be simple but with a clear
relation with the pattern itself.

Aliases Patterns are usually not new; most of them were
employed during long time using different names for
them.

Example The example provides a sample framework of ap-
plication of the pattern. This section identifies a possible
use of the pattern in a real situation.

Problem The problem the pattern tries to solve.
Solution What the pattern does. What type of solution it

provides.
Forces The competing factors that makes difficult the decision

of the system architect.
Context Contextual information regarding the framework of

application of the pattern.
Structure Architectural description of the pattern. Roles and

relations between roles. It is usually a diagram. It includes
a description of all the roles that appear in the pattern.

1Well, it is not completely true. Writinggoodpatterns is very difficult and
requires a lot of work previous to the put-on-paper task and, perhaps, even
more after it.

Dynamics How system activity happens. Sequences of role
activation. It is important to note that adequate documen-
tation tools are critical for this section. Message sequence
charts or finite state machines are common tools for
this work but there are many other alternatives like for
example use case maps that are very suitable to high level
dynamics description.

Implementation Practical issues regarding the put on practice
of the pattern to a real situation.

Timing Temporal considerations for the pattern. It is of
special importance to control systems and/or real-time
applications because they can fail if action timing is not
adequate.

Example application Issues regarding the application of the
pattern to the framework presented in the example sec-
tion.

Variants Common modifications to the basic pattern struc-
ture. Known deviations and heresies from the orthodox
use.

Known Uses Examples of the use of the pattern in real life.
ConsequencesImplications derived from the use of the pat-

tern in an application. Both unavoidable consequences
(desirable or not) and those that should be stressed by
the system designer.

Related with Other patterns related with this, by structure, by
way of use or -very important- be-cause they are applied
at the same time to a system.

ReferencesBibliographic references for the pattern.

VII. PATTERN EXAMPLE

A. Name

LAYERS2

B. Aliases

Layered control, hierarchical control, control loop nesting.

C. Example

Cement kiln control is a complex problem because there are
some ill conditions. The two principal are:

1) The sensing system is not as good as it should be because
there are unmeasurable magnitudes (for example the most
critical one: burning zone temperature) or the sensing
process suffers great delays .

2) The controllability of the kiln is quite limited. For
example, raw material input composition can only be
approximately set. Responsiveness of the kiln to control
actions is also limited. Control of kilns is done by a
mixture of simple controllers (usually PLCs) in charge
of maintaining basic process magnitudes, and a human
operator that takes all decisions concerning the setpoints
of the basic controllers. Operator experience has a critical
influence on the state and performance of the kiln.
Continuous attention to critical magnitudes (for example

2This pattern has been extensively described in the literature using the same
name. But in each case the focus is slightly different due to the orientation
of the intended use. The foundation, however, remains the same in all cases.

Level N

Level N+1

Level N-1

Controlled Plant

Sensors & Actuators

Level 1

action

action

action

action

action

perception

perception

perception

perception

perception

.......
action perception

Fig. 1. Layer relations in the LAYERS control pattern are just structured
perceptions and actions with neighbors.

contents ofNOx in exhauster gases) is also of extreme
importance.

D. Task

Provide increasingly complex intelligent behavior without
sacrificing performance and/or reliability.

E. Problem

The problem that LAYERS tries to solve is the complex
integration issues that can appear when control making com-
ponents have different cognitive and action capabilities.

Some authors refer to the principle of increasing precision
with decreasing intelligence [25]. In most cases, we should
talk not only about precision, but speed, trustability and
implementation technology.

F. Context

Plants with dynamic problems that are not well addressed
using a single control technology approach.

In most cases, heterogeneous control systems are required
to provide different levels of intelligence and speed.

G. Solution

A complete gradation of authority is specified and con-
trollers attain to it.

Each cognitive level interacts only with the adjacent levels.
Interactions with upper layers areperception interactions;
interactions with lower layers areaction interactions.

Additional advantages are obtained from the use of LAY-
ERS. For example, the clear decomposition simplifies devel-
opment of the components (the layers) of the system, because
interaction and dependency are limited.

H. Structure

Interaction between layers take the form of percep-
tion/action pairs. Perception goes upwards toward increasing
intelligence. Actions go downwards towards the real plant
under control. LayerLN get information about the state of
the virtual plant it sees from the immediately lower layer. For
layer LN the plant under control is the real plant plus all the
layers up to it: The unique control actions available toLN are
those control inputs admissible forLN .

I. Dynamics

There are two typical layer behavior variants in these type
of systems:

• Active layersthat actively get state information from the
lower layer and perform actions based on this information.

• Passive layersthat perform their activity only upon re-
ception of an activity request. The two typical activation
policies are all active layers and event driven activity
triggered by state reception from lower layers.

J. Implementation

Layers are usually implemented as sets of processes. Cou-
plings between layers are simple enough to be implemented
using whatever type of integration mechanism is available. In
the example described in this pattern TCP/IP message based
interaction between processes was used.

K. Timing

It depends clearly on the application and the layers involved.
Lower layers are usually faster than upper layers. There are
some typical timings for continuous process plants ranging
from milliseconds in sensing an basic control loops to hours
in strategic decision making. In the mobile robotics area,
times are -roughly- the same. In faster applications (avionics,
machine control, etc) times can be one tenth of these.

L. Example application

The example for this pattern is the CONEX [26] application
(See Figure 2). It is and agent-based, distributed intelligent
control system developed for a cement kiln. This system
uses the LAYERS pattern to implement a multilayered control
system based on heterogeneous control technologies. The
objective of the controller is the optimization of clinker burn-
ing conditions (temperature, time, oxygen, etc). The system
was designed to maximize control capability to maintain kiln
conditions under strict margins.

All these layers were implemented using independent active
agents. Each agent was composed by two or more VMS
processes using message-based interactions over TCP/IP. This
approach made possible the execution of trustable (in logical
and temporal behavior) agents in one computer and non-
trustable agents in other computer. This division was of
extreme importance to provide365 × 24 availability of the
lower layers.

Reactive Control

Expert Control

Model-based Control

Sensors & Actuators

Low level Control

Human Operator

Cement Plant

Fig. 2. CONEX: An example of a layered intelligent controller for a cement
plant using the LAYERS pattern.

M. Variants

Minor deviations are usual in the application of this pattern.
Sometimes, specific layers do violate basic pattern design

guidelines to provide specific performance enhancements.
It is usual to find superimposed patterns in the same system,

because each design provides solutions to specific problems.
In the CONEX example, theModel and Simulatoragent
interacted with all the layers. It provided a three tiered model
of the plant (numerical, qualitative and knowledge based) to
support the whole range of activities of the rest of the system.

A variant that is included as another pattern in the ICa PL
is the CONTROL TUNER pattern.

N. Known Uses

Layers is used in all types of control systems with a
minimum of complexity.

VIII. C ONCLUSIONS

Design patterns are a very useful vehicle for design expres-
sion and design knowledge transmission.

In the field of complex control systems this is ofextreme
utility as the knowledge involved in the construction of any
complex applications spans several disciplines.

Patterns can effectively be used to transfer design knowl-
edge from different but complementary engineering perspec-
tives (control, software, reliability,etc.) using a common
language understood by all system stakeholders.

This paper has presented apattern schemaused in the
Integrated Control Architecture Pattern Language to capture
design knowledge of complex control systems.

This schema is being used to capture the wide design knowl-
edge used in the construction of complex control systems and
used to build new systems based on reusable components.

ParadigmsAlgorithms Architectures Policies

A Common Representation?A Common Representation?

FFT
A*

RETE

Feedforward

PID DCS

DSS Safety

EfficiencyMRAC

Fig. 3. The big challenge is finding a common pattern schema that can be
used for different types of complex controller design knowledge.

REFERENCES

[1] R. Sanz, M. J. Segarra, A. de Antonio, and J. A. Clavijo, “ICa: Middle-
ware for intelligent process control,” inIEEE International Symposium
on Intelligent Control, ISIC’1999, Cambridge, USA, 1999.

[2] R. Sanz, W. Schaufelberger, C. Pfister, and A. de Antonio, “Software for
complex control systems,” inControl of Complex Systems, K. A. ström,
P. Albertos, M. Blanke, A. Isidori, W. Schaufelberger, and R. Sanz, Eds.
Springer, 2000, ch. 7.

[3] R. Sanz, M. Segarra, A. de Antonio, I. Alarcón, F. Mat́ıa, and
A. Jiménez, “Plant-wide risk management using distributed objects,”
in IFAC SAFEPROCESS’2000, Budapest, Hungary, 2000.

[4] R. Sanz, “ORC::Industry,” inProceedings of the IEEE International
Symposium on Real-time Object-Oriented Computing, ISORC’2001,
Magdeburg, Germany, 2001.

[5] D. C. S. et al.,Pattern Oriented Software Architecture: Patterns for
Concurrent and Distributed Objects. Chichester: Wiley, 2000.

[6] M. Alarcón, P. Rodŕı guez, L. Almeida, R. Sanz, L. Fontaine, P. Gómez,
X. Alamán, P. Nordin, H. Bejder, and E. de Pablo, “Heterogeneous
integration architecture for intelligent control,”Intelligent Systems En-
gineering, 1994.

[7] J. S. Albus, “A reference model architecture for intelligent systems
design,” in An Introduction to Intelligent and Autonomous Control,
P. Antsaklis and K. Passino, Eds. Boston, MA: Kluwer Academic
Publishers, 1992, pp. 57–64.

[8] P. Bernus, L. Nemes, and T. J. Williams, Eds.,Architectures for
Enterprise Integration. London: Chapman & Hall, 1996.

[9] S. Bhansali, “Software synthesis using generic architectures,”Automated
Software Engineering, vol. 1, no. 3/4, pp. 239–279, 1994.

[10] K. Beck, J. O. Coplien, R. Crocker, L. Dominick, G. Meszaros,
F. Paulisch, and J. Vlissides, “Industrial experience with design patterns,”
in Proceedings of ICSE, 1996, pp. 103–114.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns.
Elements of Reusable Object Oriented Software. Reading, MA: Addi-
son-Wesley, 1995.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,Pat-
tern Oriented Software Architecture. A System of Patterns. Chichester,
UK: Wiley, 1996.

[13] T. Mowbray and R.C.Malveau,CORBA Design Patterns. Chichester:
Wiley, 1997.

[14] D. C. Schmidt and F. Kuhns, “An overview of the real-time CORBA
specification,”Computer, vol. 33, no. 6, pp. 56–63, June 2000.

[15] M. Pont,Patterns for Time-Triggered Embedded Systems: Building Re-
liable Applications with the 8051 Family of Microcontrollers. London:
Addison-Wesley, 2001.

[16] W. Brown, R. Malveau, H. McCormick, and T. Mowbray,Antipatterns:
Refactoring Software, Architectures and Projects in Crisis. Chichester:
Wiley, 1998.

[17] D. Lea, “Design patterns for avionics control systems,” State University
of New York, Oswego, Tech. Rep. ADAGE-OSW-94-01, November
1994, dSSA ADAGE Project.

[18] B. Selic and G. Gullekson, “Design patterns for real-time software,” in
Proceeding of Embedded Systems Conference West, 1996.

[19] S. Kuikka, T. Tommila, and O. Ventä, “Distributed batch process man-
agement framework based on design patterns and software components,”
in Proceedings of the 14th World Congress of IFAC, Beijing, China,
1999.

[20] R. Sanz, M. J. Segarra, A. de Antonio, F. Matı́a, A. Jiḿenez, and
R. Gaĺan, “Design patterns in intelligent control systems,” inProceed-
ings of IFAC 14th World Congress, Beijing, China, 1999.

[21] J. Eker and A. Blomdell, “Patterns in embedded control systems,” De-
partment of Automatic Control. Lund Institute of Technology, Techreport
ISRN LUFTD2/TFRT–7567–SE, October 1997.

[22] J. Zalewski, “Real-time software architectures and design patterns: fun-
damental concepts and their consequences,”Annual Reviews in Control,
vol. 25, no. 1, pp. 133–146, July 2001.

[23] J. O. Coplien and D. C. Schmidt,Pattern Languages of Program Design.
Reading, MA: Addison-Wesley, 1995.

[24] R. Buhr, “Understanding large-scale behavior patterns in complex sys-
tems,” Department of Systems and Computer Engineering, 1996.

[25] G. G. Saridis and K. P. Valavanis, “Analytical desing of intelligent
machines,”Automatica, vol. 24, no. 2, pp. 123–133, 1988.

[26] R. Sanz, A. Jiḿenez, and R. Galán, “CONEX: A distributed architecture
for intelligent process control,” inProceedings of the World Congress
on Expert Systems, Orlando, FL, 1991.

[27] A. Aarsten, D. Brugali, and G. Menga, “Designing concurrent and
distributed control systems,”Communications of the ACM, vol. 39,
no. 10, pp. 50–58, 1996.

