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Abstract

Intelligence is the exploitation of information to
perform better. From this perspective I propose
a definition of autonomy as a foundation for an
integrated interpretation of existing perspectives
of intelligent control system. This definition will
be used to gather to a common ground different
approaches to autonomy trying to combine some
of their research topics under a common point of
view. Some approaches to intelligent systems con-
struction are evaluated and the sterile discussion
on representation is addressed. The paper con-
cludes with some comments on the future of the
discipline of artificial intelligence in of real set-
tings.

Keywords: Intelligent control, robotics, au-
tonomous systems, intelligence, GOFAI, physi-
cally grounded systems, constructiveness.

1 Introduction

Using the words of James Thurber, I can say that
”The Anatomy of Confusion is a large subject, and I
have no intention of writing the standard treatise on
it, but I offer to whoever does, the most singular of all
my cases, the Case of the Cockeyed Spaniard” [Thurber
1953].

This paper is about a confusion regarding the
source and nature of intelligent behavior. This
confusion has emerged mainly in the area of
behavior-based robotics [Brooks 1990, Arkin 1998,
Brooks et al. 1998], in relation with the unneces-

sary and even pernicious use of representation-
based and cognition-oriented approaches in the
field of artificial intelligence (AI). This movement
opposing mental models tries to debunk the clas-
sical AI approach, searching for new foundations
for intelligent behavior.

Classical approaches to intelligence were based
on representational models where a generic pro-
cessor exploited the knowledge stored in a sym-
bolic representation. Paradigmatic examples of
this approach were generalized problem solvers
as GPS, STRIPS or Soar [Laird and Newell 1993].
These knowledge representations were usually
built using logic approaches like predicate calcu-
lus.

Some more recent approaches tend to diverge
from this representational paradigm, based on
the belief that they are inadequate as a basis for
real intelligent behavior. This misconception is
grounded in the demonstrated failures of classi-
cal AI when dealing with real settings. Robot
planners in toy or controlled worlds worked well
enough, but when used in real settings they
demonstrated an absolute incompetence.

I use the word misconception when due to this
failure to accomplish real tasks, researchers con-
clude that representation and reasoning can not be
the basis of intelligence. They ground this inter-
pretation in biological analogies that are a resem-
blance of Skinnerian behaviourism. Making an
analogy, we can conclude that cargo ships are not
a good basis for transport of merchandise because
they cannot deliver a pizza to my home. The con-
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clusion here is that generalized reasoners based on
deep representations are not good for carrying piz-
zas, not that they are not good for transport.

Put in other words, the types of problems that
artificial systems should solve and the type of so-
lutions suitable for them are quite heterogeneous;
both in transport systems and in intelligent sys-
tems.

Representation systems and reasoning mecha-
nisms based on them are demonstrably very use-
ful to achieve intelligent behavior. Behavior-based
approaches, on the other side, are also extremely
useful in other situations (for example to meet
real-time requirements). As we will see in this pa-
per, they are not ontologically different; behavior-
based systems are only a particular case of repre-
sentation based systems.

2 The nature of intelligence

It is well known that intelligence is considered an
elusive term [Bellman 1978]. This is a broadly ac-
cepted belief, even when most people do agree on
what is a proper use of it; i.e. we can conclude
that there exist a generalized consensus –at least
unconsciously– about what is a shared meaning of
the term.

As with many other things the problem of intel-
ligence is a problem of fuzziness. Paul is very intel-
ligent, his dog is quite intelligent and his armchair is
no intelligent at all . These are fuzzy terms. This is
fuzzy terminology because intelligence is a matter
of grades. The black/white consideration of intel-
ligence is pure manichaeism. We say that a system
is intelligent if behaves properly when confronted
with a task.

IQ tests measure intelligence because intelligence
is information processing put on act. We say that a
system is intelligent if it can exploit what it knows
to achieve better levels of performance. AI can
be considered part engineering (solving problems)
and partly science (understanding how can it be
done) [Winston 1992].

This view of intelligence matches that classical
sentence that says that intelligence is what you use
when you do not know what to do, i.e. what you do
beyond pure reflexes. Intelligence is the basis of
high performance behavior, as clearly both classic
AI and the new AI approaches believe.

Intelligence is a measure of the capability of the
control subsystem of any behaving entity. This
perspective identifies intelligence as the proper
study of –obviously– artificial intelligence, but
also of cybernetics [Wiener 1961], automatic control
[Kuo 1991] or robotics [Poole 1989]. All these dis-
ciplines have been focused in specific areas of re-
search, but, in the end, all these activities are al-
ways confronting the same problems and orbiting
around the same solutions. They can, in fact, be
considered one unique discipline: they are the sci-
ences of the artificial behavior.

3 A concept of Autonomy

I’ve had some discussions and heard expressions
of dismay related with the possibility of reaching a
consensus about the meaning of the adjective ”au-
tonomous”. This is, however, strongly used in our
area of work, mainly due to the inherent objective
of artificiality of making it independent of human
resources (like human hands or brains). I strongly
believe it is time to clarify the use of the adjective,
and I think it if possible to reach a consensus.

I propose to employ an interpretation in terms
of a three place predicate: Autonomous (SYS-
TEM, TASK, CONTEXT).

The meaning of this predicate is that the sys-
tem SYSTEMis autonomous if it can fulfill the task
TASKin the context CONTEXT.

I’m pretty sure that this proposed definition
of the meaning of autonomy will not be accepted
by all researchers. The objections will be mostly
based on the type of systems researchers want to
get out of it. An example is a refrigerator.

From my point of view, a refrigerator (SYSTEM
= ”refrigerator of Alex”) is autonomous because it can
fulfill its task (TASK= ”keep the interior temperature
at 5oC”) in a specific context (CONTEXT= ”Interior
of a house in Philadelphia”).

For many people a refrigerator (or a toaster,
or a lightbulb) is not the best example of an
autonomous system. They like to find in an
autonomous system at least the level of intelli-
gence of a cockroach, and a fridge cannot wander
through the kitchen and escape when children ap-
pear. But, this is another discussion that is focused
on the intelligence of the systems, and not in its
autonomy (even when they are strongly related).
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Fridges aren’t of much interest because they are
not quite intelligent. Cockroaches are intelligent,
at least to some level that we would like to repro-
duce.

This confusion appears because the relation be-
tween intelligence and autonomy is very strong.
What we want form our artificial creations is au-
tonomy (we do not want to keep one eye on the
fridge) and to achieve this autonomy, what we
need to put on them is intelligence. Intelligence
is information processing on act. So, our machines
can use it to be better performing beings.

The three topics mentioned in the definition
(system, task and context) compose the universe
of an artificial being. Artificial systems are built
with a purpose [Simon 1981] that is expressed in
the form of a task to do. Capability of task ful-
fillment –autonomy– is affected by all three fac-
tors, and what we try to build are systems that
are robust to uncertainty in all these aspects. This
is a more common ground for researchers: au-
tonomous systems are systems that are intelligent
enough to solve problems that appear when they
are trying to achieve an objective.

The three factors (SYSTEM, TASKand CONTEXT)
form a dependence network that we handle in our
search for autonomous behavior.

If we take the refrigerator to another –more
harsh– context, say a desert with 60 Celsius de-
grees or my house with two small children, it is
not easy at all for the refrigerator to fulfill the
task of keeping the interior temperature at the set-
point. In the last case I can help the fridge ac-
complish the task by continuous human supervi-
sion (like human operators in automated power
plants). The refrigerator cannot be considered au-
tonomous in this setting. To regain autonomy we
can modify the SYSTEM(add more refrigerating
power or a door lock) or modify the TASK(for ex-
ample change to store food).

If we change the task from ”keep the interior tem-
perature at 5oC” to the apparently similar ”keep the
food inside in good condition” the refrigerator can-
not be considered autonomous any longer (think
about what will happen to oranges in some weeks
or fish in some days). To achieve autonomy for
this task we change the SYSTEMfrom a refrigera-
tor to a freezer or change the CONTEXTputting the
fridge in an sterile room.

Reconfiguration is an example of a way to han-

dle uncertainty related with the system itself. If we
provide the refrigerator with more intelligence, it
will be able to detect a failure in the compressor
and lock the door to reduce heat incoming and
keep inner temperature.

When the task gets harder, the context uncertain
or the body weak, the system can in many cases
still fulfill the task if it is more intelligent. Auton-
omy is characterized by robust behavior under un-
certainty and intelligence is a key component for
it.

4 GOFAI and beyond

GOFAI (good old-fashioned artificial intelligence)
was focused on hard TASKSbecause they carried
the sense of the core meaning of intelligence. Fo-
cused on the –then considered– mechanisms of
thought, they worked on abstract logical repre-
sentations of entities, neglecting the importance of
handling real CONTEXTS. They also neglected the
importance of the embodiment of the intelligent
SYSTEM, considered that abstract reasoning pro-
cesses were independent of the underlying hard-
ware (mechanical or biological).

They focused on abstract machines working on
toy worlds and developed advanced mechanisms
for task accomplishment in these worlds. All these
techniques were based on abstract inference pro-
cedures that operated on representations of the
world they were dealing with.

When people –like us, control engineers– tried
to apply these artificial intelligence technologies in
real settings, they mostly failed because the com-
plexity of things in the real world is quite higher
than in toy worlds.

They focused on real tasks, ignoring that the
tasks should be done in real contexts by real bod-
ies.

5 Brooksian robotics and more

The behavior-based robotics movement rejects the
GOFAI approach arguing that it does not work in
real settings. They are true. Behavior based robo-
tics have demonstrated that there are alternative
approaches to intelligent behavior that can achieve
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Figure 1: Autonomy is a three legged concept: being, task
and context. Research effort should be put into achieving uni-
fied results than can be exploited to achieve autonomy to do
complex tasks in complex settings. Simple animals like insects
can survive in varying environmental conditions because its
genome provides them with evolution-time generated robust-
ness to changing conditions. Faster adaptation to a chang-
ing environment can only be done using memes, and this
means the exploitation of culturally transmitted representa-
tions. Behavior-based animals are condemned to extinction in
a world of nuclear winter or genetically engineered new crops.

results that are unthinkable using classical AI tech-
nology. Using their words, we can say that there
are alternative essences of the intelligence. This praise
of the Brooskian approach is not without counter-
part. First of all it is not new. During decades,
control engineering in real plant has been based on
the use of finite state machines that control work-
ing equipment. In the area of mobile robots, in a
classic work around 1950 -before the boom of AI-
Walter developed a collection of light-seeking tor-
toises (using the technology of the fifties).

To better understand their claims let’s quote
some marketing propaganda of the last book of the
new AI business [Brooks 1999]:

Until the mid-1980s, AI researchers as-
sumed that an intelligent system doing high-
level reasoning was necessary for the cou-
pling of perception and action. In this tra-
ditional model, cognition mediates between
perception and plans of action. Realizing
that this core AI, as it was known, was il-
lusory, Rodney A. Brooks turned the field of
AI on its head by introducing the behavior-
based approach to robotics. The cornerstone
of behavior-based robotics is the realization
that the coupling of perception and action
gives rise to all the power of intelligence and
that cognition is only in the eye of an ob-
server. Behavior-based robotics has been the
basis of successful applications in entertain-
ment, service industries, agriculture, mining,
and the home. It has given rise to both au-
tonomous mobile robots and more recent hu-
manoid robots such as Brooks’ Cog.

Behavior-based robotics propose a new ap-
proach, based on what they call grounded, embod-
ied systems that map directly perception to action
without mediating representations and reasoning.
They say that they do not use internal models be-
cause the world is the best model of itself. Per-
haps they do not make reasoning in the traditional
sense of rule based systems, but for sure they do
representation because perception is, in essence, a
representation process. They argue that they do
not have centralized representations, using purely
distributed architectures; but the description of
what they do to deal with maps (a pure represen-
tation) is very embarrassing [Maes 1990].
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They are successful in cockroaching and other
real tasks, but at the end, their approach is so
scaled-down that it is hard to find a real applica-
tion of this technology (cleaning television screens
is a proposal of Brooks [Brooks 1997]).

They concentrate on real contexts forgetting
about real problems, and if they say that picking
empty soda cans is a real task they are not very
ambitious for this technology.

I can understand that some people need publish
papers to make a living; and perhaps, the best way
to do this is being polemic and getting funds by
building big toys that can grasp the interest of the
general public.

Cog is pretty cute and Kismet can perhaps be
your best friend, but if you need a robotic fireman
what you need is a fire extinguisher with the intel-
ligence enough to recognize the type of fire and as-
sess the biological impact of the smoke in persons.
Determining the type of smoke can be considered
just a matter of specialized sensing, but imagine
the network of finite state machines that you need
to connect to reach this complex behavior, not to
speak of the difficulties of guaranteeing a correct
behavior [Butler and Finelli 1993].

6 A representationism vindica-
tion

The movement opposing mental models tries to
debunk the classical AI approach, searching for
new foundations for intelligent behavior. De-
bunking approaches are only reasonable if you are
fighting for their place or their money. This is,
from my point of view, what behavior-based robo-
tics has tried to do. Now that behavior-based robo-
tics is dead as a global foundation for intelligence
[Moravec 1999], it is time to re-vindicate the role of
models in complex behavior generation, because
the image of model-based systems is somewhat
deteriorated (that’s the reason I have used the term
representationism –i.e. it is an ism– in the title of this
section).

Behavior-based engineering has suffered more
or less the history of behaviourism in psychology.
Grounded on lack of quality of the results of classic
consciousness-based approaches it tried to reject any
mental model foundation and change to an input-

output psychology. Now its importance has been
reconsidered due to the advances in the objective
study of mental content.

This confrontation is pretty stupid to me, be-
cause it is, in essence, a discussion between input-
output representations and state-based represen-
tations. Any systems engineer knows that both
approaches are not opposing things but two sides
of the same coin. A good engineer uses what fits
better.

If the failure of model-based approaches was
not in the method itself, where it was? After
years of developing large, heterogeneous intelli-
gent control systems, we have reached the conclu-
sion that model based approaches have failed due
to complexity.

This may sound now as a truism, but it was not
so clear some years before. In 1992 we started
a project called HINT, with the objective of inte-
grate heterogeneous AI technologies in real-plant,
industrial application [Alarcón et al. 1994]. A
demonstration system was built to provide human
operator assistance in controlling a dewaxing unit
in a refinery. The system was based on the use of
expert systems, fuzzy control technology, neural
networks and model-based diagnosis.

Model-based diagnosers had demonstrated
good results in the diagnosis of electronic equip-
ment and so we thought that we were able to
scale them to chemical processes. The conclusion
was that after a lot of effort, the model-based di-
agnoser consumed most of the computational re-
sources giving almost no result. A fuzzy system
doing a similar task was more that a thousandfold
effective diagnoser (with the obvious differences
between model-based and rule-based diagnosis).

Model-based systems suffer from complexity in
several ways, mainly combinatorial explosion and
the lack of good models of complex systems.

Non representational systems -if they do exist-
are of two classes: extremely simple technology or
castrated technology. Extremely simple technol-
ogy is what you do in elevators or bread toasters.
Castrated technology is what you get when you
can do it better and you don’t. Representation is of
key importance to intelligent behavior like that of
complex controllers [Samad 1998b]. In fact, if we
think for a minute, we should conclude that non-
representational systems do not exist. Let’s quote
the very beginning of the PhD thesis of Larsson
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[Larsson 1992]:

Carelessly, we humans may think that we are
in contact with the world itself, when we see
things and people and feel the wind on our
faces. And all the time it is a matter of models,
generated to explain and foresee our own im-
pressions and perceptions. What would you
say, Prince Hamlet, about the very nature of
existence? ”Model, models, models”.

But, to what extent is it true that non-
representation systems (simple or castrated) do
not employ representations? Sensing and percep-
tion are always representation processes. Trans-
ducers receive this name because they translate –
represent– one physical magnitude into a repre-
sentation of it using a different magnitude.

Obviously an intelligent being does not need
a global, common, unified representation of the
world, the task to do and its own capabilities to
perform most tasks. The main criticism should be
directed towards totalitarian views of representa-
tion (theories of everything) instead to represen-
tation itself. These are the views that centered re-
search in classical AI, with the final result of being
unable to use them for some tasks.

From the field of control systems engineering
we can discover that distributed and centralized
representations can coexist. Each one is used for
a specific purpose, achieving performance levels
suitable for real time use and for optimal behavior.
Take for example a typical, modern controller for
a distillation column in a refinery. Several levels of
control are piled up to build the global controller,
and they are based on a hierarchy of representa-
tions. At the lower levels, reactive systems are em-
ployed mapping sensor inputs to actuator outputs
in the same type of basic structure of behavior-
based systems. These reactive behaviors, however
are codified forms of representations of the plant
under control. Representations simple enough to
be mapped to a controller that can be used in real
time. These representations (models of the plant)
can be obtained by engineers based on physical
theories or can be obtained on-line by the control
system itself. This process of perception and world
modeling is termed system identification and is
a clear example of increased intelligence levels in
control systems.

Distributed representations are in use in any
complex control system. In fact in industrial con-
trol we employ the term distributed control system
(DCS) to refer to them. But this distribution do not
preclude the existence of unified representations
that let the intelligent control system perform ac-
tivities that are not easy to do with distributed rep-
resentations. Top level layers of the refinery distil-
lation column control are based on unified, global
representations of the column that are used to per-
form global optimization of the column. These
representations are based on differential algebraic
equations constituting what is the most advanced
cognitive model of a real system.

Model-based control fail because the models
used are not good. The main reason for this is
that we are still lacking tools for model building.
As Åström commented in relation with the ori-
gin of his work on system identification [Witten-
mark and Rantzer 1999], models build based on
physical theories sometimes fail and the effective
approach is completely different: build a model
based on experiencing the real system behavior.
This is what is done in systems identification or
in neural-network modeling.

For behavior-based systems thinking however,
uncertainty is not the real problem, but the key
problem is in trying to build a model of the world
using uncertain information. Using his words
[Brooks 1991]:

If there are no models built, the problem of
uncertainty is inherently reduced. This alter-
native is to operate in a tight coupling with
the world through a sensing-acting feedback
loop.

But after that he says:

Instead of relying on inaccurate values re-
turned by noisy sensors, we can rely on
the time averaged derivative of these sig-
nals as the creature actively changes its state
within the world in a way which forces larger
changes in the sensor readings than those
contributed by noise.

At the end result that even behavior-based sys-
tems are based on the same type of models used
to control systems based on systems identifica-
tion. The difference here is the lack of a systematic,
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sound method to obtain these models. They gen-
erate ad-hoc solutions expecting they will provide
good results. It is widely accepted that one of the
best ways of estimating the behavior of a system
with uncertainty is to use Kalman filtering.

It is obvious that all this discussion on
cognition-based or behavior-based is mostly a
matter of taste, of personal preferences of the sys-
tem builder. In the same sense that you can build
systems based on hardware or software, there ex-
ist dualities in any aspect of system design. Clas-
sical tradeoffs are memory/speed, the mentioned
hardware/software, data/procedure, function-
based/behavior-based or distributed/centralized.
For a comment on the relation between functions
and intelligence see Section ??.

Discussions about what is better are usually
fruitless because it is pretty easy to find enough
arguments to defend any position, and people
tend to defend their positions due to our biologi-
cal background. The proper approach is gathering
what each alternative has to offer.

7 Complexity Limits

In a recent symposium, Doyle presented a paper
[Doyle 1999] analyzing fundamental tradeoffs in
robustness in complex systems. His analysis im-
plies that, perhaps, there are fundamental laws
that limit our capability to build arbitrary com-
plexity systems with arbitrary robustness. It is just
not a matter of putting more effort to guarantee an
utterly robust behavior; this double objective sim-
ply cannot be achieved.

If we look at the many efforts of using intelli-
gent control to get safer systems (i.e. systems that
respond better to some undesired events), we can
discover that they can achieve their objective with
the cost of increasing the complexity of the system
and sacrificing the robustness against other types
of events.

This if the fundamental tradeoff Doyle refers to,
but it is usually a non explicit decision what leads
to sacrifice some for of robustness in favor of other.
Robustness issues should be make explicit during
the construction of the system, and the way to do
this is to handle inherent uncertainties that appear
in the triad system-task-context. The only effective
way to be able to perform this analysis is a model-

Figure 2: Systems intelligence can be increased by the use of
advanced information processing, but these leads to increased
complexity and, as Doyle points out, perhaps there are funda-
mental laws that limit the robustness of our complex designs.
Formula 1 authorities have banned most active control tech-
nology in what used to be the most advanced road vehicles.
Now they are second to commercial vehicles in control tech-
nology.

based unifying approach to uncertainity and re-
lated risk management in complex controller en-
gineering.

Quoting [Doyle 1999, p. 261] we can say that:

While it is quite natural to distinguish be-
tween parametric uncertainty, noise and un-
modeled dynamics, it is also important to
treat them in an unified way.

8 Conclusions: The future of in-
telligent control

Shakey is sometimes considered the paradigm of
the failure of GOFAI and the success of behavior
based-robotics. The accepted explanation is be-
cause the construction of a model of its world and
the reasoning about it took too much time for the
task the robot was supposed to do.

This failure, however is only in the eye of the
failure-interested beholder. What Shakey demon-
strated was not only that it was able to navigate
-perhaps worse than a behavior based robot- but
that it was possible to extract information from the
world that could serve for any other purpose, with
so few amount of computing power. This information-
for-all idea is perhaps what Shakey designers had
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in mind (even if they didn’t verbalize this). Mod-
els of the world can be used not only to navigate
avoiding collisions, but to calculate the number
of objects in the room, and the length of a corri-
dor (for example to calculate the amount of paint
needed to paint it, or cable to wire it). Think about
extracting this information from a behavior-based
robot.

Systems intelligence levels are raised by the
proper integration of subsystems. While decen-
tralization and downsizing is a way to real-time
behavior, more complex intelligent behavior can
be achieved by the proper integration of subsys-
tems. Proper integration means not only action or
control integration but knowledge sharing and in-
terchange between subsystems. Without this knol-
wedge interchange, social behavior (the global be-
havior of the collection of subsystems) can only
present limited structural forms.

If something is the hallmark of intelligent be-
havior is the capability of exploit information.
This information should be exploited to enhance
the autonomy of the systems we build handling
uncertainty in the three aspects: system, task and
context. If we analyze the present status of the
technology this is what is already being done: in-
telligent control focus is handling of system uncer-
tainty (for example in fault-tolerant control [Izadi-
Zamanabadi 1999]), of environment uncertainty
(for example in rough terrain navigation[?]) and
of task uncertainty (for example handling natural
language orders [?]).

Some effort should be put however, in creating
a common viewpoint to this uncertainty manage-
ment. The construction of robust autonomous sys-
tems will lead –inevitably– to complex organiza-
tions with emerging behaviors and we will have
the need of incorporating into our discipline all
these emerging technologies of complexity.

Generalized complexity will be the main engi-
neering problem for future intelligent controllers
[Samad 1998a], and systems to tackle generalized
complexity will have the need of integrating het-
erogeneous control mechanisms. For example [Ali
and Goel 1996] shows an example of an integrated
approach, with a multistrategy qualitative naviga-
tional planner and a reactive-control mechanism.

The final conclusion is that we should start a
search for a unifying theory of artificial behavior,
somewhat in the line Wiener proposed in his Cy-

bernetics [Wiener 1961].
And what about the elephants? Paraphrasing

the title of the, now classical, paper of Brooks, we
can say that not only elephants don’t play chess, they
cannot play chess. We need other types of intelli-
gence for our complex controllers than elephant
intelligence.
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