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1 INTRODUCTION

In May 1993, a task force was created at the invitation of the Technical Com-

mittee on Intelligent Control of the IEEE Control Systems Society to look into the

area of Intelligent Control and de�ne what is meant by the term. Its �ndings are

aimed mainly towards serving the needs of the Control Systems Society; hence the

task force has not attempted to address the issue of intelligence in its generality,

but instead has concentrated on deriving working characterizations of Intelligent

Control. Many of the �ndings however may apply to other disciplines as well.

The charge to the task force was to characterize intelligent control systems, to

be able to recognize them and distinguish them from conventional control systems;

to clarify the role of control in intelligent systems; and to help identify problems

where intelligent control methods appear to be the only viable avenues.

In accomplishing these goals, the emphasis was on working de�nitions and useful

characterizations rather than aphorisms. It was accepted early on that more than

one de�nition of intelligent systems may be necessary, depending on the view taken

and the problems addressed.

In the remaining of this introduction, the di�erent parts of this report are de-

scribed and the process that led to this document is outlined. But �rst, a brief

introduction to the types of control problems the area of intelligent control is ad-

dressing is given and the relation between conventional and intelligent control is

clari�ed.

1.1 Conventional and Intelligent Control

The term "conventional (or traditional) control" is used here to refer to the

theories and methods that were developed in the past decades to control dynamical

systems, the behaviour of which is primarily described by di�erential and di�erence

equations. Note that this mathematical framework may not be general enough

in certain cases. In fact it is well known that there are control problems that

cannot be adequately described in a di�erential/di�erence equations framework.

Examples include discrete event manufacturing and communication systems, the

study of which has led to the use of automata and queuing theories in the control

of systems.

In the minds of many people, particularly outside the control area, the term

"intelligent control" has come to mean some form of control using fuzzy and/or

neural network methodologies. This perception has been reinforced by a number

of articles and interviews mainly in the nonscienti�c literature. However intelligent

control does not restrict itself only to those methodologies. In fact, according to

some de�nitions of intelligent control (section 2) not all neural/fuzzy controllers

would be considered intelligent. The fact is that there are problems of control which

cannot be formulated and studied in the conventional di�erential/di�erence equation
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mathematical framework. To address these problems in a systematic way, a number

of methods have been developed that are collectively known as intelligent control

methodologies.

There are signi�cant di�erences between conventional and intelligent control

and some of them are described below. Certain of the issues brought forward in

this introduction are discussed in more detail in section 3 of this report. It is worth

remembering at this point that intelligent control uses conventional control methods

to solve "lower level" control problems and that conventional control is included in

the area of intelligent control. Intelligent control attempts to build upon and enhance

the conventional control methodologies to solve new challenging control problems.

The word control in "intelligent control" has di�erent, more general meaning

than the word control in "conventional control". First, the processes of interest are

more general and may be described, for example by either discrete event system

models or di�erential/di�erence equation models or both. This has led to the devel-

opment of theories for hybrid control systems, that study the control of continuous-

state dynamic processes by discrete-state sequential machines. In addition to the

more general processes considered in intelligent control, the control objectives can

also be more general. For example, "replace part A in satellite" can be the gen-

eral task for the controller of a space robot arm; this is then decomposed into a

number of subtasks, several of which may include for instance "follow a particular

trajectory", which may be a problem that can be solved by conventional control

methodologies. To attain such control goals for complex systems over a period of

time, the controller has to cope with signi�cant uncertainty that �xed feedback ro-

bust controllers or adaptive controllers cannot deal with. Since the goals are to be

attained under large uncertainty, fault diagnosis and control recon�guration, adap-

tation and learning are important considerations in intelligent controllers. It is also

clear that task planning is an important area in intelligent control design. So the

control problem in intelligent control is an enhanced version of the problem in con-

ventional control. It is much more ambitious and general. It is not surprising then

that these increased control demands require methods that are not typically used

in conventional control. The area of intelligent control is in fact interdisciplinary,

and it attempts to combine and extend theories and methods from areas such as

control, computer science and operations research to attain demanding control goals

in complex systems.

Note that the theories and methodologies from the areas of operations research

and computer science cannot, in general be used directly to solve control problems,

as they were developed to address di�erent needs; they must �rst be enhanced

and new methodologies need to be developed in combination with conventional

control methodologies, before controllers for very complex dynamical systems can

be designed in systematic ways. Also traditional control concepts such as stability

may have to be rede�ned when, for example, the process to be controlled is described

by discrete event system models; and this issue is being addressed in the literature.

Concepts such as reachability and deadlock developed in operations research and

computer science are useful in intelligent control, when studying planning systems.

Rigorous mathematical frameworks, based for example on predicate calculus are

being used to study such questions. However, in order to address control issues,

these mathematical frameworks may not be convenient and they must be enhanced

or new ones must be developed to appropriately address these problems. This is
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not surprising as the techniques from computer science and operations research

are primarily analysis tools developed for nondynamic systems, while in control,

synthesis techniques to design real-time feedback control laws for dynamic systems

are mainly of interest. In view of this discussion, it should be clear that intelligent

control research, which is mainly driven by applications has a very important and

challenging theoretical component. Signi�cant theoretical strides must be made

to address the open questions and control theorists are invited to address these

problems. The problems are nontrivial, but the pay-o� is very high indeed.

As it was mentioned above, the word control in intelligent control has a more

general meaning than in conventional control; in fact it is closer to the way the term

control is used in every day language. Because intelligent control addresses more

general control problems that also include the problems addressed by conventional

control, it is rather di�cult to come up with meaningful bench mark examples.

Intelligent control can address control problems that cannot be formulated in the

language of conventional control. To illustrate, in a rolling steel mill, for example,

while conventional controllers may include the speed (rpm) regulators of the steel

rollers, in the intelligent control framework one may include in addition, fault diag-

nosis and alarm systems; and perhaps the problem of deciding on the set points of

the regulators, that are based on the sequence of orders processed, selected based on

economic decisions, maintenance schedules, availability of machines etc. All these

factors have to be considered as they play a role in controlling the whole production

process which is really the overall goal. These issues are discussed in more detail in

section 3.

Another di�erence between intelligent and conventional control is in the sepa-

ration between controller and the system to be controlled. In conventional control

the system to be controlled, called the plant, typically is separate and distinct from

the controller. The controller is designed by the control designer, while the plant is

in general given and cannot be changed; note that recently attempts to coordinate

system design and control have been reported in areas such as space structures and

chemical processes, as many times certain design changes lead to systems that are

much easier to control. In intelligent control problems there may not be a clear

separation of the plant and the controller; the control laws may be imbedded and

be part of the system to be controlled. This opens new opportunities and challenges

as it may be possible to a�ect the design of processes in a more systematic way.

Research areas relevant to intelligent control, in addition to conventional control

include areas such as planning, learning, search algorithms, hybrid systems, fault

diagnosis and recon�guration, automata, Petri nets, neural nets and fuzzy logic.

In addition, in order to control complex systems, one has to deal e�ectively with

the computational complexity issue; this has been in the periphery of the interests

of the researchers in conventional control, but now it is clear that computational

complexity is a central issue, whenever one attempts to control complex systems.

It is appropriate at this point to brie
y comment on the meaning of the word

intelligent in "intelligent control". Note that the precise de�nition of "intelligence"

has been eluding mankind for thousands of years. More recently, this issue has been

addressed by disciplines such as psychology, philosophy, biology and of course by

arti�cial intelligence (AI); note that AI is de�ned to be the study of mental faculties

through the use of computational models. No consensus has emerged as yet of what

constitutes intelligence. The controversy surrounding the widely used IQ tests also
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points to the fact that we are well away from having understood these issues. In this

report we do not even attempt to give general de�nitions of intelligence. Instead we

introduce and discuss several characterizations of intelligent systems that appear

to be useful when attempting to address some of the complex control problems

mentioned above.

Some comments on the term "intelligent control" are now in order. Intelligent

controllers are envisioned emulating human mental faculties such as adaptation and

learning, planning under large uncertainty, coping with large amounts of data etc

in order to e�ectively control complex processes; and this is the justi�cation for

the use of the term intelligent in intelligent control, since these mental faculties are

considered to be important attributes of human intelligence. Certainly the term

intelligent control has been abused and misused in recent years by some, and this is

of course unfortunate. Note however that this is not the �rst time, nor the last that

terminology is used to serve one's purpose. Intelligent control is certainly a catchy

term and it is used (and misused) with the same or greater abundance by some, as for

example the term optimal has been used (or misused) by others; of course some of the

most serious o�enses involve the word "democracy"! For better or worse, the term

intelligent control is used by many. An alternative term is "autonomous (intelligent)

control". It emphasizes the fact that an intelligent controller typically aims to attain

higher degrees of autonomy in accomplishing and even setting control goals, rather

than stressing the (intelligent) methodology that achieves those goals; autonomous

control is also discussed in sections 2 and 3. On the other hand, "intelligent control"

is only a name that appears to be useful today. In the same way the "modern

control" of the 60's has now become "conventional (or traditional) control", as it

has become part of the mainstream, what is called intelligent control today may be

called just "control" in the not so distant future. What is more important than the

terminology used are the concepts and the methodology, and whether or not the

control area and intelligent control will be able to meet the ever increasing control

needs of our technological society. This is the true challenge.

I would like to �nish this brief outline with an optimistic note; and there are

many reasons for being optimistic. This is an excellent time indeed to be in the

control area. We are currently expanding our horizons, we are setting ambitious

goals, opening new vistas, introducing new challenges and we are having a glimpse

of the future that looks exciting and very promising.

1.2 Points of View

The list of the task force members can be found at the end of this report. This

report represents a collective view of what intelligent control is and what are its main

characteristics or dimensions. As usually happens, some of the members have had

greater input to the process than others. Independently of the amount of individual

contributions, however, it is fair to say that no member of the committee objects to

the main points made in this report. In addition, in the second part of this report in

section 3, task force members further explain and give reference to their own points

of view and this gives an opportunity for further reading into the subject. Some

additional references are also given.
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1.3 The Process

Before I outline the di�erent parts of this report, let me say a few words about

the procedure that led to its �nal version. After the task force was formed in May,

a position paper representing a particular point of view was aired to "get the ball

rolling". It certainly achieved that! Views were exchanged over email and animated

discussions were conducted o� and on during the whole summer. A �rst outline of

this report was sent to all members in late July. It tried to capture the main points

of view and to establish a desirable format for the report. At the end of August

a meeting took place at the 1993 International Symposium on Intelligent Control

in Chicago, and several task force members and non- members exchanged views

on the subject. It became apparent at that meeting that consensus was emerging.

Participants of that meeting sent their comments in writing to all the task force

members in September; a draft of this �nal report was put together in October,

with the �nal version being prepared in November and December 1993.

1.4 Report Outline

This report consists of twomain parts. The �rst part, in section 2, has the form of

an executive summary and the second part in section 3 contains additional material

and some references. Speci�cally, in section 2 de�nitions of intelligent systems and

of degrees of intelligence are given, and the role of control in intelligent systems is

explained. The di�erent characteristics or dimensions of intelligent systems such as

autonomy, learning and hierarchies are then discussed. Section 3 contains edited

versions of some of the email exchanges and additional comments by the task force

members, together with some references for further reading. They were included

in an attempt to further clarify the issues brought forward in the �rst part of this

report. They are meant to supplement the material in section 2 and to provide some

guidance and references in exploring the area of Intelligent Control.

As the chair of the Task Force on Intelligent Control I had the role of coordi-

nating the discussions and exchanges of the di�erent points of view. I also drafted

this report, which was then �nalized with the help of the members of the task force,

whom I would like to thank for their contributions and insights. I used my own

judgement in selecting the format, the particular form of de�nitions, and in empha-

sizing particular aspects and characteristics of intelligent systems; and any errors

are entirely mine. My aim was to extract the main points out of lengthy email ex-

changes and to write a report that represents the collective view of the Task Force

on Intelligent Control. I hope that this report will be useful to the members of the

Control Systems Society, that it will help identify and clarify the main issues in the

area of Intelligent Control Systems, and will provide information and incentives for

further study.

Submitted by

Panos J. Antsaklis

Chair, Task Force on Intelligent Control

IEEE Control Systems Society
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2 INTELLIGENT CONTROL AND ITS DIMENSIONS

Intelligence and intelligent systems can be characterized in a number of ways and

along a number of dimensions. There are certain attributes of intelligent systems,

common in many de�nitions, that are of particular interest to the control community.

These are emphasized in this report.

In the following, several alternative de�nitions and certain essential characteris-

tics of intelligent systems are �rst discussed. A brief working de�nition of intelligent

systems that captures their common characteristics is then presented. In more

detail, we start with a rather general de�nition of intelligent systems, we discuss

levels of intelligence, we explain the role of control in intelligent systems and outline

several alternative de�nitions. We then discuss adaptation and learning, autonomy

and the necessity for e�cient computational structures in intelligent systems, to deal

with complexity. We conclude with a brief working characterization of intelligent

(control) systems, some examples and a list of important future research directions.

2.1 Intelligent Systems

We start with a general characterization of intelligent systems:

An intelligent system has the ability to act appropriately in an uncertain en-

vironment, where an appropriate action is that which increases the probability of

success, and success is the achievement of behavioral subgoals that support the

system's ultimate goal.

In order for a man-made intelligent system to act appropriately, it may emulate

functions of living creatures and ultimately human mental faculties. An intelligent

system can be characterized along a number of dimensions. There are degrees or lev-

els of intelligence that can be measured along the various dimensions of intelligence.

At a minimum, intelligence requires the ability to sense the environment, to make

decisions and to control action. Higher levels of intelligence may include the ability

to recognize objects and events, to represent knowledge in a world model, and to

reason about and plan for the future. In advanced forms, intelligence provides the

capacity to perceive and understand, to choose wisely, and to act successfully under

a large variety of circumstances so as to survive and prosper in a complex and often

hostile environment. Intelligence can be observed to grow and evolve, both through

growth in computational power and through accumulation of knowledge of how to

sense, decide and act in a complex and changing world.

The above characterization of an intelligent system is rather general. According

to this, a great number of systems can be considered intelligent. In fact, according

to this de�nition even a thermostat may be considered to be an intelligent system,

although of low level of intelligence. It is common however to call a system intelligent

when in fact it has a rather high level of intelligence.

There exist a number of alternative but related de�nitions of intelligent systems

and in the following we mention several. They provide alternative, but related

characterizations of intelligent systems with emphasis on systems with high degrees

of intelligence.

The following de�nition emphasizes the fact that the system in question processes

information, and it focuses on man-made systems and intelligent machines:

A. Machine intelligence is the process of analyzing, organizing and converting data

into knowledge; where (machine) knowledge is de�ned to be the structured infor-

mation acquired and applied to remove ignorance or uncertainty about a speci�c
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task pertaining to the intelligent machine. This de�nition leads to the principle of

increasing precision with decreasing intelligence, which claims that: applying ma-

chine intelligence to a data base generates a 
ow of knowledge, lending an analytic

form to facilitate modeling of the process.

Next, an intelligent system is characterized by its ability to dynamically assign

subgoals and control actions in an internal or autonomous fashion:

B. Many adaptive or learning control systems can be thought of as designing a

control law to meet well-de�ned control objectives. This activity represents the sys-

tem's attempt to organize or order its "knowledge" of its own dynamical behavior,

so to meet a control objective. The organization of knowledge can be seen as one

important attribute of intelligence. If this organization is done autonomously by

the system, then intelligence becomes a property of the system, rather than of the

system's designer. This implies that systems which autonomously (self)-organize

controllers with respect to an internally realized organizational principle are intelli-

gent control systems.

A procedural characterization of intelligent systems is given next:

C. Intelligence is a property of the system which emerges when the procedures

of focusing attention, combinatorial search, and generalization are applied to the

input information in order to produce the output. One can easily deduce that once

a string of the above procedures is de�ned, the other levels of resolution of the

structure of intelligence are growing as a result of the recursion. Having only one

level structure leads to a rudimentary intelligence that is implicit in the thermostat,

or to a variable-structure sliding mode controller.

2.2 Control and Intelligent Systems

The concepts of intelligence and control are closely related and the term "In-

telligent Control" has a unique and distinguishable meaning. An intelligent system

must de�ne and use goals. Control is then required to move the system to these

goals and to de�ne such goals. Consequently, any intelligent system will be a con-

trol system. Conversely, intelligence is necessary to provide desirable functioning

of systems under changing conditions, and it is necessary to achieve a high degree

of autonomous behavior in a control system. Since control is an essential part of

any intelligent system, the term "Intelligent Control Systems" is sometimes used

in engineering literature instead of "Intelligent Systems" or "Intelligent Machines".

The term "Intelligent Control System" simply stresses the control aspect of the

intelligent system.

Below, one more alternative characterization of intelligent (control) systems is

included. According to this view, a control system consists of data structures or

objects (the plant models and the control goals) and processing units or methods

(the control laws):

D. An intelligent control system is designed so that it can autonomously achieve a

high level goal, while its components, control goals, plant models and control laws

are not completely de�ned, either because they were not known at the design time

or because they changed unexpectedly.

2.3 Characteristics or Dimensions of Intelligent Systems.

There are several essential properties present in di�erent degrees in intelligent

systems. One can perceive them as intelligent system characteristics or dimensions
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along which di�erent degrees or levels of intelligence can be measured. Below we

discuss three such characteristics that appear to be rather fundamental in intelligent

control systems.

Adaptation and Learning

The ability to adapt to changing conditions is necessary in an intelligent system.

Although adaptation does not necessarily require the ability to learn, for systems to

be able to adapt to a wide variety of unexpected changes learning is essential. So

the ability to learn is an important characteristic of (highly) intelligent systems.

Autonomy and Intelligence

Autonomy in setting and achieving goals is an important characteristic of in-

telligent control systems. When a system has the ability to act appropriately in

an uncertain environment for extended periods of time without external interven-

tion it is considered to be highly autonomous. There are degrees of autonomy; an

adaptive control system can be considered as a system of higher autonomy than a

control system with �xed controllers, as it can cope with greater uncertainty than

a �xed feedback controller. Although for low autonomy no intelligence (or "low"

intelligence) is necessary, for high degrees of autonomy, intelligence in the system

(or "high" degrees of intelligence) is essential.

Structures and Hierarchies

In order to cope with complexity, an intelligent system must have an appropriate

functional architecture or structure for e�cient analysis and evaluation of control

strategies. This structure should be "sparse" and it should provide a mechanism

to build levels of abstraction (resolution, granularity) or at least some form of par-

tial ordering so to reduce complexity. An approach to study intelligent machines

involving entropy emphasizes such e�cient computational structures. Hierarchies

(that may be approximate, localized or combined in heterarchies) that are able to

adapt, may serve as primary vehicles for such structures to cope with complexity.

The term "hierarchies" refers to functional hierarchies, or hierarchies of range and

resolution along spatial or temporal dimensions, and it does not necessarily imply

hierarchical hardware. Some of these structures may be hardwired in part. To cope

with changing circumstances the ability to learn is essential so these structures can

adapt to signi�cant, unanticipated changes.

In Summary-A Working De�nition

In view of the above, a working characterization of intelligent systems (or of

(highly) intelligent (control) systems or machines) that captures the essential char-

acteristics present in any such system is:

An intelligent system must be highly adaptable to signi�cant unanticipated

changes, and so learning is essential. It must exhibit high degree of autonomy

in dealing with changes. It must be able to deal with signi�cant complexity, and

this leads to certain sparse types of functional architectures such as hierarchies.
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2.4 Some Examples

Below, a list of man-made systems that solve complex problems and incorporate

some of the above essential characteristics of intelligent control systems is given.

The intention, in including such list, is to point out the fact that such systems do

exist. Note that the list is far from complete, and it only contains the cases brought

forward by task force members.

An example of a Hierarchically Intelligent Control System was designed and built

at the NASA CIRSSE/RPI labs, to do truss construction remotely in deep space

for the NASA Space Station "Freedom". The coordination and Execution levels

were built using Petri nets, sensing (VSS) and motion control (CTOS) respectively.

The innovation of the project was that a system (CTOS), was directing the 
ow

of data at the execution level located at the site, while only commands were com-

municated to and from the coordination level on earth. Thus the system was very

e�cient requiring a narrow bandwidth communication line. The system was tested

by controlling a truss assembly at RPI, from NASA Johnson in Houston through

a telephone line. The Organization level was replaced by a human manager; the

design was completed using a Boltzmann machine Neural net, but was never built.

An Intelligent controller for a mobile robot was also planned but never built at

CIRSSE/RPI.

The following are examples of intelligent control systems in NIST's (National In-

stitute for Standards and Technology) RCS (Real-time Control System) implementa-

tions: Robot vision-based object pursuit; Robot Deburring; Composites Fabrication;

Automated Manufacturing Research Facility; Robot Machine Loading/Unloading

for a Milling Workstation; Robot Cleaning and Deburring Workstation; Robot

Deburring and Chamfering Workstation; Multiple Autonomous Undersea Vehicles;

NASA Space Station Telerobotics (NASREM); Army Field Material Handling Robot;

DARPA Submarine Automation (SOAS); BOM Coal Mine Automation; Army Un-

manned Land Vehicles: TEAM vehicle project, TMAP vehicle project. Robotics

Testbed project, RT Demo I testbed; Air Force Next Generation Controller (NGC);

NCMS Next Generation Inspection System (NGIS); DOT Intelligent Highway Ve-

hicle Vision based road following; NIST RoboCrane; Navy/NIST/ARPA Enhanced

Machine Controller.

Other examples include mobile robots that exhibit some autonomy at Oak Ridge

National Lab, Robotic Division; an intelligent controller for OSPREY machine in-

stalled at navy research center developed at Drexel University; autonomous robots

at Georgia Tech.

2.5 Future Research Directions

A list of important and promising research topics in intelligent control is given

below. Although the list may not be complete, it includes some of the directions

along which the �eld ought to be making progress in the next few years.

1. Mathematical modeling and analysis of intelligent control systems; in both

discrete event and hybrid frameworks. Model identi�cation; adaptive methods

to derive higher level, more abstract models.

2. Fault detection and identi�cation, control recon�guration; also alarms and

health monitoring.
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3. Planning and learning control systems.

4. E�cient computational frameworks and algorithms to deal with complexity.

5. Emphasis on applications and on integrated intelligent control systems; im-

portant automotive, manufacturing and aerospace applications.

In section 3, the issues brought forward in this section are further discussed.
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3 POINTS OF VIEW OF INTELLIGENT CONTROL

This section consists of additional material that helps clarify the issues addressed

in the previous section and includes references for further reading. This material

was contributed by the task force members, all recognized for their contributions in

the area of intelligent control.

3.1 On Intelligence and its Dimensions

by J.S. Albus

A de�nition of intelligence is �rst given and then the dimensions of intelligence

are discussed; see [1] for further discussion.

De�nition of Intelligence

In order to be useful in the quest for a general theory, the de�nition of intelligence

must not be limited to behavior that is not understood. A useful de�nition of

intelligence should span a wide range of capabilities, from those which are well

understood, to those which are beyond comprehension. It should include both

biological and machine embodiments, and these should span an intellectual range

from that of an insect to that of an Einstein, from that of a thermostat to that of

the most sophisticated computer system that could ever be built. The de�nition

of intelligence should, for example, include the ability of a robot to spotweld an

automobile body, the ability of a bee to navigate in a �eld of wild 
owers, a squirrel

to jump from limb to limb, a duck to land in a high wind, and a swallow to work

a �eld of insects. It should include what enables a pair of blue jays to battle in the

branches for a nesting site, a pride of lions to pull down a wildebeest, a 
ock of geese

to migrate south in the winter. It should include what enables a human to bake a

cake, play the violin, read a book, write a poem, �ght a war, or invent a computer.

At a minimum, intelligence requires the ability to sense the environment, to

make decisions, and to control action. Higher levels of intelligence may include the

ability to recognize objects and events, to represent knowledge in a world model, and

to reason about and plan for the future. In advanced forms, intelligence provides

the capacity to perceive and understand, to choose wisely, and to act successfully

under a large variety of circumstances so as to survive, prosper, and reproduce in a

complex and often hostile environment.

From the viewpoint of control theory, intelligence might be de�ned as a knowl-

edgeable "helmsman of behavior". Intelligence is the integration of knowledge and

feedback into a sensory-interactive goal-directed control system that can make plans,

and generate e�ective, purposeful action directed toward achieving them.

From the viewpoint of psychology, intelligence might be de�ned as a behavioral

strategy that gives each individual a means for maximizing the likelihood of propa-

gating its own genes. Intelligence is the integration of perception, reason, emotion,

and behavior in a sensing, perceiving, knowing, caring, planning, acting system that

can succeed in achieving its goals in the world.

For the purposes of this paper [1], intelligence will be de�ned as the ability of a

system to act appropriately in an uncertain environment, where appropriate action

is that which increases the probability of success, and success is the achievement of

behavioral subgoals that support the system's ultimate goal.
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Both the criteria of success and the system's ultimate goal are de�ned external

to the intelligent system. For an intelligent machine system, the goals and success

criteria are typically de�ned by designers, programmers, and operators. For intelli-

gent biological creatures, the ultimate goal is gene propagation, and success criteria

are de�ned by the processes of natural selection.

There are degrees, or levels, of intelligence, and these are determined by:

1. the computational power of the system's brain (or computer),

2. the sophistication of algorithms the system uses for sensory processing, world

modeling, behavior generating, value judgment, and global communication,

and

3. the information and values the system has stored in its memory.

Intelligence can be observed to grow and evolve, both through growth in com-

putational power, and through accumulation of knowledge of how to sense, decide,

and act in a complex and changing world. In arti�cial systems, growth in computa-

tional power and accumulation of knowledge derives mostly from human hardware

engineers and software programmers. In natural systems, intelligence grows, over

the lifetime of an individual, through maturation and learning; and over intervals

spanning generations, through evolution.

Note that learning is not required in order to be intelligent, only to become more

intelligent as a result of experience. Learning is de�ned as consolidating short-term

memory into long-term memory, and exhibiting altered behavior because of what

was remembered. In [1], learning is discussed as a mechanism for storing knowledge

about the external world, and for acquiring skills and knowledge of how to act.

It is, however, assumed that many creatures can exhibit intelligent behavior using

instinct, without having learned anything.

Dimensions of Intelligence

The dimensions of intelligence may be thought of as elements in an intelligence-

vector (or IQ vector) de�ned by parameters such as:

Computing power, number of processors, interprocess communications; Mem-

ory size, storage and retrieval functions; Knowledge representation mechanisms, in-

cluding: Maps, Symbols, Attribute-value pairs, States and state- variables; Knowl-

edge presentation systems such as: Query-reply, Question-answering, List searching;

Functional capabilities such as: Motor skills, Perceptual skills, Reasoning and prob-

lem solving, Value judgment functions; Sensory resolution and range in terms of:

Number and resolution of pixels (vision, touch, hearing), Spectral range and resolu-

tion, Temporal range and resolution (hearing, speech); Sensory processing: Signals

to symbols, Detection and recognition, Recursive estimation, Haptic perception, Un-

certainty and probability; Planning and predictive capabilities such as the ability

to: Predict the results of actions, Predict actions of the world, Predict actions of

other agents; Value judgment capabilities: Compute cost, risk, and bene�ts, Evalu-

ate observed events, objects, and situations, Evaluate predicted outcomes, Generate

rewards and punishments for learning, Assign priorities to behavioral tasks; Learn-

ing capabilities such as the abilities to: Remember objects, experiences, stories,

12



symbols, Learn skills and tasks, Learn from experience, Learn from a teacher, Learn

from symbolic text;

Along each of these dimensions, there are degrees or levels of capability. These

dimensions de�ne a space of intelligent systems, and the intellectual capabilities (or

IQ) of any particular system at any particular time can be represented as a point (or

vector) in that space. The origin of this space corresponds to the set of systems that

have zero level of capability along all dimensions. Thus the origin of the space of

intelligent systems consists of a point representing the set of non-intelligent systems.

The point in IQ space thus moves as the intelligence of the system grows or

changes (possibly through learning or forgetting, or through acquiring new skills or

losing skills).

[1]. Albus J.S., "Outline for a Theory of Intelligence", IEEE Transactions on Sys-

tems, Man and Cybernetics, Vol. 21, No.3, May/June 1991.

[2]. Albus J.S., "A Reference Model Architecture for Intelligent Systems Design", in

Antsaklis P.J., Passino K.M., eds., An Introduction to Intelligent and Autonomous

Control, Kluwer Academic Publishers, Norwell, MA, 1993.
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3.2 On Autonomy and Intelligence in Control

by P.J. Antsaklis

In the design of controllers for complex dynamical systems there are needs today

that cannot be successfully addressed by the existing conventional control theory.

They mainly pertain to the area of uncertainty. Heuristic methods may be needed

to tune the parameters of an adaptive control law. New control laws to perform

novel control functions to meet new objectives should be designed while the system

is in operation. Learning from past experience and planning control actions may be

necessary. Failure detection and identi�cation is needed. Such functions have been

performed in the past by human operators. To increase the speed of response, to

relieve the operators from mundane tasks, to protect them from hazards, high degree

of autonomy is desired. To achieve this, high level decision making techniques for

reasoning under uncertainty and taking actions must be utilized. These techniques,

if used by humans, may be attributed to intelligent behavior. Hence, one way to

achieve high degree of autonomy is to utilize high level decision making techniques,

intelligent methods, in the autonomous controller. Autonomy is the objective, and

intelligent controllers are one way to achieve it. More detailed treatment of the

issues brought forward in the following can be found in [1], [2] and [3].

The need for quantitative methods to model and analyze the dynamical behav-

ior of such autonomous systems presents signi�cant challenges well beyond current

capabilities. The development of autonomous controllers requires signi�cant inter-

disciplinary research e�ort as it integrates concepts and methods from areas such as

Control, Identi�cation, Estimation, and Communication Theory, Computer Science,

Arti�cial Intelligence, and Operations Research.

Conventional Control - Evolution

The �rst feedback device on record was the water clock invented by the Greek

Ktesibios in Alexandria Egypt around the 3rd century B.C. This was certainly a

successful device as water clocks of similar design were still being made in Baghdad

when the Mongols captured the city in 1258 A.D.! The �rst mathematical model

to describe plant behavior for control purposes is attributed to J.C. Maxwell, of the

Maxwell equations' fame, who in 1868 used di�erential equations to explain insta-

bility problems encountered with James Watt's 
yball governor; the governor was

introduced in 1769 to regulate the speed of steam engine vehicles. Control theory

made signi�cant strides in the past 120 years, with the use of frequency domain

methods and Laplace transforms in the 1930s and 1940s and the development of

optimal control methods and state space analysis in the 1950s and 1960s. Optimal

control in the 1950s and 1960s, followed by progress in stochastic, robust and adap-

tive control methods in the 1960s to today, have made it possible to control more

accurately signi�cantly more complex dynamical systems than the original 
yball

governor.

When J.C Maxwell used mathematical modeling and methods to explain insta-

bility problems encountered with James Watt's 
yball governor, it demonstrated

the importance and usefulness of mathematical models and methods in understand-

ing complex phenomena and signaled the beginning of mathematical system and
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control theory. It also signalled the end of the era of intuitive invention. The 
yball

governor worked adequately for a long time meeting the needs of the period. As

time progressed and more demands were put on the device there came a point when

better and deeper understanding of the device was necessary, as it started exhibit-

ing some undesirable and unexplained behavior, in particular unstable oscillations.

This is quite typical of the situation in man made systems even today. Similarly to

the 
yball governor, one can rely on systems developed based mainly on intuitive

invention so much. To be able to control highly complex and uncertain systems we

need deeper understanding of the processes involved and systematic design methods,

we need quantitative models and design techniques.

Conventional control systems are designed today using mathematical models of

physical systems. A mathematical model, which captures the dynamical behavior

of interest is chosen and then control design techniques are applied, aided by CAD

packages, to design the mathematical model of an appropriate controller. The con-

troller is then realized via hardware or software and it is used to control the physical

system. The procedure may take several iterations. The mathematical model of the

system must be "simple enough" so that it can be analyzed with available math-

ematical techniques, and "accurate enough" to describe the important aspects of

the relevant dynamical behavior. It approximates the behavior of a plant in the

neighborhood of an operating point.

The control methods and the underlying mathematical theory were developed

to meet the ever increasing control needs of our technology. The need to achieve

the demanding control speci�cations for increasingly complex dynamical systems

has been addressed by using more complex mathematical models such as nonlinear

and stochastic ones, and by developing more sophisticated design algorithms for,

say, optimal control. The use of highly complex mathematical models however,

can seriously inhibit our ability to develop control algorithms. Fortunately, simpler

plant models, for example linear models, can be used in the control design; this

is possible because of the feedback used in control which can tolerate signi�cant

model uncertainties in the plant and the environment. When the �xed feedback

controllers are not adequate, then adaptive controllers are used. Controllers can then

be designed to meet the speci�cations around an operating point, where the linear

model is valid and then via a scheduler a controller emerges which can accomplish the

control objectives over the whole operating range. This is, for example, the method

typically used for aircraft 
ight control and it is a method to design �xed controllers

for certain classes of nonlinear systems. Adaptive control in conventional control

theory has a speci�c and rather narrow meaning. In particular it typically refers

to adapting to variations in the constant coe�cients in the equations describing

the linear plant; these new coe�cient values are identi�ed and then used, directly

or indirectly, to reassign the values of the constant coe�cients in the equations

describing the linear controller. Adaptive controllers provide for wider operating

ranges than �xed controllers and so conventional adaptive control systems can be

considered to have higher degrees of autonomy than control systems employing �xed

feedback controllers.

At this point the seminal contributions of Norbert Wiener, the father of Cyber-

netics, to human-machine interaction should be mentioned. Note that many of the

ideas in intelligent control have been in
uenced by past theories and methods. What

is di�erent now is that much faster, and better understood, machines are available
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today than ever before. So the dreams of yesterday may become reality in the not

so distant future.

Intelligent Control for High Autonomy Systems

There are cases where we need to signi�cantly increase the operating range. We

must be able to deal e�ectively with signi�cant uncertainties in models of increas-

ingly complex dynamical systems, in addition to increasing the validity range of our

control methods. We need to cope with signi�cant unmodelled and unanticipated

changes in the plant, in the environment and in the control objectives. This will

involve the use of intelligent decision making processes to generate control actions so

that certain performance level is maintained even though there are drastic changes

in the operating conditions. It is useful to keep in mind an example which we may

call the Houston control example . It is an example that sets goals for the future

and it also teaches humility as it indicates how di�cult, demanding and complex

autonomous systems can be. Currently, if there is an unanticipated event on the

space shuttle, such as a malfunction or a set of new tasks to be accomplished, the

problem is addressed by the large number of engineers working in Houston Control,

the ground station. After the problem is solved on the ground, the speci�c detailed

instructions about how to deal with the problem are sent to the shuttle. Imagine the

time when we will need all the tools and expertise of all Houston Control engineers,

that are related to speci�c problems, aboard the space vehicle, or the space shuttle,

for extended space travel. This is certainly not an easy problem! What is certainly

possible in the near future is to incorporate some of this knowledge in the onboard

computers to achieve higher degrees of autonomy in achieving and setting goals than

it is the practice today, thus reducing the dependence on the ground stations and

on communication links.

In view of the above it is quite clear that in the control of complex systems, there

are requirements today that cannot be successfully addressed with the existing con-

ventional control theory. They mainly pertain to the area of uncertainty, present

because of poor models due to lack of knowledge, or due to high level models used to

avoid excessive computational complexity. Normally the plant is so complex that it

is either impossible or inappropriate to describe it with conventional mathematical

system models such as di�erential or di�erence equations. Even though it might be

possible to accurately describe some systems with highly complex nonlinear di�eren-

tial equations, it may be inappropriate if this description makes subsequent analysis

too di�cult or too computationally complex to be useful. The complexity of the

plant model needed in design depends on both the complexity of the physical system

and on how demanding the design speci�cations are. There is a tradeo� between

model complexity and our ability to perform analysis on the system via the model.

Depending on the control performance speci�cations, a more abstract, higher level

model can be utilized, which will make subsequent analysis simpler. This model

intentionally ignores some of the system characteristics, speci�cally those that need

not be considered in attempting to meet the particular performance speci�cations.

For example, a simple temperature controller could ignore almost all dynamics of the

house or the o�ce and consider only a temperature threshold model of the system

to switch the furnace o� or on. This naturally leads to the study of hybrid control

systems, which are continuous-state systems controlled by sequential machines [3].
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A number of research areas important to intelligent autonomous systems may

be identi�ed. They include the areas of: Hybrid Systems, Discrete Event Systems

Theory and Simulation, Restructurable Control, Failure Detection and Identi�cation

(FDI), Intelligent Systems, Hierarchical Systems, Planning and Expert Systems,

Machine Learning, Fuzzy Control, and Neural Networks.

Intelligent Autonomous Control as a Distinct Research Area

There may be the temptation to classify the area of intelligent autonomous sys-

tems as simply a collection of methods and ideas already addressed elsewhere, the

need only being some kind of intelligent assembly and integration of known tech-

niques. This is of course not true. The theory of control systems is not covered by the

area of applied mathematics because control has di�erent needs and therefore asks

di�erent questions. For example while in applied mathematics the di�erent solutions

of di�erential equations under di�erent initial conditions and forcing functions are

of interest, in control one typically is interested in �nding the forcing functions that

generate solutions, that is system trajectories, that satisfy certain conditions. This

is a di�erent problem, related to the �rst, but its solution requires the development

of quite di�erent methods. In a rather analogous fashion the problems of interest in

intelligent systems require development of novel concepts, approaches and methods.

In particular, while computer science typically deals with static systems and no

real-time requirements, control systems typically are dynamic and all control laws,

intelligent or not, must be able to control the system in real time. So in most cases

one cannot really just directly apply computer science methods to these problems.

Modi�cations and extensions are typically necessary for example in the quantitative

models used to study such systems. And although say Petri nets may be adequate to

model and study the autonomous behavior at certain levels of the hierarchy, these

models are not appropriate to address certain questions of importance to control

systems such as stability. It is not that quantitative methods developed in other

�elds are inferior, it is the fact that these methods were developed to answer dif-

ferent questions. In addition there are problems in intelligent autonomous control

systems that are novel and so they have not studied before at any depth. Such is

the case of hybrid systems that combine systems of continuous and discrete states

[3]. The marriage of all these �elds can only be bene�cial to all. Computer Science

and Operation Research methods are increasingly used in control problems, while

the control system ideas, such as feedback, and methods that are based on rigorous

mathematical framework can provide the base for new theories and methods in those

areas.

Hybrid System Modeling and Design

Being able to control a continuous-state system using a discrete-state supervisory

controller is a central problem in the highly autonomous control of physical systems.

The theory of hybrid system modeling and control addresses some of the important

issues of extracting higher level abstract models from more detailed ones [3].

Concluding Remarks
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Computational complexity is a major issue as the systems studied are typically

very complex. Reduced computational complexity may mean that the controller

can be implemented in real time. Without attempting to address the computa-

tional complexity issue it is impossible to achieve the levels of autonomy envisioned.

Systematically deriving more abstract models so that only the necessary information

is dealt with is essential; it is as essential or more than designing faster computers.

Incorporating dedicated sensors and actuators to identify changes and recon-

�gure the control laws may be necessary in high autonomy systems; this may be

necessary for example in satellites to accomplish failure diagnosis. Technological

breakthroughs are making large numbers of distributed sensors and actuators pos-

sible. This will certainly make recon�guration and higher autonomy more common

place. Areas such as sensor data fusion are becoming more important so to be able

to deal with the mass of available data. And methods to extract only the neces-

sary information from the data, which is related to the problem of extracting more

abstract models, are becoming essential in the quest for higher autonomy.

Improving existing control systems by adding on new features is a plausible

approach having high chances for success. This bottom-up approach builds upon

experience and uses existing knowledge. It is also easier to justify in applications,

where system failure is costly in human and material sense.

In summary, conventional control methods need to be enhanced, so that control

systems can be designed that cope with signi�cant changes in the plant, environment

and objectives. Note that the goal is control systems with higher degree of autonomy

in achieving and even setting control goals. It is stressed that autonomy is the design

requirement and intelligent methods appear to o�er some of the necessary tools to

achieve higher degrees of autonomy. The research area of intelligent autonomous

systems is a research area in its own right. It uses methods from a variety of areas but

it modi�es and extends them to address the particular problems of interest. There

is need to answer questions and resolve novel problems in Planning and Expert

Systems, in Learning and Neural Control, in Discrete Event Dynamical and Hybrid

Systems, in Recon�gurable Control Systems and FDI Systems to mention but a few.

There is great need for quantitative methods and mathematical rigor in the area;

there is need for systematically generating less detailed, more abstract models. On

going research in hybrid systems is attempting to address some of these problems.

[1]. Antsaklis P.J., Passino K.M. and Wang S.J.,"Towards Intelligent Autonomous

Control Systems: Architecture and Fundamental Issues", Journal of Intelligent and

Robotic Systems, Vol.1, pp.315-342, 1989.

[2]. Antsaklis P.J.and Passino K.M.,"Introduction to Intelligent Control Systems

with High Degrees of Autonomy", in An Introduction to Intelligent and Autonomous

Control, Antsaklis P.J., Passino K.M., eds., Kluwer Academic Publishers, Norwell,

MA, 1993.

[3]. Antsaklis P. J., Stiver J. A. and Lemmon M. D., "Hybrid System Modeling and

Autonomous Control Systems", Hybrid Systems, R L Grossman, A Nerode, A P

Ravn, H Rischel Eds, pp 366-392, Lecture Notes in Computer Science, LNCS 736,

Springer-Verlag, 1993.
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3.3 On Intelligence and Learning

by M.D. Lemmon

A supervisory control system uses discrete event systems to control the plant.

Such control systems can often be referred to as "intelligent" control systems be-

cause the actions of the controller attempt to mimic high level decision making

processes of human operators. This notion of machine intelligence, however, is not

entirely satisfying. At issue is the notion that mimicry of human decision making

constitutes intelligence. The traditional formulation of such controllers involve the

assignment of interpretations to logical symbols. Such interpretations allow us to

"explain" what the controller is attempting to do. In a temperature control system,

for instance, a certain range of temperatures might be designated as "TOO HOT",

thereby necessitating a control action to cool the system. The "intelligence" of the

system is buried in its interpretation of that symbol "TOO HOT". But where does

this interpretation originate? In general, it is the designer who provides symbol

interpretations. This means that it is not the system, but rather the system de-

signer who is intelligent. Therefore if we are to have an "intelligent" control system,

the system must have a capability for assigning symbol interpretations in an au-

tonomous manner. This capability can be referred to as "symbol binding". The

degree to which these associations can be done autonomously represents one way of

quantifying the system's intelligence.

There are a number of consequences to this view of machine intelligence. 1).

A desirable property of intelligent systems is that they are "adaptive". The ability

to adaptively bind symbols with respect to an underlying organizational principle

means that the system "understands" the meaning or signi�cance of that organi-

zational principle. 2). Intelligence is an internal property of the system. It is

not a behavior. The immediate consequence of this observation is that a system's

intelligence cannot always be determined by passive observation of behavior. In-

telligence must be determined by actively testing to see whether or not the system

is adaptively binding symbols with respect to an internally realized performance

principle. 3). A pragmatic reason for focusing on "intelligent" control systems is

that they endow the controlled system with enhanced autonomy. Examining the

anticipated applications of intelligent control, it is apparent that they are meant

for complex and unpredictable systems. This means that the system may change

so that the original symbol bindings may no longer represent a valid interpretation

of the system's symbolic behavior. If this occurs, then it is well within the realm

of possibility for our controller to happily "chunk" away and produce a stream of

nonsensical control directives. The reason this occurs is because the system has no

"understanding" of the signi�cance or meaning of the symbols it is manipulating.

The result of this situation is a system whose autonomy is circumscribed by an a

priori and possibly ad hoc set of symbol bindings. The pragmatic solution is to allow

the system to adaptively �x bindings with respect to an internal organizational or

performance principle. This is precisely what we should expect of an "intelligent"

control system.

The preceding discussion has introduced a perspective on intelligent control

which focuses on the way in which a system determines the interpretation of control

directives or policies. It was argued that a desirable property of intelligent control
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systems is that they bind symbol interpretations using an internal representation of

the plant's underlying control objective. In this regard, intelligent control can be

viewed as the ability of a system to autonomously organize its controller to achieve

a well-de�ned objective. Autonomy becomes an important attribute of intelligent

control in which the degree of autonomy quanti�es one aspect of the system's intel-

ligence.

[1] Lemmon M.D. and Antsaklis P.J., "Towards a Working Characterization of Intel-

ligent Supervisory Control", Technical Report of the ISIS Group (Interdisciplinary

Studies in Intelligent Systems), University of Notre Dame, ISIS-93- 008, Notre Dame,

IN, November, 1993.

[2]. Lemmon M. D., Stiver J. A. and Antsaklis P. J., "Event Identi�cation and

Intelligent Hybrid Control", Hybrid Systems, R L Grossman, A Nerode, A P Ravn,

H Rischel Eds, pp 269-296, Lecture Notes in Computer Science, LNCS 736, Springer-

Verlag, 1993.

[3]. Antsaklis P.J., Lemmon M. D. and Stiver J. A., "Learning to be Autonomous:

Intelligent Supervisory Control", Technical Report of the ISIS Group (Interdisci-

plinary Studies in Intelligent Systems), No. ISIS-93-003, Univ of Notre Dame, April

1993. Also in Intelligent Control: Theory and Practice, Gupta M.M., Sinha N.K.,

eds., IEEE Press, Piscataway, NJ, 1994.
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3.4 On Intelligent Control, Learning and Hierarchies

by A. Meystel

Why intelligent control? The need to deal with problems of uncertainty is not a

new one. However, only during the last decades, the signi�cant developments in the

computer area enabled new approaches to these problems: approaches employing

cognitive properties of intelligence including generalization, focusing attention, and

combinatorial search and others considered to be properties of human intelligence.

Note that all properties of intelligence including learning, recognition, existence of

resolution levels, can be reduced to existence of generalization, focusing attention,

and combinatorial search. Intelligent control focuses upon problems that otherwise

cannot be solved, or can be solved in a unsatisfactory way.

1. Control: Control is to direct a system to a preassigned goal or to maximize a

preassigned measure of utility under a set of speci�cations.

This directing can be done both in an open-loop as well as in a closed-loop fash-

ion. Open loop control presumes existence of a model of the system. The open-loop

control assignment invokes the process of "plan" generation ("planning") performed

e.g. by searching. Since the model is usually incomplete and/or inadequate, the

closed loop controller is required for error compensation which uses a feedback.

Thus, De�nition 1 presumes existence of a goal, a model, a plan, or a feedforward

control law, and a feedback control law - all determined for a particular resolution

of the control level.

2. Resolution (Scale, Granularity, Accuracy, Discretization): Resolution of the

control level is the size of the indistinguishability zone (tile) for the representation

of goal, model, plan and feedback law. Any control solution alludes to the idea of

resolution (scale, granularity, accuracy, distinguishability zone, discrete) explicitly,

or implicitly.

It turns out that resolution directly determines the complexity of computations.

In complex systems and situations one level of resolution is not su�cient because

the total space of interest is usually large, and the �nal accuracy is usually high

enough. So, if the total space of interest is represented with the highest accuracy,

the e (epsilon)-entropy of the system (the measure of its complexity) is very high.

E (epsilon)- entropy=log(total volume of space/elementary discrete of space).

The total space of interest is to be considered initially with a much lower res-

olution. Only a subset of interest is considered at a higher resolution. The subset

of this subset is considered with even higher resolution, and so on, until the highest

resolution is achieved. This consecutive focusing of attention results in a multilevel

task decomposition, and �nding the intermediate (nested) plans at several resolution

levels of the multiresolutional system.

We should start talking about complexity of the intelligent controller explicitly,

remember that intelligence is a tool of �ghting complexity, remember that this is

why the level of resolution emerge.

3. Multiresolutional (Multiscale, Multigranular) representation system: Mul-

tiresolutional system is de�ned as a data (knowledge) structure for representing the

model of our system at several resolution levels-scales. (A terminological comment:

instead of the word "multiresolutional system", a word "heterarchy" can be used

which is understood as follows: heterarchy - is a hierarchical organization of a het-
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erogeneous information (knowledge). "Hierarchy" is a more general term, it can be

related both to "homogeneous" and "heterogeneous" representations. We should

not abstain from using these terms if they are clearly de�ned. Multiscale system

seems to be a good term too).

In order to construct a multiresolutional (multiscale) system of representation,the

process of generalization is consecutively applied to the representation of the higher

levels of resolution. Generalization usually presumes clustering of the subsets and

substitution of them by entities of the higher level of abstraction. This is why in-

stead of the term "resolution levels" we use sometimes an expression "abstraction

levels" (which is the same as "generalization levels", "granularity levels", etc.).

4. Intelligent Control: Intelligent Control is a computationally e�cient proce-

dure of directing to a goal of a complex system with incomplete and inadequate

representation and under incomplete speci�cations of how to do this (acting ap-

propriately in an uncertain environment).((We can talk about the degree of com-

pleteness of the system representation and the speci�cations formulation: then all

levels of intelligence will be presented)) Sometimes, Intelligent Control presumes

working under not completely speci�ed problem which requires further clari�cation

during the functioning of the system. Intelligent control as a rule combines plan-

ning with on-line error compensation; it requires learning of both the system and the

environment to be a part of the control process. Most importantly: intelligent con-

trol usually employs generalization (G), focusing attention (FA), and combinatorial

search (CS) as its primary operators (GFACS) which leads to multiscale structures.

In all intelligent controllers, one can easily demonstrate presence of the GFACS

operators. It is also possible to demonstrate that using the set of GFACS operators

is not typical for conventional controllers, although the elements of GFACS are often

utilized. The following attributes of Intelligent Control are presumed: multiresolu-

tional (multiscale) system of goals, multiresolutional (multiscale) system of model

representation,multiresolutional (multiscale) system of plans, and multiresolutional

(multiscale) system of feedback control laws.

(A terminological comment: fuzzy logic controllers are tools of generalization and

focusing attention; neural networks are tools of generalization , focusing attention,

and combinatorial search; combinatorial search has many particular instantiations:

A-star, exhaustive search, complete, or approximate dynamic programming, etc.)

5. Intelligence

Intelligence is a control tool.(for the system at hand) that has emerged as a

result of evolution. Intelligence is oriented toward complexity reduction. Intelligence

allows for an increase in functionality with a reduction of computational complexity.

Intelligence grows through generation of multiresolutional (multigranular, mul-

tiscale) system of knowledge processing. Multiresolutional system of knowledge

processing is not hardwired. These multi-level systems are not `hardwired` hierar-

chies (although they can be in some cases); they are rather virtual hierarchies of

perception, representation of the World Model, i.e. knowledge representation, and

representations of decisions. As the new concept emerges - a new `node`is created.

Intelligence can be evaluated by a"degree of intelligence". The de�nition of intel-

ligent control should be based on the properties of intelligence as we understand

them rather than the virtue of using some particular hardware components. The

following properties can be used for evaluating the degree of intelligence a) Error

compensation - low level of intelligence (Level 1), b) Planning+error compensation
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within the vocabulary of the designer - medium level of intelligence (Level 2), c)

Planning+error compensation with creation of new alternatives not introduced pre-

viously by the designer - high level of intelligence (Lever 3), d) Reformulation of

assignment in changing situation-very high level of intelligence (Level 4).

6. Learning.

Maintenance of the multiresolutional system of representation is done by learning

which employs the same set of GFACS operators. Levels of resolution are selected to

minimize the complexity of computations. Planning and determining of the feedback

control laws is also done by joint using of generalization, focusing of attention, and

combinatorial search (GFACS). When generalization is continuously done in the

course of time-varying of variables, it becomes a key tool of learning.

The process of generalization upon the time-varying functions is called learning

of a control system. It results in constant updating of the multiresolutional system

of representation, and thus, in improvement of plans and feedback control laws.

Learning is a component of this multiresolutional knowledge processing.

The operation of learning was associated with the layers: each layer is learning

separately: all learning processes (at particular levels) are connected via their re-

sults. Learning experiences can be organized ONLY by using a multiresolutional

structure! (This is how it is done in the neural nets too.) Levels are not hard-

wired,they are constructed from the information at hand.

7.Nesting

Nesting is a property of recursively applying the same procedures of multireso-

lutional knowledge processing within the operator of processing at a level. Levels of

the multiresolutional intelligent controller are nested one within another. The levels

function as separate controllers.

a. This separation in levels is a result of a need to reduce the complexity of

computations. Thus, instead of solving in one shot the whole problem with the

maximum volume of the state space and with the amount of high resolution details

one chose to solve several substantially simpler problems nested one within another.

b. Assigning of resolution levels is probably the most urgent problem of the area of

intelligent control: it should be done so to minimize the complexity of the controller.

However, each level of control has its perception, its world model, and its decision

making. Perceptions of all levels are nested one within another, world models are

nested one within another, decisions are nested one within another too. These

system would be impossible without generalization, focusing attention and combi-

natorial search. c. All these level controllers have limited resolution and they can

be de�ned as fuzzy controllers. All these controllers are part of the overall learning

process and cannot function unless an NN-like structure, recognizes of motion and

primitives of the world that can be correlated with each other.

8. Additional relevant issues:

8.1 Why has the property of intelligence emerged in the living creatures? In

the evolving Nature, the evolution of intelligence can be demonstrated as a tool of

survival that emerged in order to control the the systems in better correspondence

with the ever changing environment conditions and with the evolving needs and

`desires`. As the complexity of needs is growing, �ghting this complexity is becoming

a major role of intelligence.

8.2. Increasing functionality with reducing computational complexity-a funda-

mental result of the evolution of intelligence. This evolution of intelligence can be
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unequivocally interpreted as development of a system (together with its controller)

which allows for increasing the functionality of the system while �ghting with com-

putational complexity. This is why the ability to `generalize` emerges (`lumping`

for better storage and quicker computation). Generalization is a tool of creating a

new, abridged representation. The new representation `in generalities`, forms the

level of lower resolution . Since at lower resolution we can a�ord the larger scope

of attention - we can solve the problem of a larger picture. So, the decision of the

required resolution can be preceded by the decision at lower resolution, and so on.

8.3. Why hierarchies? We can call it "a hierarchy", or we can use another term,

but we cannot avoid labeling the structure of intelligent controller that by and large

boils down to a hierarchy. About `hierarchy`: GFACS recursively constructs levels

of representation, and levels of decision making, obviously supplemented by levels of

perception. So, the system which employs GFACS as an elementary computational

package builds itself as a system of multiple levels of representation. As a result

of this consecutive levels construction it arrives with a low resolution level which

contains maximum of what the system knows - in a compact, generalized, aggregated

form. The next level is dealing with a subset of this low resolution picture - but

with more details, i.e. at a higher resolution (and so on recursively). For the whole

process of decision making several resolution levels are required. Each of these

levels executes the same chain: perception-knowledge processing- decision making.

Should we call this multilayer system a hierarchy? I think, the term to be chosen

is a secondary issue. At least for the knowledge representation system it can be

considered as such. Object-orientedness emerges when we are dealing with entities.

Multiresolutional `nestedness` is obvious when no entities are listed and we describe

textures. Is it a single-principle hierarchy? Not at all. It can be - for a simple case.

In general case it is a mixture of hierarchies based on many principles - a heterarchy.

But no matter what term we will agree upon: hierarchy, heterarchy, hierarchical

network, multiresolutional hierarchy, multigranular network - it is a layered system

of multiresolutional representation with decision making processes performed at

each level. Representations are nested and decomposable. Decisions are nested and

decomposable too. Processes of the higher resolution can be guided by processes of

the lower resolution.

[1]. Meystel A., "Nested Hierarchical Control ", in Antsaklis P.J., Passino K.M.,

eds., An Introduction to Intelligent and Autonomous Control, Kluwer Academic

Publishers, Norwell, MA, 1993.

[2]. Meystel A., Autonomous Mobile Robots, World Scienti�c, 1991.

[3]. Meystel A., "Intelligent Control ", in Encyclopedia of Physics and Technology,

Academic Press, 1993.

24



3.5 On the Relevance of Control Engineering

by K.M. Passino

In this section we explain the control engineer's perspective on intelligent con-

trol systems. Let us begin by de�ning a "control methodology" to be the set of

techniques and procedures used to construct and/or implement a controller for a

dynamical system. For many intelligent control systems (e.g., fuzzy/neural con-

trollers, expert controllers, learning controllers, hierarchical intelligent controllers)

the controller construction methodology is largely heuristic and based on certain

principles from Arti�cial Intelligence or Operations Research. The intelligent con-

trollers are constructed to emulate, e.g., certain human cognitive functions to control

complex dynamical processes. In the end implementation, however, nothing magi-

cal is created. The resulting intelligent controller is just a heuristically constructed

nonlinear, perhaps adaptive system which is therefore amenable to control theoretic

approaches to analysis. For instance, the simple direct fuzzy controller is a static

nonlinear map, the expert controller may model certain "IF- THEN" statements

in a control implementation (a type of nonlinearity) to ensure reliable operation,

and many (numerical) learning controllers are types of nonlinear adaptive systems.

More complex, multi-layer intelligent controllers are very complex adaptive decision

making systems, but nevertheless they are nonlinear controllers (to convince yourself

of this think of the implementation or simulation of the intelligent control system -

if you can simulate it, you can write down equations representing it as a nonlinear

dynamical system).

Hence, from a control engineer's perspective the focus should be on whether

intelligent controllers are able to achieve higher performance with a greater degree

of autonomy than their conventional predecessors. To develop this focus further,

consider a general control system where P is a model of the plant, C represents

the controller, and T represents speci�cations on how we would like the closed

loop system to behave. For some classical control problems the scope is limited so

that C and P are linear and T simply represents, for example, stability, rise time,

and overshoot speci�cations. In this case intelligent control techniques may not be

needed. As engineers, the simplest solution that works is the best one. We tend to

need more complex controllers for more complex plants (where, for example, there is

a signi�cant amount of uncertainty) and more demanding closed loop speci�cations

T. Consider the case where: (i) P is so complex that it is most convenient to represent

it with ordinary di�erential and discrete event system models (or some other hybrid

mix of models) and for some parts of the plant the model is not known (or it is

too expensive to �nd), and (ii) T is used to characterize the desire to make the

system perform well and act with high degrees of autonomy (i.e., so that the system

performs well under signi�cant uncertainties in the system and its environment for

extended periods of time, and compensates for signi�cant system failures without

external intervention).

The general control problem is how to construct C, given P, so that T holds.

From a control engineer's perspective, researchers in the �eld of intelligent control

are trying to use intelligent (and conventional) control methodologies to solve this

general control problem. It is important to note that researchers in intelligent control

have been naturally led to focus on the very demanding general control problem

described above (i) in order to address pressing needs for practical applications, and
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(ii) since often there is a need to focus on representing more aspects of the plant

so that they can be used to reduce the uncertainty in making high level decisions

about how to perform control functions that are normally performed by humans.

Viewed as a control problem, the following research areas become very important

for the �eld of intelligent control: - mathematical models for intelligent control sys-

tems (di�erential equations, discrete event systems, hybrid systems) - systematic (or

perhaps automatable) design procedures for intelligent controllers - techniques for

nonlinear analysis to study stability, boundedness, convergence issues, limit cycles,

controllability, observability, robustness, etc. - performance analysis - simulation

techniques for intelligent systems (particularly, hybrid systems) - implementation

issues Hence, although intelligent controllers may operate in much more complex

fashion than many conventional controllers to solve control problems that are be-

yond the focus of conventional control, we can �nd much in common with the �eld

of conventional control in the areas of methodology and research issues.

Generally speaking the �eld of intelligent control is helping to expand the hori-

zons of the �eld of control theory. Much of the drive to expand the focus of conven-

tional control, through the �eld of intelligent control comes from the ever expanding

frontiers of technology. Clearly, computer science, engineering, and technology drive

the development of control theory, control engineering, and control technology by

providing alternative strategies for the functionality and implementation of con-

trollers for dynamical systems. For instance, the introduction of the microprocessor

had signi�cant impacts on: (i) the implementation and wide spread use of con-

trollers, (ii) the expansion of the role of control systems over the times when they

were implemented solely in an analog fashion, and (iii) the development of extensive

theoretical results in control theory. While a portion of control theory naturally

developed driven by technology, certain theoretical results allowed the technology

to expand its role due to the fact that they provided methods to "guarantee" that

the technology would work in critical environments (e.g., the use of stability theory

for ensuring the safe operation of controllers for nuclear reactors and aircraft).

Analogous statements can be made relative to more recent developments in com-

puter science and technology. For instance: What will the impact of highly parallel

processing (e.g., via neural networks), fuzzy processors, or techniques from AI have

on control engineering and the implementation of controllers? Is there a role for

theoretical and experimental engineering analysis in expanding the use of intelli-

gent control? From a control engineer's perspective, the �eld of intelligent control

is trying to answer important questions such as these. Overall, we have computers

with enhanced capabilities and we are trying to �gure out what we can do with this

added capability in the solution of control problems.

[1] Passino K.M., "Bridging the Gap Between Conventional and Intelligent Control",

Special Issue on Intelligent Control, IEEE Control Systems Magazine, Vol. 13,

pp. 12-18, 1993; See an expanded version of this paper: "Towards Bridging the

Perceived Gap Between Conventional and Intelligent Control", to appear in Gupta

M.M., Sinha N.K., eds., Intelligent Control: Theory and Practice, IEEE Press,

Piscataway, NJ, 1994.

[2] Antsaklis P.J., Passino K.M., eds., An Introduction to Intelligent and Autonomous

Control, Kluwer Academic Publishers, Norwell, MA, 1993.
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3.6 On the Analytic Formulation of Intelligent Controls

by G.N. Saridis

The theory of Intelligent Control systems, developed by Saridis combines the

powerful high-level decision making of the digital computer with advanced math-

ematical modeling and synthesis techniques of system theory and with linguistic

methods of dealing with imprecise or incomplete information [1]. This produces a

uni�ed approach for the design of Intelligent Machines. The theory may be thought

of as the result of the intersection of the three major disciplines of Arti�cial Intelli-

gence, Operations Research, and Control Theory. The theory is aimed at establish-

ing Intelligent Controls as an engineering discipline, with the purpose of designing

Intelligent Autonomous Systems of the future.

Intelligent Control provides the fusion between the mathematical and linguistic

methods and algorithms applied to systems and processes. It combines e�ectively

the results of cognitive systems research, with various mathematical programming

control techniques.

The control intelligence is hierarchically distributed according to the Principle

of Precision with Decreasing Intelligence (IPDI), evident in all hierarchical manage-

ment systems [2]. The analytic functions of an Intelligent Machine are implemented

by Intelligent Controls, using Entropy as a measure. The resulting structure is com-

posed of three basic levels of controls, each level of which may contain more than

one layer of tree-structured functions:

The organization level; is modeled after a Boltzmann machine for abstract rea-

soning, task planning and decision making; The coordination level; is composed of

a number of Petri Net Transducers supervised, for command exchange, by a dis-

patcher, which also serves as an interface to the organization level; The execution

level; includes the sensory, planning for navigation and control hardware which in-

teracts one-to-one with the appropriate coordinators, while a VME bus provides a

channel for database exchange among the several devices.

The functions involved in the upper levels of an intelligent machine are imitating

functions of human behavior and may be treated as elements of knowledge-based

systems. Actually, the activities of planning, decision making, learning, data storage

and retrieval, task coordination, etc., may be thought of as knowledge handling and

management [3].

[1] Saridis G.N. and Valavanis K.P., RAnalytical Design of Intelligent MachinesS,

Automatica the IFAC Journal, 24, No. 2, pp. 123-133, March 1988.

[2] Saridis G.N., RAnalytic Formulation of the IPDI for Intelligent MachinesS, Au-

tomatica the IFAC Journal, 25, No. 3, pp. 461-467, 1989.

[3] Valavanis K.P., Saridis G.N., Intelligent Robotic System Theory: Design and

Applications, Kluwer Academic Publishers, Boston, MA., 1992.

27



3.7 On Intelligence and Intelligent Control

by P. Werbos

A naive way of responding to the issue of "What is intelligent control" is to regard

this as an essentially empty issue of semantics. But there is more than semantics at

stake here, and semantics do have some real signi�cance. The word "intelligence"

has a long and important history, and it would be a great shame if we in control

decided to throw out its historical meaning. If we are attracted to concepts like

autonomy, perhaps we should call them "autonomous" control. Instead of arguing

over which concept gets into the de�nition, why not have separate words for separate

concepts?

The word "intelligent" has two kinds of meanings, historically. Above all, it refers

to the kinds of capabilities that the human brain possesses, in toto. Secondarily,

it refers to ideas from AI intended to replicate some vision of the key components

{ planning over time, reasoning, etc.. If we have lots of nice little incremental

improvements to make in control, I really wish we could agree to call them "smart

control" or "brilliant control," and leave the word " intelligent" alone. I'm afraid I

tend to view the usual supervisory control as one of those incremental improvements.

The formal statement I would personally propose to make about intelligent con-

trol is simply the one made in the two- page foreword in [1]: True intelligent con-

trol { control which replicates the most critical aggregate capabilities of human

intelligence{ does not exist in any arti�cial system today. A true intelligent con-

troller would, above all, have to be capable of maximizing some notion of goal-

achievement or utility over time in an uncertain, nonlinear environment, through

a learning process which can be implemented e�ciently on distributed hardware

analogous to networks of neurons in the brain. It would also have to be capable

of true real-time performance and learning. The learning and planning capabilities

should be enough to allow the ability to learn higher-order symbolic reasoning, in

principle, if enough hardware were available, to the extent that humans are capa-

ble of learning symbolic reasoning. Even though no one has built such a system

yet, there has been substantial progress in understanding the key prerequisites to

building such a system. The �eld of intelligent control may be de�ned as that com-

munity of researchers who believe that they have a clear plan or vision of how such

a controller might be built, through a strategic vision of current research opportu-

nities. The visions of how to reach this end point are in fact very varied. Some

of us hope that small incremental improvements of existing controllers may do the

job. Others believe that that is like trying to build an airplane by successive im-

provements in an auto engine used on the ground. It is very clear, however, that

the end point here cannot be achieved without a greater synthesis of new concepts

from neural network theory, from adaptive and optimal control theory, and from

various strands of AI, such as machine learning or fuzzy logic. It is also clear that

this will require true intellectual synthesis, and not just cutting and pasting; for ex-

ample, there are concepts involving approximate dynamic programming which may

provide a basis for unifying and implementing concepts from all these di�erent �elds

in a uni�ed learning control system. The development and understanding of true

intelligent control will require a great deal of boldness, but the potential bene�ts

are also enormous. In addition to the obvious technological bene�ts, it may well be
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that a mathematical, engineering-grounded understanding of intelligent control will

be an absolute prerequisite to a true understanding of intelligence as it exists in the

human brain and the human mind. From a strict scienti�c point of view, such an

understanding would be comparable in importance to Newton's discovery of gravity

(for which calculus was a prerequisite).

[1]. White D.A., Sofge D.A., eds., Handbook of Intelligent Control Neural, Fuzzy,

and Adaptive Approaches, Van Nostrand 1992.

[2]. Werbos P., "Elastic fuzzy logic: a better �t to neurocontrol and true intelli-

gence", Journal of Intelligent and Fuzzy Systems, Vol. 1, No. 4, 1993.

[3]. Werbos P., Roots of Backpropagation: From Ordered Derivatives to Neural

Networks and Political Forecasting, Wiley, 1993.
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3.8 Additional References

The following books are good sources of additional references on Intelligent Con-

trol Systems:

[1]. An Introduction to Intelligent and Autonomous Control, Antsaklis P.J., Passino

K.M., eds., Kluwer Academic Publishers, Norwell, MA, 1993.

[2]. Handbook of Intelligent Control Neural, Fuzzy, and Adaptive Approaches,

White D.A., Sofge D.A., eds., Van Nostrand 1992.

[3]. Intelligent Control: Theory and Practice, Gupta M.M., Sinha N.K., eds., IEEE

Press, Piscataway, NJ, 1994.

[4]. Meystel A., Autonomous Mobile Robots, World Scienti�c, 1991.

[5]. Valavanis K.P., Saridis G.N., Intelligent Robotic System Theory: Design and

Applications, Kluwer Academic Publishers, Boston, MA., 1992.
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