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1. INTRODUCTION

1.1 Information Technology in industry

The process of incorporation of information tech-
nology (IT) into industrial processes is making
profound modifications in production systems.
Control and monitorization technology is leav-
ing the islands-of-automation phase, entering a new
phase of complete systems integration. While en-
terprise integration architectures (EAI) are hot
topics in advanced business engineering, at the
production level where controllers live, the in-
corporation of new technology and designs is
confronting difficult problems.

In most cases the problems are mainly due to
classical barriers posed to innovation in produc-
tion systems: lack of predictability, need for non-
stop operation, lack of reliability and availabil-
ity, less than ideal market maturity, exploitation
managers resilience, etc.

Two main objectives are being pursued in this
effort, namely Complete Horizontal Integration
(CHI) and Complete Vertical Integration (CVI).
CHI deals with the integration of business units,
business-to-business integration or supply chain
integration.

In his speech we will address more the topic of
CVI. It is time to start thinking in plant-wide
integration reaching even the lowest levels in
production plants: sensors, actuators and basic
controllers.

Distributed object computing (DOC) is gaining
an increased audience in information technol-
ogy and, in new tech sectors, it is the technol-
ogy of election for new system implementation.
From global experience in last years it is pretty
clear that -besides other advantages- DOC tech-
nology enhances systems integrability, making
easier the construction of complex information
applications. We will see in this paper how a
DOC technology, namely CORBA, can supply us
with some tools needed for better development
of complex, integrated control systems.

1.2 Control engineering processes

Control systems complexity is increasing at a
very fast pace in this days. New needs and new
capabilities (nobody knows who come first) are
driving control systems development into main-
stream systems engineering. Integration capabil-
ities are getting progressively critical as system
size increments, because modular development



is the only known practical way for complex sys-
tems engineering.

From this perspective it is surprising, to some
extent, the limited role that software technologies
play in control engineering journals and sym-
posia. It looks like this technology does not have
relevance enough to be considered a research dis-
cipline for control engineers (only small-scoped
real-time topics are addressed in control engi-
neering places).

This paper does not contain equations, nor feed-
back loops or control algorithms ... Can we say
it that it is relevant for control engineering? The
answer is Yes, it’s very relevant. Let’s take a closer
loop at the the real structure of a control problem.

The typical development process of a control sys-
tem can be decomposed, like any other engineer-
ing process, in a series of phases that go from the
identification of the need to the decommission of
the control system.

An example of phasing can be:

(1) Problem identification
(2) Plant Modeling
(3) Control design
(4) Control implementation
(5) Commissioning
(6) Operation
(7) Decommissioning

Research in control systems has been mainly fo-
cused in the second and third phases, because
the first is considered an a priori for control en-
gineering (i.e. it is always given) and from fourth
to seventh they can be left to implementors (i.e.
to raw work force). The separation between the
control laboratory and the real plant is too wide
for real engineering.

The basic technology used today to implement
control systems is software technology. But, be-
yond a classical view of digital implementation
of controllers (Åström and Wittenmark, 1997),
software technologies are the basis of modern
complex control systems, from SCADAs and
DCSs to intelligent controllers based on soft com-
puting (Gupta and Singh, 1996).

Software is the main implementation tool and this
has relegated software technologies from the core
theoretical control discipline. Any real control en-
gineer can see this problem taking a view on
”consolidated” control engineering magazines as
Automatica or the IEEE Transactions on Automatic
Control. No paper about a software topic will find
a place in any of them; it will be relegated to the
fellow implementations journal. This is a big mis-
take. Not only big, but critical for the discipline.

Control engineering is about systems performance;
this means that the knowledge of the controlled
system must involve not only the target system
but the controller itself, and when controllers are
software-based, giving a guarantee on global per-
formance means a clear analysis and deep un-
derstanding of software issues. When controller
complexity increases there are no available for-
mal methods to guarantee behavior. Only good
development processes can provide an statisti-
cally predictable quality. Good processes involve
all controller life-cycle; from the problem identi-
fication phase to the operation phase and even
decommission).

When complexity increases due to software flexi-
bility the probability of failure increases. Systems
that were manually operated are now operated
by computers and this leads to a critical com-
puter dependence of many artificial systems. The
case of the USS Yorktown is paradigmatical. The
ship had to go back to the harbor due to a soft-
ware failure.

While software is becoming a real problem, it is
also providing some solutions. For example, ad-
vanced research topics on systems fault-tolerance
are strongly based in information processing ca-
pabilities that are used to detect the fault, isolate
it, and devise alternative control strategies that
can overcome the fault (Blanke et al., 2000).

1.3 Complex Software for Control

Software systems can range from a small shoe
shop database to Star Trek’s USSS Enterprise con-
trol software. In a quick effort we can make a
quick and dirty classification of software systems
based on factors that induce systems complexity:

• Conventional: the shoe shop database.
• Real-time: meeting deadlines.
• Embedded: run within limited resources.
• Fault Tolerant: good behavior under faults.
• Distributed: run on several interacting com-

puters.
• Intelligent: solving ill-posed problems.
• Large: millions of lines of code.
• Integrated: interoperate with alien systems.
• Heterogeneous: run on heterogeneous plat-

forms.

Complexity factors affect negatively the systems
development process. Development effort grows
with complexity much more than linearly and
there are even systems we cannot build; exam-
ples are 24x365 systems (total availability), one-
shot systems (should work at the first try) 1 or
HP-LC (High Performance and Low Cost).

1 Star wars was an example of this problem.



Software engineers have always been raiders of
the silver bullet (Brooks, 1992) looking to solu-
tions to software development problems. Com-
plex software engineering is just an emerging
discipline, that is slightly appearing in fron-
tier areas between those complexity topics men-
tioned before.

2. INTRODUCTION TO COMPLEX CONTROL
SYSTEMS

A typical control system in a modern plant
is composed by a heterogeneous collection of
hardware and software entities scattered over a
collection of heterogeneous platforms (operator
stations, remote units, process computers, pro-
grammable controllers, intelligent devices) and
communication systems (analog cabling, serial
lines, fieldbuses, LANs or even satellite com-
munications). This HW/SW heterogeneity is a
source of extreme complexity in the control sys-
tem regarded as a whole.

Apart from the platforms that provide support
to the different control system components, the
technologies used in control system implemen-
tation are quite heterogeneous and provide func-
tionalities that go well beyond the classical sensing-
calculating-acting triad.

Examples of this heterogeneity is the use of
software systems for controller autotuning, ad-
vanced monitorization, filtering and estimation,
adaptation and learning, plant-wide optimiza-
tion, or real-time, in-the-loop simulation. Inter-
ception software systems are playing a wide col-
lection of intelligent roles in complex controllers
fitting as interfaces between pre-existent systems
(pants, controllers and humans). Examples of
these roles are data/action filters and monitors.
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Fig. 1. A classical layering of control entities in
a complex continuous process control sys-
tem. Layer quantity and labeling is some-
what field-dependent, but layer roles can be
easily mapped from domain to domain.

Classical hierarchical layering overcomes some
of the difficulties of complex systems construc-
tion. An example of layering is shown in Figure 1
where some intelligent layers are added atop clas-
sical control layers in process control systems.

While hierarchies encapsulate low level behavior,
simplifying the deployment of higher level con-
trollers, they do not necessarily solve the prob-
lem of the conceptual integrity of the system. Lay-
ers can be difficult to match if they lack a com-
mon view of structure and responsibility distri-
bution.

Conceptual integrity –an elusive, difficult to de-
fine property– is seen as the core factor af-
fecting systems constructability. Conceptual in-
tegrity manifests in several system properties
(some of them functional and some non-functional)
that are considered extremely important in sys-
tems construction. These properties are the basic
design principles of systems architecture(Shaw
and Garlan, 1996) (See Table 1).

Table 1. Architecture design principles

Conforming Scalable
Suitable Simple

Composable Standard
Modular Proven

Extensible Performing
Fast Efficient

We will see in the next section how object tech-
nology can provide us with some ideas and tools
to approximate this ideal of system conceptual
integrity.

3. THE ROLE OF OBJECT TECHNOLOGY

The very nature of control systems is object-
oriented (OO) because a control system cou-
ples virtual entities with real ones. A controller
correlates control design issues and software
implementations –that are very conceptual in
its nature– with sensors, actuators and external
world entities –that are very physical objects.

Control software makes a continuous mapping
between external an internal entities and hence,
object-oriented software is a natural way to build
these systems. During the last decade OO tech-
nology was relegated from mainstream real-time
software because OO implementations introduce
computational overhead to support some aspects
of OO computation (for example, dynamic bind-
ing). While this is usually the case, today com-
putational power makes less important this over-
head, and OO technology is becoming the tech-
nology of election to build complex real-time sys-



tems because it provides better mechanisms for com-
plexity handling. An example of big importance
for us is the case of real-time distributed systems,
where OO technology is a clear winner (Shokri
and Sheu, 2000).

Industrial plants are Seas of Objects and software-
intensive controllers for them reflect this na-
ture. The natural plant-modeling mechanisms
are object-oriented (Rodrı́guez and Sanz, 1999)
and dealing with preexisting software systems –
for example legacy controllers– is best done us-
ing object wrapping. Advanced controllers are
designed using clear responsibility distribution
between control objects (CRC cards are a good
approach to distributed controller analysis). This
approach enables the development of architec-
tures that exhibit some of the properties of Table
1 (Rushby, 1999).

3.1 Objects, components and agents

This discussion about responsibilities lead us to
a concept of control systems as collections of
interacting agents that match the most classical
object-oriented view: objects have inner life and
interact by means of message interchange.

Old days’ object passivity, like the Smalltalk’s ap-
proach to OO, do not fit well with our distributed
controller model because it employs only one
thread of control that leads to a computation
model based on the sequentiation of method re-
quest and execution. This approach does not fit
our needs because activities in the world are nat-
urally concurrent and not sequential.

The need of going out of mono-threading was
clear very soon and mechanisms for dealing
with it were promptly added to OO systems.
Exception handling extensions to classical envi-
ronments and special multi-threading environ-
ments were developed for support this concur-
rent model; but true concurrence is only possi-
ble in multiprocessing environments: multipro-
cessors and distributed systems.

The extension of multi-threading support in op-
erating systems provided a fake but very effec-
tive environment for concurrence. The simplified
and less resource consuming model of thread in-
teraction has demonstrated a benefit for complex
systems development.

This support from the operating systems has
brought new life to object systems. Object are no
longer passive entities that become active only
upon request from other objects. We can distin-
guish two types of activity:

Re-Activity: Objects are active in response to
other objects’ requests.

Pro-Activity: Objects are active pursuing ob-
ject’s own goals.

Objects are no longer passive, they can initiate
activity by their own will. Beyond the big philo-
sophical discussions in artificial intelligence cir-
cles about the meaning of the term autonomy,
this step to object pro-activity has been the first
true step to real, practical autonomy. Pro-activity
was obvious in past control systems but not from
a perspective of inner will of the entity. Only
from the fusion of pro-activity and responsibility
a true advance to autonomy has been achieved.

We are then reaching fields that go beyond sim-
ple, single activity and we get immersed in
a process of agentification. Agents’ technology
provide models of autonomy in limited scopes;
where agent interaction is a central issue. There is
a lot of wasted words and paper in relation with
agency, and, as a result, “agent” has almost lost
its meaning (Sanz, 2000). Reading a dictionary,
two concepts of agent emerge that fit our pur-
pose: a. Those who act b. Those who act on behalf
of others. This last meaning is the common in-
terpretation in the Internet-related agencies (mail
filters, web crawlers, etc). The first sense is best
suited for our view of complex control systems.

Distributed control systems are agencies, where
each agent pursues an objective. The operational
cycle of each agent is based on three interrelated
activities: Sensing, Reasoning and Acting (i.e.a
control loop).

Agent-based models of software development
are focused on the partial autonomy of agents in
relation with an specific task (Sanz et al., 2000).
The resulting agency is a community of commu-
nicating entities that perform a global, rational
decision making process by means of negotiation
and collaboration. This involves in many cases
policies for resource sharing, creation of markets
and contract signing.

Models of objects, agents and components (ob-
ject and agent materializations) are evolving to
a common view. This view fits the control engi-
neering view of a component for a distributed
control system. This means that modern com-
plex distributed controllers are being built as a
collection of reusable components that imple-
ment agencies to achieve a final objective that
is shared-by or emergent-from a collection of
agents. In this paper I will use the term agent or
object to refer to the same type of “active object”
entity. Component will be the term used to refer to
concrete implementations of the agents.

Agent componentization is a good foundation
for a research “product line”, because it offers
a foundation for easy, component-based devel-
opment of new systems using proven compo-
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Fig. 2. Resource allocation to custom develop-
ment and component reuse evolve with the
development model.

nents. This let developers concentrate the efforts
in new components they are developing and not
in well known components that need to be rebuilt
to fit in a new schema. Companies moving to
a component-based development process have
seen that the effort needed for new applications
is reduced as is reduced the effort put in custom,
application-specific developments (this is due to
the product-line focus of most companies).

3.2 Distributed Object Computing

Distributed Object Computing (DOC) or Object-
Oriented Distributed Processing (OODP) is a
software model based in the use of services pro-
vided by objects that are running in different
hosts. Distribution means true concurrence even
when most distributed applications serialize be-
havior of the application using some form of cen-
tralized controller.

DOC can be considered a generalization of the
client/server model. In DOC, client and server
roles are relative to a specific request and not to
the whole life-cycle of the object (an object can be
the client in a request and the server in the next
one).

DOC is a “natural” way of modeling distributed
systems because it hides implementation details
(OS, protocols, languages) behind “interfaces”.
Encapsulation, abstraction and inheritance are
valid and very useful concepts to model dis-
tributed control systems.

There are many benefits of using DOC for con-
trol systems engineering. In many cases they are
the same as for any other type of system, but in
most situations they are of critical importance for
control software due to the special requirements
posed to control systems. Examples of these ben-
efits are:

• Object collaboration through connectivity
and interworking;
• performance through parallel processing;
• reliability and availability through replica-

tion;

• scalability and portability through modular-
ity;
• extensibility through dynamic configuration

and reconfiguration;
• cost effectiveness through resource sharing

and open systems;
• maintainability through hot swapping and
• design flexibility through transparency.

DOC is an extremely valuable model for control
software development.

3.3 Integration

DOC technology addresses particularly well one
of the main problems of complex systems con-
struction: integration.

If we consider the interaction between two pieces
of code (let’s call them the client and the server)
we can identify four relative positions (i.e.four
coarse types of integration mechanisms:

In-Thread: Client and server are parts of the
same thread. Interaction is done by method
call. This means serialization (no concurrence)
and a simple integration vehicle (program-
ming language routine invocations). This is
easy to use, extremely fast and reliable. It is
strange to have client and server in a different
state –from a reliability perspective– due to ex-
ternal factors.

In-Process: Client and server are parts of the
same process but in different threads. We have
inter-thread requests usually based on ITC 2

mechanisms provided by the operating sys-
tem. This is relatively complex but is very fast
and reliable.

In-Host: This situation is similar to the previous,
but in this case client and server are in different
processes. Inter-process requests are based on
operating systems IPC 3 . This is also a fast and
reliable mechanism.

In-Net: Client and server are in different hosts.
The basic integration mechanism is some form
of remote procedure call (RPC) 4 Inter hosts
requests rank lower in speed and reliability
because it is easier to have different host states
in client, server or even communication chan-
nel. Distribution means in many cases unpre-
dictability and unreliablility.

Middleware is a generic name used to refer to a
class of software whose sole purpose is to serve
as glue between separately built systems.

2 Inter-Thread Communication.
3 Inter-Process Communication.
4 Lower level mechanisms can also be used but in most cases
it is not worth the effort.



Object-oriented middleware is used to simplify
the development and use of ubiquitous objects.
Middleware tries to simplify the implementation
of clients and servers for different relative loca-
tions; for example making possible the imple-
mentation of clients that are unaware of server
locations.

A big simplification is achieved using the same
interface to be used by client and servers in-
dependently of the base integration mechanism;
i.e.the same interface is used to wrap an IPC and
an RPC (see Figure 3).
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Fig. 3. A great simplification is achieved using
the same interface to be used by client and
servers to use/provide the service.

But the real big step is when this interface is in-
dependent of the relative location of the opposite
object (see Figure 4).
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Fig. 4. Middleware hides underlying mecha-
nisms to provide an homogeneous platform
for ubiquitous computing.

Brokering middleware is based on the use of an
intermediary entity between the client and the
server: the broker (See Figure 5). The process of
remote invocation is decomposed in eight steps:

1. The client makes a call to the client stub (the
client plug to the broker).

2. The client stub packs the call parameters
into a request message and invokes a wire
protocol.

3. The wire protocol delivers the message to
the server side stub(the server plug to the
broker).

4. The server side stub then unpacks the mes-
sage and calls the actual method on the ob-
ject.

5-8. The response -if any- uses the same process
to reach the client.

ServerServerClientClient

ServerServer

ClientClient

ServerServerClientClient

BrokerBroker

Fig. 5. Brokering middleware is based on the
use of an “intelligent” intermediary between
clients and servers.

3.4 Middleware and muddleware

There are many contenders in the object-oriented
middleware arena. The three main technologies
are Microsoft’s COM+, Sun Microsystems’ Java
RMI and Object Management Group CORBA.

There are big discussions about what “is the best
technology” but –as is the usual case– there is no
clear winner. If we try to understand all the argu-
ments we easily get into the muddle (of terminol-
ogy, of arguments, of policies, of money and lost
business opportunities, etc.).

From my point of view there are some clear –
although partial– criteria to follow:

• Homogeneous-platform applications on MS
desktop machines: COM+
• Internet-wide heterogeneous platforms: Java
• Fully heterogeneous and special require-

ments: CORBA

But what are those “special requirements”? The
answer to this question is pretty long but ex-
tremely interesting for control engineers: Real-
time behavior, fault tolerance, small memory
footprint, pervasive heterogeneity (hardware, op-
erating system and programming language), plat-
form resource control, vendor independence, open
specification process, modularity, embedability,
etc.

Does it mean that you cannot use COM or
Java for control applications? Not so, it only
means that you cannot use them if you have
some of these requirements unless you want to
put a huge effort to fulfill them. It is simpler
to build applications with tough requirements



using CORBA 5 . There are many good books
on CORBA (many of them published by OMG
Press/Wiley) but the book of Jon Siegel is partic-
ularly important (Siegel, 2000).

Things are somewhat changing for Java. While
it was originally developed for the embedded
market it reaches the public recognition in web-
site and Internet programming. Now, after the
approval of the Real-time Java specification, per-
haps it can regain the embedded and real-time
markets.

4. OMG, UML AND CORBA TECHNOLOGY

OMG stands for Object Management Group 6 , an
organization created to foster object technology
by means of the creation of a software market-
place for object technology. Using OMG’s object
technology any organization can leverage previ-
ous efforts in building control systems. Two of
the main components of this technology spec-
trum are CORBA and UML.

The OMG is an standardization organization with
an open, vendor-neutral, international, widely
recognized and rapid standardization process
based on demonstrated technology. It is com-
posed by more than 800 members (for profit and
not for profit organizations), with tens of con-
current technology processes, ranging from net-
working infrastructure to air traffic control or
human genome data management. It maintains
a strong liaison with other organizations as ISO,
ITU-T, W3C, TINA-C, Meta Data Coalition, etc.
OMG’s object technology is the object technology
of reference: IDL, UML, MOF, XMI 7 , etc.

The main contribution of OMG to the OO world
is the Object Management Architecture (OMA).
This is an specification for the construction of
open distributed object systems based on bro-
kering and a collection of predefined services
(OMG, 1998c).

The technology provided by the OMA can be
grouped in:

Object Request Broker (ORB): is the run-time
integration vehicle that forwards requests and
responses.

Interface Definition Language (IDL): is the in-
terface definition mechanism for implementa-
tion independence.

5 Even while being knowledgeable in CORBA is a daunting
task.
6 Find it at http://www.omg.org/ .
7 Interface Definition Language, Unified Modeling Lan-
guage, MetaObject Facility, XML-Based Metadata Inter-
change.
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Fig. 6. OMA Overview. The main parts are shown
but only some of the services are detailed.

Language Mappings: are the mappings from IDL
to several programming languages for the im-
plementation of client an servers.

Repositories: are stores that provide run-time
information about interfaces and implementa-
tions.

Interoperability: between CORBA systems and
with external entities (like Microsoft COM).

Most of these specifications are contained in
the main CORBA document: Common Object Re-
quest Broker Architecture and Specification (OMG,
1998a) 8 .

The OMG provides extensions and profiles over
the base specifications as separate documents
that specify the points of departure from the
main specification. Of special importance for
control systems engineering are the Minimum-
CORBA specification; the Real-time CORBA spec-
ification and the Fault-tolerant CORBA specifica-
tion (see Section 5).

4.1 CORBA IDL

OMG IDL (Interface Definition Language) is an
implementation independent language used to
specify CORBA object interfaces. It is now an
ISO standard and has several interesting char-
acteristics: it supports multiple-inheritance (not
so common in OO technology); it is –obviously–
strongly typed; it is independent of any par-
ticular language and/or compiler and can be
mapped to many programming languages (some
mappings are specified by the OMG and others
are contributed specifications); it enables interop-
erability because it isolates interface from imple-
mentation.

8 In release 2.3, the language mapppings were taken out to
constitute separate documents with own evolution.



4.2 OMG Structure and Activity

The OMG technical activity is organized around
three bodies:

• the Architecture Board, responsible of the
OMA and the verification that new specifi-
cations are compliant with it;
• the Platform Technology Committee, respon-

sible of CORBA core technology, and
• the Domain Technology Committee, respon-

sible of specifications in vertical domains.

The work is performed by a collection of working
groups in the different areas; from core technol-
ogy like the interoperability protocols to domain
specific activities like data acquisition or financial
security.

The OMG specification process is based on the
submission of specifications from private organi-
zations in accordance with Request For Propos-
als (RFPs) done by the OMG. This means that
the specification elaboration process is not done
by an standardization committee (ISO C++ took
more than eight years) but by an –usually– small
group of OMG members based on their own criteria
and previous developments.

This means that if a company possess a technol-
ogy that fits an RFP, the company can send the
specification of that technology as a proposal to
the OMG and it has a good chance of getting it
approved as an OMG specification. This has been
the case of UML proposed by Rational or the
Fault-tolerance specification proposed by Sun.

If there are several proposals, the different sub-
mitters try to find a consensus and deliver a sin-
gle, consolidated version, supported by all them.
This is usually called a Joint Revised Submission.

5. CORBA ASPECTS FOR REAL-TIME
CONTROL

Apart from the importance of having a plat-
form for integration and development of modu-
larized controllers, there are some new issues in
CORBA that are specially relevant for distributed
control systems engineering. These issues are:
predictable behavior, fault tolerance and embed-
dability.

The Real-time PSIG 9 (Platform Special Interest
Group) is addressing all these topics because
they have focused their activities on real-time
systems, and most real-time systems are also em-
bedded and have some fault tolerance require-
ments.

9 They can be found at http://www.omg.org/realtime/ .

The Real-time PSIG goal is the recommendation
of adoption of technologies that can ensure that
OMG specifications enable the development of
real-time ORBs and applications.

To achieve this goal, the Real-time PSIG gathers
real-time requirements from industry, organize
workshops and other activities and involve real-
time technology manufactures to elaborate Re-
quests For Information and Requests For Propos-
als for these technologies.

The main results of this work an be organized in
the three categories:

Real-time CORBA: The Real-Time CORBA spec-
ification in addition to the Messaging speci-
fication provides mechanisms for controlling
resource usage to enhance application pre-
dictability (OMG, 1999c; OMG, 1998b).

Fault-tolerant CORBA: The specification provides
mechanisms for fault tolerance based on entity
redundancy (OMG, 1999b).

Minimum CORBA: Addresses the construction
of CORBA applications on systems with lit-
tle resources like embedded computers (OMG,
1999c; OMG, 1999a; OMG, 1998b). This speci-
fication eliminates most dynamical interfaces
that are not necessary in frozen applications
(most embedded applications are ROMmed
applications).

5.1 Real-time CORBA

RT-CORBA standardizes the the mechanisms for
resource control (memory, processes, priorities,
threads, protocols, bandwidth, etc.) and handling
of priorities in a distributed sense (for example
forwarding client priorities to the server).

RTCORBA::Current

CORBA::Current

ORB + RTORB

RTCORBA::PriorityMappingIIOP

RTCORBA::Priority

RTCORBA::ThreadPool

POA RTPOA

ServerClient
Scheduling Service

RTIOP

Fig. 7. Real-time CORBA extensions to provide
strong control of resources to both clients
and servers.

Using these mechanisms, the Real-time CORBA
developer can control:

• Request time-outs
• Resource allocation and sharing
• Priority control and propagation



• Priority inversion
• Method invocation blocking
• Routing
• Transport selection

5.2 Fault-tolerant CORBA

Fault-tolerant CORBA tries to enhance applica-
tion fault tolerance reducing to a minimum the
impact to the application (computing overheads
and increase of complexity). Fault tolerance is in-
creased by means of entity replication: cold pas-
sive replication, warm passive replication, active
replication or active replication and majority vot-
ing.

5.3 Minimum CORBA

Embedded CORBA applications reduce memory
footprint by means of elimination of some fea-
tures (dynamic interfaces and repositories), the
use of standardized operating system services or
special transports. The elimination of a specific
service from the specification does not mean that
the application cannot use it, only that it will not
be necessarily provided by a compliant CORBA
implementation.

5.4 Bridging Domains

While the Minimum CORBA specification re-
duces the requirements posed to the ORB, the
Real-time CORBA and Fault Tolerant CORBA spec-
ifications can increase the size an complexity of
the application.
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User Computer

CORBA PLC

RT ORB Non RT ORB

Object

Object Object

Object Object

Object

CORBA Gateway

Non CORBA Device

Fig. 8. A CORBA Gateway can bridge between
two worlds of different protocols or ORBs.

Thanks to interoperability, it is not necessary at
all to have all the application running atop he
same ORB. It is possible to have the critical part
of an application running over a Real-time ORB
and the rest over a more conventional one. Figure
8 shows an example of using a CORBA gateway

to bridge between two different worlds in a con-
trol application.

6. APPLICATION EXAMPLES

In this section I will present succinctly some ex-
amples on the use of CORBA technology in con-
trol systems. The broker used is all of them is the
ICa Broker(Sanz et al., 1999b), a broker specially
tailored for control applications that was devel-
oped by us during the ESPRIT DIXIT project 10 .

6.1 Robot Teleoperation

As a laboratory experiment we have used CORBA
to build a robot teleoperation application (see
Figure 9. The application contains three CORBA
objects: a six DoF 11 full force feedback master,
a seven DoF robot slave and a coordinate space
mapper (transforms master axis space into robot
axis space).

176 177 178 179 180 181 182 183 184 185

0

0.2

0.4

0.6

0.8

1

Motion of all axes for Master & Slave

[N
or

m
al

iz
ed

 A
m

pl
itu

de
]

[Timescale in seconds]

Fig. 9. Axis position evolution in master and
robot during a test.

A big delay is appreciated (≈ 250 ms) but with
a small jitter. The test was done using the com-
mon laboratory 10baseT network in normal state
(about 20% load).

6.2 Risk Management

Another application of interest is RiskMan. This
is a system for emergency management in a
chemical complex with nine plants (see Figure
10). The system supports the whole life-cycle of
emergencies: prevention, detection, firing, diag-
nosis, handling, follow-up & cancellation.

10Now it is a commercial product distributed by an UPM
spin-off company called SCILabs.
11Degrees of Freedom.
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Fig. 10. Some of the CORBA objects that compose
the RiskMan application. Informer and Up-
dater are wrappers of external systems.

The application is composed by a collection of
CORBA objects running on heterogeneous plat-
forms (VAX/VMS, Alpha/UNIX, x86/Windows
NT) performing an heterogeneous collection of
functions: expert systems, user interfaces, wrap-
pers of real-time plant databases, data filters
based on fuzzy rules, predictors based on neural
networks, etc.

6.3 HydraVision

HydraVision is a real-time video system for the
support of remote operation of hydraulic power
plants. It uses a country-wide fiber optics WAN
network of a electric company to integrate a col-
lection of objects that wrap physical entities in
the system (see Figure 11).

User 
Interface

Camera

Fig. 11. The HydraVision main user interface and
one of the wrapped cameras.

The physical systems that are wrapped as CORBA
objects are: cameras, MPEG compressors, im-
age/audio multiplexers, microphones, loudspeak-
ers, video monitors, video stores, still image
printers, etc.

The system is supports multicasting and bidi-
rectional streaming. It used by human operators
to: get a visual confirmation of the status of the
remote plant, video-conference, faking human
presence, remote diagnosis, etc..

6.4 PICMAK

PIKMAC is an operator support system designed
to address plant-wide strategic decision making
in a cement plant. The system is used by opera-
tors specially in night and weekend shifts when
there is only one one person in the plant(see Fig-
ure 12).

Fig. 12. Part of the user interface that shows
the results of the on-line quality estimator
QDED. It uses neural networks to estimate
present clinker quality because it is not pos-
sible to have an direct real-time measure of
it.

The system is composed by a collection of inter-
acting CORBA objects that provide four top level
functionalities:

• Clinker quality estimation using neural net-
work technology.
• Instantaneous cost estimator using deep mod-

els.
• Alarm management using expert systems.
• Inter-shift communication using multime-

dia technology.

6.5 Present work

Our present work is focused in lowering the re-
quirements posed to the platforms to run CORBA
objects. We are working in the development of
embedded modular systems based on this tech-
nology.

As examples, we are using CORBA in mobile
robotics and also in the development of stan-
dardized implementations of electric substation
automation systems (SAS).

In this last case, we try to build CORBA automa-
tion objects embedded in field devices based on
the Electric Utilities IEC 61850 Draft standard. To
do this work, we have funding from the Euro-
pean Comission through the IST DOTS project.



7. STATE AND FUTURE OF THE
TECHNOLOGY

CORBA technology is impressive but perhaps
too impressive for normal control systems devel-
opers. It suffers what is called a second system
effect, trying to address all possible functionality
or requirement. We must identify our own needs
and determine if the CORBA way fits our needs.
If not, we are still in time to modify it.

Perhaps the main question is Why we need in-
tegration ?. Beyond many obvious answers (to
build TotalPlants, to achieve total safety, to be the
first in the market, to spend less money, etc.) I
would like to stress one door that this approach
opens for us: The modular approach fostered by
CORBA will let us develop true modular con-
trol systems, and this will eventually lead to
reach human-like complexity levels in artificial
minds. For sure CORBA will not be the integra-
tion technology for future C3POs, but it will open
that way. If you remember the movie 2010, HAL
9000 goes back to life (or conscience) when Dr.
Chandra re-connect the modules that encapsu-
late high-level mental functions using an integra-
tional backbone.

The second point I want to mention is design free-
dom. Design freedom is necessary in the complex
control systems domain to explore alternative
controller designs. Excessively restrictive tech-
nologies will collapse –unnecessarily– dimen-
sions of the controller design space (Shaw and
Garlan, 1996). This is, for example, the case of
some fieldbus technologies that support several
slaves but only one master. While design restric-
tions (in the form of prerequisite design deci-
sions) simplify development they sacrifice flexi-
bility.

Can we get both, simple development and flexi-
bility ? The key are no-compromises frameworks,
i.e.frameworks where design dimensions are still
open even when pre-built designs are available.
To continue the example of the fieldbus, the one-
master/several-slaves approach is one type of
pre-built, directly usable, design; but the under-
lying field bus mechanism should allow for alter-
native, multi-master designs. This can be done by
means of the development of agent libraries that
provide predefined partial designs in the form of
design patterns (Sanz et al., 1999c), and a trans-
parent object-oriented real-time middleware.

This approach will let developers construct their
own agencies to support their own designs be-
cause it is impossible to fight the not-invented-
here syndrome. Let the people do what they think
they need. Do not define ultimate solutions. Pro-
vide reusable assets that can be adapted to any

problem in a domain progressively focused (Sanz
et al., 1999a).

8. CONCLUSIONS

Software technology is of extreme relevance in
any area of engineering activity. In the case of au-
tomatic control systems, we can say that it is not
only relevant but a mandatory technology in a
wide variety of control system implementations.
Control engineers must know more about soft-
ware because it is as basic as differential equa-
tions for the proper construction of control sys-
tems.

While there are many research developments
in DOC, three are the main contenders in the
DOC wars: COM, CORBA and Java. But it is
pretty clear that the only widely available tech-
nology that is addressing -more or less- the full
range of topics in our automatic control busi-
ness is CORBA. The three main objectives we
are searching in a software technology are em-
bedded, real-time and robust. All they are being
addressed by CORBA specifications: Minimum
CORBA, Real-time CORBA, CORBA Messaging
and Fault-Tolerant CORBA. It is worth note how-
ever that most commercial products are ignoring
the real-time market because they think it is a
very small market.

It should be clear however, that selection of any
one of these technologies does not hamper the
application of the others. In fact, in relation with
Java and CORBA, it is worthy note that both dis-
tributed object models are pretty the same, and
evolution of distribution for Java applications is
being fostered over CORBA compliant brokers.
On the other side, CORBA interoperability spec-
ifies mappings to COM and OLE Automation,
making possible the integration of COM based
applications in broad-class CORBA systems.

While CORBA has been developed for distributed
applications, the transparent integration mech-
anism it offers serves also for non-distributed
applications. Some broker implementations pro-
vide local transports that do not use network pro-
tocols and hence do not induce a big overhead.
There are even broker implementations that can
reduce overhead for local invocations to zero
(Sanz et al., 1999b). This means that the program-
mer can transparently decide where to put the
objects and CORBA can do it with a minimal
impact in performance.

Real-time CORBA is very new (we have only
release 1.0 and some errata corrections) and it
has been developed as a compromise usable in
many fields and hence it has only a fixed priority
model (instead of other dynamic priority models



better suited for control applications). Dynamic
scheduling service will appear eventually but it
is suffering a painful specification process.

We should mention the strong bias in RT-CORBA
to telecoms, that make it sacrifice strong pre-
dictability. Real-time ORBs are being deprecated
by mainstream ORB vendors and hard real-time
ORBs are far in the future. Next major issues for
our business will be pluggable transports (that
are not politically correct because they are not
IIOP) and real-time services; like the mentioned
scheduling service, real-time events or transac-
tions. Some of them have been demonstrated
by OMG contributors. Other relevant issues are
combinations of specifications; for example Real-
time + Fault-tolerant or Real-time + Minimum.
Stay tuned.

Remember: Ignoring software topics in control
systems research is a big mistake. Not big, but
critical for the discipline. Control engineering is
not only a discipline of mathematical modeling
and differential equation solving. Control engi-
neering is the discipline of artificial behavior and
software is what makes the behavior. CORBA
is a good tool to support our designs, but we
must work hard to make CORBA more oriented
towards control systems engineering.
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